Using Expression Graphs in Optimization Algorithms

David M. Gay

Optimization and Uncertainty Estimation

http://www.sandia.gov/~dmgay
dmgay@sandia.gov
+1-505-284-1456
Outline

• The Problem
• Some algorithm ingredients
• Expression graphs
 ◦ various forms
 ◦ derivative computations
 ◦ bound computations
 ◦ convexity detection
• Summary and pointers
The Problem

Seek x^* to minimize $f(x)$

s.t. $\ell \leq c(x) \leq u$

$f : \mathbb{R}^n \rightarrow \mathbb{R}$

$c : \mathbb{R}^n \rightarrow \mathbb{R}^m$

with f, c smooth; $x \in D$ compact.

Settle for \hat{x} with $f(\hat{x}) - f(x^*) < \epsilon$.

For MINLP, $n = p + q$, $D = \mathbb{R}^p \times \mathbb{Z}^q$.
Algorithm ingredients... in parallel,

- Local search for good *incumbents*.
- Compute bounds (e.g., relax).
- Compute, refine convex outer approx’s.
- Test for sufficiency, exclusion.
- Branch — split domain as needed.
- Reduce domain (using convexity).
- Presolve, updated with new info.
Expression Graphs

Good for

- Function evaluations (doing, simplifying)
- Derivative computations (AD)
- Bound computations, e.g.,
 - interval
 - Taylor series
 - slope
- Convexity detection.
Expression Graph for $f = (x - 3)^2 + (y + 4)^2$
Expression Graph Representations

Possible representations include

- graph = list-style data structures
- list of tuples
- Polish prefix or postfix
- XML

Convert from one to another in linear time. AMPL/solver interface lib. (ASL) uses Polish prefix for external rep., graph for internal.
Graph walks in ASL currently include...

- conversion to internal form with AD setup
- detection of quadratic forms
- detection of partially-separable structure for efficient Hessian computations
- operator adjustments (for evaluations after some of the above)
Example: ASL Multiplication Operator

Do multiplication and save partials for AD:

double
f_OPMULT(expr *e A_ASL)
{
 expr *e1 = e->L.e;
 expr *e2 = e->R.e;
 return (e->dR = (*e1->op)(e1))
 * (e->dL = (*e2->op)(e2));
}
Forward AD via Graph Walk

Computing $x_j = o_j(x_k, x_\ell)$ (with $j > n$, $k < j$, $\ell < j$)

$$\frac{\partial x_j}{\partial x_i} = \frac{\partial o_j}{\partial x_k} \frac{x_k}{x_i} + \frac{\partial o_j}{\partial x_\ell} \frac{x_\ell}{x_i} \quad \text{for} \quad 1 \leq i \leq n.$$

Similarly recur higher derivatives by graph walk doing forward AD.
Partially Separable Structure

\[f(x) = \sum_i f_i(A_ix) \]

\[\Rightarrow \nabla^2 f(x) = \sum_i A_i^T \nabla^2 f_i A_i \]

Graph walk finds “group” partial separability:

\[f(x) = \sum_i \theta_i \left(\sum_j f_{ij}(A_{ij}x) \right) \]
Use of Partially Separable Structure

Good for efficiently computing explicit Hessians and Hessian-vector products. In ASL, partials are stored during function evaluations (graph walks) for use in Hessian-vector computations by a mix of forward and backward AD.
More Computations by Graph Walks

Walks similar to forward AD can compute

- interval bounds (by interval arithmetic);
- propagate Taylor series;
- compute interval slopes.

“Slopes” are divided differences:

\[
\begin{align*}
 f[x, z] = & \begin{cases}
 \frac{f(x) - f(z)}{x - z} & \text{if } x \neq z \\
 f'(x) & \text{if } x = z
 \end{cases}
\end{align*}
\]
Slope Arithmetic

Slope arithmetic, analogous to forward AD [Krawczyk & Neumaier, 1985]:

\[
\begin{align*}
 f &= \cdots \\
 c \in \mathcal{R} &= 0 \\
 x &= 1 \\
 g \pm h &= g[x, z] \pm h[x, z] \\
 g \cdot h &= g[x, z] \cdot h(x) + g(z) \cdot h(x, z) \\
 g/h &= (g[x, z] - h[x, z] \cdot f(z))/h(x)
\end{align*}
\]
Interval Slopes

Interval X, interval evaluation of \(f[X, z] \)

\[\Rightarrow f[x, z] \in f[X, z] \forall x \in X. \]

\[f(x) = f(z) + f[x, z](x - z) \]

\[\Rightarrow f(X) \subseteq F_z(X) = f(z) + f[X, z](X - z). \]

Quadratic approximation:

\[\text{width}(F_z(X)) - \text{width}(f(X)) \leq O(\text{width}(X)^2). \]
Extension to n Variables

Interval slope computations extend readily to n variables and can be done by walk of expression graph.

$$\text{work}(f[X,z]) = O(n \cdot \text{work}(f(x))).$$
Second-Order Slopes

Second-order slopes:

• Not unique.

• \(f(x) = \)
 \[
 f(z) + f'(z)(x - z) + (x - z)^T f[x, z, z](x - z).
 \]

• \((x - z)^T f[x, z, z] = f[x, z] - f'(z).\)

• For \(x \in R^n, \)
 \[
 work(f[X, z, z]) = O(n^2 \cdot work(f(x))).
 \]
Convexity

Can specify some problems in a way that guarantees convexity, e.g.,

- CVXMOD [Boyd & Mattingley, 2006]
- Joseph Young thesis (Rice, 2008)

but in general have convexity only in some regions.
Convexity Detection

Can walk expression graphs to detect condition sufficient for convexity in a region.

- [Nenov, Fylstra, Kolev, 2004], in Frontline spreadsheet software

- Dr. AMPL [Fourer, et al., 2008]
Summary

With walks of expression graphs we can

- Evaluate expressions
- Detect problem structure:
 - convexity, partially separable structure.
- Compute derivatives
- Compute bounds
- Presolve (linear, nonlinear)
- Optimize such computations.
Pointers

- Neumaier global optimization page/pointers:
 http://www.mat.univie.ac.at/~neum/glopt.html

- Coconut (C++ software):
 http://www.mat.univie.ac.at/~neum/glopt/coconut

- AMPL web site (e.g., some papers):
 http://www.ampl.com

- My papers: pointers in
 http://www.cs.sandia.gov/~dmgay