A design principle in biochemical reaction networks based on realization theory

Bassam Bamieh
University of California, Santa Barbara

IMA, April ’08
Outline

• Some special features of the differential equations of biochemical reaction networks

• Why are there so many reactant species?

• Possible connection with a nonlinear realization problem

• A conjecture and a problem formulation

• A hack for the solution
Some features of the equations

- Biochemical reaction networks seem to always contain terms with special forms
- Many reactant species, but "function" appears to be described by a small subset
- e.g. Circadian Oscillation in Drosophila:

\[
\dot{x}_4 = v_3p \frac{x_3}{k_{3p} + x_3} - v_{4p} \frac{x_4}{k_{4p} + x_4} - k_3 x_4 x_8 + k_4 x_9
\]

\[
- v_{dp} \frac{x_4}{K_{dp} + x_4} - k_{d} x_4
\]

\[
\dot{x}_5 = K_{iT}^n \frac{v_{st}}{K_{iT}^n + x_{10}} - v_{mt} \frac{x_5}{k_{mt} + x_5} - k_{d} x_5
\]

- Each special form ⇐⇒ Specific biochemical reaction mechanism
A model reduction question

Given a biochemical reaction network, say

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ \vdots \\ x_{30} \end{bmatrix} = f(x_1, \ldots, x_{30})$$ (1)

If function is described by a small number of states, say x_1, x_{12}, does there exist a reduced model

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_{12} \end{bmatrix} = g(x_1, x_{12})$$ (2)

such that

behavior of (x_1, x_{12}) in (1) \iff behavior of (x_1, x_{12}) in (2)
A Similar Question in Reverse

Given a low order system

\[\dot{z} = g(z), \]

\(z\): *small number of variables*, \(g\): *possibly complicated function*,

can this system be imbedded in

\[\dot{X} = F(X), \]

\(X\): *possibly large number of variables*, \(F\) has *special form*?

\(\{z_1, \ldots, z_r\} \subset \{X_1, \ldots, X_n\}\)

embedded: Every trajectory of \(z\) is part of a trajectory of \(X\)

A nonlinear realization problem
Implementation with *Linear Elements: Carleman Linearization*

Example: \[\dot{z} = g(z) = z^2 \]

Define: \(X_1 \) := \(z \), \(X_2 \) := \(z^2 \), \ldots, \(X_n \) := \(z^n \), \ldots

\[
\begin{bmatrix}
X_1 \\
X_2 \\
X_3 \\
\vdots \\
X_4
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 4
\end{bmatrix}
\begin{bmatrix}
X_1 \\
X_2 \\
X_3 \\
\vdots \\
X_4
\end{bmatrix}, \quad \text{i.e.} \quad \dot{\mathbf{x}} = A \mathbf{x}
\]

The original system is imbedded in this linear system

Easily generalizable to vector \(z \) and analytic \(g \) using

\[X(i_1, \ldots, i_n) := z^{i_1} \cdots z^{i_n} \]
Implementation with *Quadratic* Elements

Consider: \[\dot{z} = g(z), \]

Can embed in a larger system

\[\dot{x} = Q(x) \]

where \(Q \) is *Quadratic* \(g \) polynomial \(\Rightarrow x \) finite \(x, Q \) non-unique

(Starkl & del Re, ACC, CDC '03)

Note:

- Can approximate any system with \(Q \) a neural network
- Many other possibilities for the building blocks of \(Q \)
Example: $\dot{z} = z^4$

Define $x_i := z^i$

\[
\begin{align*}
\dot{x}_1 & = x_4 \\
\dot{x}_4 & = 4z^3 \dot{z} = 4z^3 z^4 = 4x_3 x_4 \\
\dot{x}_3 & = 3z^2 z^4 = 3x_2 x_4 = 3x_3^2 \\
\dot{x}_2 & = 2z z^4 = 2x_1 x_4
\end{align*}
\]

Choice of Z and RHS are non-unique!

Procedure terminates in finite number of steps
Realization (Implementation) Issues

Goal: Realize given dynamics \(\dot{z} = g(z) \)
with a given set of motifs (building blocks)

- **Choice of new intermediate variables**
 - Monomials \(x_i := z^i \)
 - Orthogonal Polynomials \(x_i := J_i(z) \)
 - ...

- **Available building blocks, e.g.**
 - Quadratic terms \(k_{ij}x_ix_j \), restrictions on reaction rates \(k_{ij} \)
 - Hill terms \(\frac{x_i}{K+x_i} \)

- **Original dynamics are an invariant manifold of** \(\dot{z} = g(z) \)
 - for implementation: must be a *stable* invariant manifold
A Design Principle

- Design dynamics for prescribed function, e.g. as p increases, oscillator \rightarrow bistable switch

- Design vector field f for dynamics $\dot{z} = f(z, p)$
 - Can generally be done with 2 or 3 states.
 - but f is not realizable with given motifs

- Apply an expansion procedure to imbed dynamics in a larger system

$$\dot{z} = g(z, p)$$
 - g constructed from available motifs
Why so many intermediate reactant species?

One answer:
To realize function using building blocks available with biochemistry

In other words:
Biological function may be easily described by \(\dot{z} = g(z) \), w/ small \(z \)

But \(g \) may contain terms not realizable with biochemical reactions
The Reverse Embedding Problem in General

Given a large system

\[\dot{x} = f(x), \]

with specified building blocks (allowable reaction terms).

Did it arise from the “expansion” of a smaller system

\[\dot{z} = g(z), \]

where \(z \) a subset of \(x \)?

Possibly much more interesting than forward embedding problems which are hard to employ
A Hack for the Embedding Problem

- Start with original large system

\[\dot{x} = f(x) \]

- Simulate to produce trajectories “representative” of typical bio-function

- Identify a subset of states (relabel them \(z \)) that describe bio-function

- Use simulation data to fit a model

\[\dot{z} = g(z), \]

where \(g \) is parametrized, e.g. polynomial of some order.
Reformulation as Linear Regression

For polynomial g, fitting can be made into linear regression. Define

$$
\begin{align*}
 z^{(1)} &= z \\
 z^{(2)} &= z \otimes z \\
 z^{(3)} &= z \otimes z^{(2)} \\
 &\vdots
\end{align*}
$$

(3)

Then

$$
\begin{align*}
 g(z) &= G Z, \\
 Z &:= [1 \ z' \ z^{(2)'} \ldots \ z^{(m)'}]',
\end{align*}
$$

Coefficients of polynomial g are entries of matrix G

Fitting trajectories to $\dot{z} = GZ \iff$ Linear regression for entries of G
Example: Circadian Oscillation in Drosophila

Original model has 10 species

Function is described by 2: PER & TIM

Reduced model in example shown: 2 states, g of degree 5

Original PER/TIM (solid)
Reduced PER/TIM (dots)
Vector field of the reduced model
Limit cycle trajectory of original system
(Bamieh & Giarre, ACC ’07)
• Hack is easily generalizable to include parameters and/or inputs

\[\dot{z} = g(z, p, u) \]

• Difficult to compare reduced and original model

• Need better quantification of reduction error or comparison of behavior of original and reduced

• The original forward and reverse mathematical problems are open