Parallel Implementation of the Polyhedral Homotopy Method

Jan Verschelde* Yan Zhuang†

3 Oct. 2006

Abstract of Poster, submitted to IMA 2006

Homotopy methods to solve polynomial systems are well suited for parallel computing because the solution paths defined by the homotopy can be tracked independently. For sparse polynomial systems, polyhedral methods give efficient homotopy algorithms. The polyhedral homotopy methods run in three stages: (1) compute the mixed volume; (2) solve a random coefficient start system; (3) track solution paths to solve the target system. This paper is about how to parallelize the second stage in PHCpack. We use a static workload distribution algorithm and achieve a good speedup on the cyclic n-roots benchmark systems. Dynamic workload balancing leads to reduced wall times on large polynomial systems which arise in mechanism design.

Key words and phrases. Continuation methods, load balancing, parallel computation, path following, polynomial systems, polyhedral homotopies.

*Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 South Morgan (M/C 249), Chicago, IL 60607-7045, USA. Email: jan@math.uic.edu or jan.verschelde@na-net.orl.gov. URL: http://www.math.uic.edu/~jan. This material is based upon work supported by the National Science Foundation under Grant No. 0105739 and Grant No. 0134611.

†Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 South Morgan (M/C 249), Chicago, IL 60607-7045, USA. Email: yzhuan1@uic.edu. URL: http://www2.uic.edu/~yzhuan1.