Algorithms in Discrete Morse Theory

Kevin Knudson
Mississippi State University
Joint work with:

- Henry King, University of Maryland
- Neža Mramor, University of Ljubljana, Slovenia
The Classical Set-up

Given a Morse function $f : M \to \mathbb{R}$ on a manifold M, we have the gradient vector field ∇f and the associated flow lines:
Recall that we can assign a number called the *index* to each critical point of f in the following way. If $p \in M$ is a critical point, we can choose local coordinates at p such that in some neighborhood, f has the form

$$f = f(p) - x_1^2 - \cdots - x_i^2 + x_{i+1}^2 + \cdots + x_n^2;$$

we then say p has index i.

Recall that we can assign a number called the *index* to each critical point of f in the following way. If $p \in M$ is a critical point, we can choose local coordinates at p such that in some neighborhood, f has the form

$$f = f(p) - x_1^2 - \cdots - x_i^2 + x_{i+1}^2 + \cdots + x_n^2;$$

we then say p has index i.

On the torus, with f the standard height function, the critical points p, q, r, s have index 0, 1, 1, 2, respectively.
If we have such a function, we can figure out all sorts of things about M:

- M has the homotopy type of a CW-complex with one cell of dimension i for each critical point of index i
- The homology of M can be calculated via this information

For example, here is a chain complex, built from the height function, computing the homology of the torus:

$$0 \to \mathbb{Z}[s] \xrightarrow{\partial = 0} \mathbb{Z}[q, r] \xrightarrow{\partial = 0} \mathbb{Z}[p] \to 0$$
Problem

Suppose M is a finite simplicial complex (e.g. a triangulated manifold) and let M_0 be the set of vertices. Suppose we have a map

$$f : M_0 \to \mathbb{R}.$$
Problem

Suppose M is a finite simplicial complex (e.g. a triangulated manifold) and let M_0 be the set of vertices. Suppose we have a map $f : M_0 \to \mathbb{R}$.

Think: We have a sample of function values in some region. For example, f may measure the temperature in a region in space or elevation data at certain longitudes and latitudes.
Question: Given only this information, can we construct a “gradient flow” on M that mirrors the behavior of our function f?
Question: Given only this information, can we construct a “gradient flow” on M that mirrors the behavior of our function f?

Answer: Yes, but it takes some work.
One Solution

Given a Morse function $f : M \to \mathbb{R}$, one can decompose M into regions of uniform flow. This is the so-called *Morse–Smale complex*. Edelsbrunner, Harer, and Zomorodian ('03) developed a procedure to construct a combinatorial version of this complex on a PL 2-manifold from a sampled function. Knowledge of the Morse–Smale complex is equivalent to knowledge of the qualitative behavior of f.
One Solution

Given a Morse function $f : M \rightarrow \mathbb{R}$, one can decompose M into regions of uniform flow. This is the so-called Morse–Smale complex. Edelsbrunner, Harer, and Zomorodian (’03) developed a procedure to construct a combinatorial version of this complex on a PL 2-manifold from a sampled function. Knowledge of the Morse–Smale complex is equivalent to knowledge of the qualitative behavior of f.

Their algorithm works well, but it is limited. In fact, they were able to extend it to PL 3-manifolds, but it was very difficult. For higher dimensional manifolds, it’s not at all clear how one should proceed.
Our Idea

Use Forman’s discrete Morse theory to extend an arbitrary function $f : M_0 \to \mathbb{R}$ to a discrete Morse function $f : M \to \mathbb{R}$.
Our Idea

Use Forman’s discrete Morse theory to extend an arbitrary function \(f : M_0 \rightarrow \mathbb{R} \) to a discrete Morse function \(f : M \rightarrow \mathbb{R} \).

Such functions have an associated gradient vector field, critical points, etc., which allow us to analyze the data given to us by the sample of points.
Our Idea

Use Forman’s discrete Morse theory to extend an arbitrary function $f : M_0 \to \mathbb{R}$ to a discrete Morse function $f : M \to \mathbb{R}$.

Such functions have an associated gradient vector field, critical points, etc., which allow us to analyze the data given to us by the sample of points.

Our algorithm works in arbitrary dimensions, not just 2 and 3.
Discrete Morse Theory

Let M be a simplicial complex. A *discrete Morse function* on M is a map from the set of simplices of M to \mathbb{R}. We abuse notation and write

$$f : M \rightarrow \mathbb{R}.$$
Let M be a simplicial complex. A discrete Morse function on M is a map from the set of simplices of M to \mathbb{R}. We abuse notation and write

$$f : M \to \mathbb{R}.$$

It must satisfy the following two conditions, for every p-simplex $\alpha^{(p)}$ in M:

1. $\#\{\beta^{(p+1)} > \alpha^{(p)} | f(\beta) \leq f(\alpha)\} \leq 1$;
2. $\#\{\tau^{(p-1)} < \alpha^{(p)} | f(\tau) \geq f(\alpha)\} \leq 1$.
Think: Function values increase with the dimension of the simplices.
Think: Function values increase with the dimension of the simplices.

Simple example: \(f : M \rightarrow \mathbb{R}, \ f(\alpha) = \dim \alpha \)
Critical Points

A simplex $\alpha^{(p)}$ is *critical* if the following two conditions hold:

1. $\#\{\beta^{(p+1)} > \alpha^{(p)} | f(\beta) \leq f(\alpha)\} = 0$;

2. $\#\{\tau^{(p-1)} < \alpha^{(p)} | f(\tau) \geq f(\alpha)\} = 0$.

That is, α is critical provided f decreases when leaving α via a face, and f increases when leaving α via a coface.
Critical Points

A simplex $\alpha^{(p)}$ is *critical* if the following two conditions hold:

1. $\#\{\beta^{(p+1)} > \alpha^{(p)} | f(\beta) \leq f(\alpha)\} = 0$;
2. $\#\{\tau^{(p-1)} < \alpha^{(p)} | f(\tau) \geq f(\alpha)\} = 0$.

That is, α is critical provided f decreases when leaving α via a face, and f increases when leaving α via a coface.

A simplex that is not critical is called *regular*.
The *index* of the critical simplex α is $\dim \alpha$.
The index of the critical simplex α is $\dim \alpha$.

Think:

critical simplex σ ↔ critical point of index i
of dimension i ↔ at barycenter of σ
The *index* of the critical simplex α is $\dim \alpha$.

Think:

$$\begin{align*}
\text{critical simplex } \sigma & \quad \leftrightarrow \quad \text{critical point of index } i \\
\text{of dimension } i & \quad \leftrightarrow \quad \text{at barycenter of } \sigma
\end{align*}$$
Examples

1. Critical vertex $= \text{Local minimum}$
Examples

1. Critical vertex $=$ Local minimum

2. Critical n-cell $=$ Local maximum
Examples

1. Critical vertex = Local minimum

2. Critical n-cell = Local maximum

3. For $f(\alpha) = \dim \alpha$, every cell is critical.
Here is a discrete Morse function on the circle:
Here is a discrete Morse function on the circle:

There are two critical cells, $f^{-1}(0)$ and $f^{-1}(5)$.
Here is a discrete Morse function on the torus:
Here is a discrete Morse function on the torus:

![Discrete Morse function diagram]

The critical cells are $f^{-1}(0)$, $f^{-1}(42)$, $f^{-1}(44)$, and $f^{-1}(86)$.
Theorem: (Forman) Suppose $f : M \to \mathbb{R}$ is a discrete Morse function. Then M is homotopy equivalent to a CW-complex with exactly one cell of dimension p for each critical simplex of dimension p.
Theorem: (Forman) Suppose \(f : M \to \mathbb{R} \) is a discrete Morse function. Then \(M \) is homotopy equivalent to a CW-complex with exactly one cell of dimension \(p \) for each critical simplex of dimension \(p \).

So, the torus has the homotopy type of a complex with one vertex, two 1-cells, and one 2-cell.
The Associated Gradient Field

Note: Regular simplices occur in pairs.
The Associated Gradient Field

Note: Regular simplices occur in pairs.

A simplex is regular if it has a face (coface) with higher (lower) value.
The Associated Gradient Field

Note: Regular simplices occur in pairs.

A simplex is regular if it has a face (coface) with higher (lower) value.

To visualize this: draw an arrow

\[\alpha^{(p)} \rightarrow \beta^{(p+1)} \]

for each such pair.

For any \(\sigma \) in \(M \), exactly one of the following is true:

1. \(\sigma \) is the tail of exactly one arrow;
2. \(\sigma \) is the head of exactly one arrow;
3. \(\sigma \) is neither the head nor tail of an arrow.
The Associated Gradient Field

Note: Regular simplices occur in pairs.

A simplex is regular if it has a face (coface) with higher (lower) value.

To visualize this: draw an arrow

$$\alpha^{(p)} \rightarrow \beta^{(p+1)}$$

for each such pair.

For any σ in M, exactly one of the following is true:

1. σ is the tail of exactly one arrow;
2. σ is the head of exactly one arrow;
3. σ is neither the head nor tail of an arrow.

In the last case, σ is critical.
Here is the gradient field on the torus associated to the above discrete Morse function:
The Algorithm

Suppose \(f : M_0 \rightarrow \mathbb{R} \) is a map from the vertices of \(M \) to \(\mathbb{R} \) (e.g. sampled data).
The Algorithm

Suppose \(f : M_0 \rightarrow \mathbb{R} \) is a map from the vertices of \(M \) to \(\mathbb{R} \) (e.g. sampled data).

Theorem: (Forman) \(f \) may be extended to a discrete Morse function on \(M \).
The Algorithm

Suppose \(f : M_0 \to \mathbb{R} \) is a map from the vertices of \(M \) to \(\mathbb{R} \) (e.g. sampled data).

Theorem: (Forman) \(f \) may be extended to a discrete Morse function on \(M \).

Proof: Let \(c = \max \{ f(x) : x \in M_0 \} \), and set \(f(\sigma) = c + \dim \sigma \) for each cell \(\sigma \) in \(M - M_0 \).
Suppose \(f : M_0 \to \mathbb{R} \) is a map from the vertices of \(M \) to \(\mathbb{R} \) (e.g. sampled data).

Theorem: (Forman) \(f \) may be extended to a discrete Morse function on \(M \).

Proof: Let \(c = \max\{f(x) : x \in M_0\} \), and set \(f(\sigma) = c + \dim \sigma \) for each cell \(\sigma \) in \(M - M_0 \).

This works, but it makes every cell not in \(M_0 \) critical, and so it’s not particularly useful.
Crucial Question:

Given the function $f : M_0 \rightarrow \mathbb{R}$, how do you locate candidates for critical points?
Crucial Question:

Given the function \(f : M_0 \to \mathbb{R} \), how do you locate candidates for critical points?

First, a definition:

If \(v \in M_0 \), the link of \(v \) is the simplicial complex \(L \) whose simplices are all \(\tau = [v_1, \ldots, v_r] \) such that \(v * \tau = [v, v_1, \ldots, v_r] \) is a simplex in \(M \).
Crucial Question:

Given the function $f : M_0 \to \mathbb{R}$, how do you locate candidates for critical points?

First, a definition:

If $v \in M_0$, the link of v is the simplicial complex L whose simplices are all $\tau = [v_1, \ldots, v_r]$ such that $v * \tau = [v, v_1, \ldots, v_r]$ is a simplex in M.

The lower link of v is the maximal subcomplex of L having all vertices with f-value less than that of v.
Example
Example

The lower link of v is shown in red.
For surfaces, we can define the *index* of a vertex to be:

\[
\left(\text{number of times we change from } + \text{ to } - \right) - 1
\]

as we traverse the link of \(v \).
For surfaces, we can define the *index* of a vertex to be:

\[
\left(\text{number of times we change from } + \text{ to } - \text{ as we traverse the link of } v \right) - 1
\]

In this example, the index is 1.
Motivation:
Motivation:

• index = 0 means that v should be considered a regular point (one direction up, one direction down)
Motivation:

• index = 0 means that v should be considered a regular point (one direction up, one direction down)

• index = 1 means that v is an ordinary saddle (two directions up, two directions down)
Motivation:

- index = 0 means that \(v \) should be considered a regular point (one direction up, one direction down)
- index = 1 means that \(v \) is an ordinary saddle (two directions up, two directions down)
- index = \(-1\) means that \(v \) is a minimum or a maximum
Motivation:

- index = 0 means that v should be considered a regular point (one direction up, one direction down)
- index = 1 means that v is an ordinary saddle (two directions up, two directions down)
- index = -1 means that v is a minimum or a maximum
- index ≥ 2 indicates that v is a multiple saddle point (degenerate critical point)
This idea forms the basis for our algorithm. We look for simplices in M that should be critical by examining the lower links of the vertices.
This idea forms the basis for our algorithm. We look for simplices in M that should be critical by examining the lower links of the vertices.

Here’s what our algorithm does:

- Produce sets A, B, C that partition the set of simplices of M, and
This idea forms the basis for our algorithm. We look for simplices in \(M \) that should be critical by examining the lower links of the vertices.

Here’s what our algorithm does:

- Produce sets \(A, B, C \) that partition the set of simplices of \(M \), and
- a bijection \(r : B \to A \) so that \(r(\sigma) \) is a codimension-one face of \(\sigma \).
This idea forms the basis for our algorithm. We look for simplices in M that should be critical by examining the lower links of the vertices.

Here’s what our algorithm does:

- Produce sets A, B, C that partition the set of simplices of M, and
- a bijection $r : B \rightarrow A$ so that $r(\sigma)$ is a codimension-one face of σ

$C \leftrightarrow$ critical simplices

$r : B \rightarrow A$ pairs regular simplices
Extract\((M, f, p)\)

- ExtractRaw\((M, f)\)
- for \(j = 1\) to \(\text{dim } M\)
 - ExtractCancel\((M, f, p, j)\)
- end for
Extract\((M, f, p)\)

- \textbf{ExtractRaw}(M, f)
- for \(j = 1\) to \(\dim M\)
 - \textbf{ExtractCancel}(M, f, p, j)
- end for

\textbf{ExtractCancel} is a procedure to cancel pairs of critical simplices that are joined by a single gradient path and whose values differ by at most \(p\) (the parameter \(p\) is called \textit{persistence}). Classical Morse theory tells us that we can do this without altering the other critical points.
• Initialize A, B, C to be empty.

• foreach $v \in M_0$

 – let $M' = \text{the lower link of } v$

 – if M' is empty then add v to C % local min

 – else

 * Add v to A.
 * Let $f': M'_0 \rightarrow \mathbb{R}$ be the restriction of f.
 * Extract(M', f', ∞) and let A', B', C', r' denote the resulting partition of the simplices of M'
 * find the $w_0 \in C'_0$ so that $f'(w_0)$ is the smallest. Add $[v, w_0]$ to B and define $r([v, w_0]) = v$.
 * for each $\sigma \in C' - w_0$ add $v * \sigma$ to C.
 * for each $\sigma \in B'$ add $v * \sigma$ to B, add $v * r'(\sigma)$ to A and define $r(v * \sigma) = v * r'(\sigma)$.

 – end if

• continue foreach
Does it work?
Does it work?

Theorem: The discrete vector field produced by Extract is the gradient field of a discrete Morse function on \mathcal{M}.
Does it work?

Theorem: The discrete vector field produced by Extract is the gradient field of a discrete Morse function on M.

Does it mirror the behavior of $f : M_0 \to \mathbb{R}$?
Does it work?

Theorem: The discrete vector field produced by Extract is the gradient field of a discrete Morse function on \(M \).

Does it mirror the behavior of \(f : M_0 \to \mathbb{R} \)?

Theorem:

1. There is an extension of \(f \) to a discrete Morse function \(f' : M \to \mathbb{R} \) with the same gradient field as that produced by Extract.

2. If \(\sigma \) is a simplex in \(M \), denote by \(\max f(\sigma) \) the maximum of all \(f(v) \) as \(v \) ranges over the vertices of \(\sigma \). Then, given \(\epsilon > 0 \) we may choose such an \(f' \) so that \(|f'(\tau) - \max f(\tau)| \leq \epsilon \) for any simplex \(\tau \).
Examples
Examples

What happens if we run the algorithm on the torus?

The algorithm finds a single critical vertex at $f^{-1}(0)$, two critical edges at $f^{-1}(42)$ and $f^{-1}(44)$, and a single critical triangle at $f^{-1}(82)$.
Examples

What happens if we run the algorithm on the torus?

The algorithm finds a single critical vertex at \(f^{-1}(0) \), two critical edges at \(f^{-1}(42) \) and \(f^{-1}(44) \), and a single critical triangle at \(f^{-1}(82) \).

This is not the critical triangle of the original discrete Morse function, but it is adjacent to the vertex with maximal value, and the average value of its vertices is greatest with this property.
Pilot Mountain, NC
Here’s the topographical map:
Let’s put a grid on it and measure the elevation at each grid point:
Head CT images
Renal Scintigrams