Main navigation | Main content

HOME » SCIENTIFIC RESOURCES » Volumes

Abstracts and Talk Materials

Daniel Forger (University of Michigan)

http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=forger

http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=forger

Basic properties of circadian clocks. Goodwin and early models. More realistic models. Model predictions and their experimental validation. Temperature Compensation. Unanswered questions.

Daniel Forger (University of Michigan)

http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=forger

http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=forger

Phase Response Curves, Phase Transition Curves and Winfreeâ€™s Type 0 vs. Type 1 distinction. Global vs. local coupling. Pulse vs. sustained coupling. Coupling induced rhythmicity. Relationship between phase resetting and coupling.

Daniel Forger (University of Michigan)

http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=forger

John J. Tyson (Virginia Polytechnic Institute and State University)

http://mpf.biol.vt.edu/people/tyson/tyson.html

http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=forger

John J. Tyson (Virginia Polytechnic Institute and State University)

http://mpf.biol.vt.edu/people/tyson/tyson.html

Building simple models of cell cycle, circadian rhythm, programmed cell death, glycolysis, Ca^{2+} oscillations, etc.

Daniel Forger (University of Michigan)

http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=forger

John J. Tyson (Virginia Polytechnic Institute and State University)

http://mpf.biol.vt.edu/people/tyson/tyson.html

http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=forger

John J. Tyson (Virginia Polytechnic Institute and State University)

http://mpf.biol.vt.edu/people/tyson/tyson.html

Simulations of simple models of genetic networks using the Gillespie Method. Comparison of behavior for small and large number of chemical events.

Daniel Forger (University of Michigan)

http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=forger

John J. Tyson (Virginia Polytechnic Institute and State University)

http://mpf.biol.vt.edu/people/tyson/tyson.html

http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=forger

John J. Tyson (Virginia Polytechnic Institute and State University)

http://mpf.biol.vt.edu/people/tyson/tyson.html

How to use WinPP and XPP. Models of bistability and oscillations. Drawing phase plane portraits. How portraits depend on parameter values. One-parameter bifurcation diagrams.

Daniel Forger (University of Michigan)

http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=forger

http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=forger

Relation between stochastic and deterministic formalisms. Two discrete simulation methods proposed by Gillespie. 1/N relationship. Noise induced oscillations. Chemical Langevin equations and hybrid methods. Introduction to simulation packages.

John J. Tyson (Virginia Polytechnic Institute and State University)

http://mpf.biol.vt.edu/people/tyson/tyson.html

http://mpf.biol.vt.edu/people/tyson/tyson.html

Simple models of regulatory motifs. Positive and negative feedback. Signal-response curves and bifurcation diagrams. Adaptation. Ultrasensitivity. Bistability and oscillations. Simple bifurcations: saddle-node and Hopf. Homoclinic bifurcations.

John J. Tyson (Virginia Polytechnic Institute and State University)

http://mpf.biol.vt.edu/people/tyson/tyson.html

http://mpf.biol.vt.edu/people/tyson/tyson.html

Physiological characteristics of the cell division cycle. Molecular biology of cyclin-dependent kinases. Simple model of bistability and oscillations in the CDK control system of frog eggs. More complex models of yeast cell cycles. Mammalian cell cycle and cancer.

John J. Tyson (Virginia Polytechnic Institute and State University)

http://mpf.biol.vt.edu/people/tyson/tyson.html

http://mpf.biol.vt.edu/people/tyson/tyson.html

An introduction to cell growth and division, programmed cell death, cell differentiation, motility, and signaling. Basic molecular mechanisms governing these processes. Modeling molecular mechanisms with ordinary differential equations.