Closing the Loop on Protein-DNA Interactions

Stephen Levene, Ph.D.
Departments of Molecular and Cell Biology and Physics
University of Texas at Dallas

Institute for Mathematics and its Applications
University of Minnesota
September 17, 2007
Acknowledgments

Site-specific Recombination
Alexandre Vetcher
Abbye McEwen
Farah Bardai
Isabel Darcy¹
Yuri Lyubchenko²
Alex Lushnikov²
Yongli Zhang⁸
Don Crothers⁶

DNA Topology and Supercoiling
Hua Tsen
Isabel Darcy¹
Andreas Hanke⁷
Rob Scharein⁵

Repeated-sequence DNA
Sima Zein
Richard Sinden³
Woody Wright⁴
Jerry Shay⁴

¹Dept. of Mathematics, Univ. of Iowa
²Dept. of Pharm. Sciences, Univ. of Neb. Med. School
³IBT, Texas A&M Univ.
⁴UT-Southwestern School of Med.
⁵Hypnagogic Software, Vancouver, BC
⁶Depts. of Chemistry, Mol. Biophys. & Biochem., Yale Univ.
⁷Dept. of Physics and Astronomy, UT-Brownsville
⁸Phys. Biosci. Div., Lawrence Berkeley Laboratory

Support: NIH (GM 47898, GM 55871, GM 67242), Texas Advanced Technology Program
DNA Biophysics in the 21st Century

- nanoscale
- mesoscale
- picoscale
Outline

• Role of DNA looping in biology
• General principles of DNA looping deduced from statistical mechanics
• Applications to loop-mediated gene repression: the *lac* operon
• Looping in site-specific recombination and implications for DNA topology
DNA Looping in Biology

• Gene regulation
 - Repression: *ara, deo, gal, lac* operons
 - Activation: *glnALG* operon
 - Many eukaryotic examples (e.g., β-globin locus)

• Intramolecular site-specific recombination (Int, Cre, Flp, Gin/Hin, etc.)

• Transposition (Mu)

• Type-II restriction enzymes (*SfiI, NgoMIV*)

• DNA mismatch repair (*MutHSL*)

© 2007 S.D. Levene. All rights reserved.

Courtesy of Mike White, UCSD
Relationship to DNA Cyclization

- J drops precipitously with DNA size for small DNAs
- Near 200 bp, J varies by ~100-fold over a full helical turn
- J values are extremely sensitive to the presence of intrinsic bends

Solving the DNA-looping Problem

Hamiltonian: \[\beta H = \sum_{i=1}^{N-1} \sum_{j=1}^{3} \frac{(x_{ij} - \bar{x}_{ij})^2}{\sigma_{ij}^2} \]

- \(x_{ij} \) = instantaneous rotation angle (tilt, roll, or twist) of the \(i \)-th rigid body relative to \((i-1) \)-st
- \(\sigma_{ij}^2 \) = variance of rotation angle
- \(\bar{x}_{ij} \) = corresponding mechanical-equilibrium angle

Non-linear constraints: \[f^{(k)}\left(\{x_{ij} : i = 1,\ldots,N-1; j = 1,\ldots,3\}\right) = 0; \quad k = 1,\ldots,6 \]

Harmonic-approximation solution for the J factor: \[J = \frac{8\pi^2 e^{-E_s}}{\sqrt{\pi^6 \det(A) \det(F)}} = \exp\left[-\frac{\Delta G_{\text{loop}}}{k_B T}\right] \]

- The J factor is:
 - Proportional to \(K_{eq} \) for the formation of a closed loop from an open chain
 - Effective concentration of one loop end in the vicinity of another
 - Ratio of statistical-mechanical partition functions for closed and open loops
Parameterization of DNA Conformations

- Tilt: θ
- Roll: ϕ
- Twist: τ
ϕ_{DP}, $\tau_{PP} \approx 0$

ϕ_{PD}

$\tau_{PP} = -60^\circ$

Coupling of Twist and Writhe in DNA Looping

Two distinct looped conformations contribute to the J factor.
Dramatically reduced phase dependence – cannot rule out looping.

Summary – Part I

• Numerical approach to computing looping free energies based on harmonic approximation is 10^4-fold more efficient than Monte Carlo simulation

• DNA looping is distinguished from cyclization by strong coupling of twist and writhe

• Relationship between Tw and Wr in small loops can generate phase shifts such that the most energetically favorable loops involve non-integral numbers of helical turns

• Negligible helical-phase dependencies do not necessarily imply absence of DNA looping
Architectural DNA-bending Proteins in Genome Organization and Regulation

E. coli genome
4.6 \cdot 10^6 \text{ bp}
L = 1.6 \text{ mm}
V ≈ 4 < S^2 >^{3/2}/3
= 6 \cdot 10^{-11} \text{ cm}^3

Intact E. coli cell
V ≈ 1 \text{ fL} = 1 \cdot 10^{-12} \text{ cm}^3

E. coli architectural DNA-bending proteins:
HU ≈ Fis > IHF > H-NS > StpA > Dps

HU-DNA cocrystal structure
DNA Looping and Regulation of the *lac* Operon

- Looping between the primary operator, O₁, and auxiliary operators, O₂ and O₃, enhances repression by increasing the effective concentration of LacR at the promoter.

© 2007 S.D. Levene. All rights reserved.
Structure of the LacR Tetramer

“V-shaped” tetramer

“Extended” tetramer

137-bp DNA loop mediated by extended tetramer
The “V-shaped” Repressor Forms
Multiple Loop Geometries

"WT" 179 bp

\[J = 0.42 \text{ nM} \]
\[\Delta G_{\text{loop}} = 53.5 \text{ kJ mol}^{-1} \]

\[\text{WT} \]

179 bp

\(\Delta G_{\text{loop}} = 53.5 \text{ kJ mol}^{-1} \)

\(\Delta G_{\text{loop}} = 62.8 \text{ kJ mol}^{-1} \)

\[\text{(+)}, \ J = 0.01 \text{ nM} \]
\[\Delta G_{\text{loop}} = 62.8 \text{ kJ mol}^{-1} \]

\[\text{(+)}, \ J = 0.78 \text{ nM} \]
\[\Delta G_{\text{loop}} = 52.0 \text{ kJ mol}^{-1} \]

\(\text{WA} \)

179 bp

\[\text{WA} \]

163 bp

\(\text{LB} \)

163 bp

\[(-), \ J = 15 \text{ nM} \]
\[\Delta G_{\text{loop}} = 44.6 \text{ kJ mol}^{-1} \]

\((-), \ J = 0 \text{ nM} \)
\[\Delta G_{\text{loop}} \approx 100 \text{ kJ mol}^{-1} \]

\[(-), \ J = 0.75 \text{ nM} \]
\[\Delta G_{\text{loop}} = 52.0 \text{ kJ mol}^{-1} \]

The Extended LacR Tetramer is the Dominant Form in Small Loops

Thermodynamic Model for LacR Repression

\[
d_c = \frac{\lambda J P_t}{K_1 K_2 + (K_1 + K_2 + \lambda J + P_t) P_t}
\]

\[
E_{\text{loop}} = \frac{K_1 (K_2 + P_t)}{K_1 K_2 + (K_1 + K_2 + \lambda J + P_t) P_t}
\]

\[
E_{\text{noloop}} = \frac{K_1}{K_1 + P_t}
\]

\[
R = \frac{E_{\text{noloop}}}{E_{\text{loop}}} = 1 + \frac{\lambda J P_t}{(K_1 + P_t)(K_2 + P_t)} \equiv 1 + \Gamma J
\]

\[
\Gamma = \frac{\lambda P_t}{(K_1 + P_t)(K_2 + P_t)} \text{ (known)}
\]

\[
J = J(h_0, \text{DNA flex.}, \text{protein flex.}) \text{ (4 params)}
\]

Analyzing Experimental Data

Data of Müller et al.

Data of Becker et al.

Analyzing Experimental Data (cont’d)

<table>
<thead>
<tr>
<th>Data Set</th>
<th>No. of data points, N_d</th>
<th>$\Gamma \times 10^2$</th>
<th>Fitting error</th>
<th>Persistence length, bp</th>
<th>Torsional rigidity, 10^{-19} erg cm</th>
<th>Helical repeat, bp turn$^{-1}$</th>
<th>Protein flexibility, deg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Müller et al. [5]</td>
<td>51</td>
<td>1.17b</td>
<td>1.0</td>
<td>95 (± 1)</td>
<td>1.1 (± 0.1)</td>
<td>11.60 (± 0.01)</td>
<td>20.7 (± 0.5)</td>
</tr>
<tr>
<td>Becker et al. [18] WT</td>
<td>26</td>
<td>4.66bc</td>
<td>1.1</td>
<td>95 (± 3)</td>
<td>0.7 (± 0.1)</td>
<td>11.08 (± 0.04)</td>
<td>19 (± 1)</td>
</tr>
<tr>
<td>Becker et al. [18] ΔHU</td>
<td>25</td>
<td>4.66bc</td>
<td>1.0</td>
<td>128 (± 2)</td>
<td>0.8 (± 0.1)</td>
<td>10.95 (± 0.03)</td>
<td>16 (± 1)</td>
</tr>
</tbody>
</table>

Looping, LacR flexibility, and HU-dependent Bending Dramatically Increase Repression Efficiency

• Small loops (≤ 200 bp) between lac operators are predominantly mediated by the extended LacR tetramer conformation

• LacR-dependent regulation *in vivo* is facilitated by enhanced DNA flexibility in the presence of HU protein

• HU binding and protein flexibility are both important factors that promote DNA looping over short distances
Mechanism of Tyrosine Site-specific Recombinases

- Cleavage, strand exchange
- Isomerization (?), HJ resolution
- Holliday-junction intermediate
DNA Knotting via Site-specific Recombination

Electron micrograph of a (+3) DNA knot

Electron micrograph of a (+3) DNA knot

Tsen & Levene, unpublished

© 2007 S.D. Levene. All rights reserved.
Topology of Cre Recombination is Inconsistent with a Planar Intermediate

Cre-HJ cocrystal structure
Atomic-force Microscopy of Cre Synaptic Complexes

Conclusions

• Development of comprehensive theory for DNA looping that accounts for DNA and protein conformation, protein flexibility, thermal fluctuations, and helical phasing

• Small regulatory loops (≤ 200 bp) in the lac operon are mediated by the extended LacR tetramer conformation and regulation *in vivo* is facilitated by enhanced DNA flexibility in the presence of HU

• Understanding DNA looping is vital for rigorously interpreting results of topological experiments

• Loop-closure kinetics is an emerging tool for analyzing the structure of complex nucleoprotein assemblies
Nick Cozzarelli
1938 - 2006