Quick Fundamentals of Wireless Networks

IMA Summer Program on Wireless Communications

Phil Fleming
Network Advanced Technology Group
Network Business
Motorola, Inc.
Quick Fundamentals of Wireless Networks

• Overview
• Wireless Network Architectures
 – infrastructure-free networks
 – infrastructure-based networks
 • legacy
 • all IP
• The digital wireless link
 – channel models
 • propagation
 • fading and shadowing
 – modulation
 – coding
 – adaptive coding and modulation
 – ARQ and Fast ARQ
• Traffic
 – conversational
 – streaming
 – interactive
 – bet effort
• Capacity & Performance measures
IMA Summer Program on Wireless Communications

For the personal use of the participants in the IMA summer program on wireless communications. May not be reproduced or distributed in whole or in part without written consent of the author.
IMA Summer Program on Wireless Communications

Interface to the Public Network

Base Site Controller

Access Node

Internet

Packet Core

Packet Core

Base Site (Access Point)

Client

For the personal use of the participants in the IMA summer program on wireless communications. May not be reproduced or distributed in whole or in part without written consent of the author.
An Infrastructure-free “Ad-Hoc” Network

1st hop 2nd hop 3rd hop
The Wireless Link: Channel Models

- Environmental conditions effect the qualities of a wireless link depending on:
 - frequency and bandwidth
 - terrain or urban “clutter”
 - shadowing
 - fading (multipath interference)
 - ambient noise
 - distance and transmit power
 - relative speed of transmitter and receiver
 - antenna type and properties
 - gain
 - diversity and array
 - directionality
The Wireless Link: Propagation

• Models of received signal strength:
 \[e^{Xr^{-\mu}} \]
 - \(r \) is the distance between transmitter and receiver
 - \(\mu \) is typically between 3 and 4
 - \(X \) is a Normal random process with spatial correlation

• Less shadowing and fading at lower frequencies
 - lower frequencies are better able to penetrate buildings and other urban “clutter”
The Wireless Link: Modulation

- Changes in the electromagnetic waveform convey information in the form of a “symbol.”
- Common Examples
 - Phase-Shift Keying (PSK)
 - symbol corresponds to phase
 - amplitude is constant
 - Binary: 0 and 1 are the symbols and the phases are 0 and π
 - Quadrature: (0,0), (0,1), (1,0) and (1,1) are the symbols corresponding to phases $\pi/4$, $3\pi/4$, $5\pi/4$ and $7\pi/4$.
 - Quadrature [Phase and] Amplitude Modulation (QAM)
 - symbol corresponds to phase and amplitude pair
 - 16-QAM: symbols are four bit sequences corresponding to values of $Ae^{j\theta}$
The Wireless Link: Channel Coding for Bit Error Correction

- Efficient error-correcting codes convert strings of \(k \) information bits into codewords of length \(n \)
 - \(k/n \) is the rate of the code
 - received “words” are decoded by finding the codeword that is “closest” to the received word
- Convolutional Codes
 - information bit sequence is passed through a finite state shift register
 - maximum likelihood decoding
- Turbo Codes
 - close to realizing the Shannon capacity bound
 - maximum a posteriori decoding (MAP)
- Channel coding is typically used in conjunction with interleaving
The Wireless Link: ARQ and Fast ARQ for Frame Error Correction

- (ARQ) Automatic Repeat Request
- Session Layer: e.g. TCP
 - IP packets are re-transmitted across multiple network links.
 - round trip time: approx 0.5 to 1 sec.
- Link layer: e.g. Radio Link Control (RLC) or RLP
 - Radio link frames are re-transmitted across backhaul and radio link.
 - round trip time: approx 50 to 200 msec.
- Physical Layer: e.g. Fast ARQ or Hybrid ARQ
 - radio link sub-frames are re-transmitted over the radio link
 - re-tx bits combined (IR or CC) with previous bits before final decode
 - short round trip time: approx 5 to 20 msec
Traffic

- Conversational (http://www.webtutorials.com/sndsmpl/)
 - phone call
 - gaming
- Streaming
 - IP radio and video
 - push-to-talk
- Interactive
 - web browsing
 - instant messaging
 - gaming
- Best effort
 - file transfer
 - push data (e.g. stock quotes, weather, sport’s scores)
System Capacity

- Interactive Sessions: conversational, streaming, interactive
 - Average number of sessions per sector per carrier
 - erlangs: average number of simultaneous calls supportable at some quality criterion
 - Average number of sessions per sq mile
 - Average number of sessions per Hz

- Packet Data
 - bits per sec per Hz
 - bits per second per sector per carrier
Performance: User experience

• Phone call and push-to-talk
 – Call setup time
 – Voice path delay
 – Voice quality
 – Audio holes
 – Coverage: call initiation, call drop

• Streaming
 – session intiation
 – image quality
 – stop/start frequency

• Interactive
 – session intiation time
 – response time

• Best effort
 – file download time
Mathematical disciplines related to wireless communications

• Information theory
• Queueing theory and stochastic modeling
• Control and Stochastic Control
• Decision theory
• Game theory