ENTROPY MAXIMIZATION

By

K.B. Athreya

IMA Preprint Series # 1231

April 1994

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455–0436
Phone: 612/624-5066 Fax: 612/626-7370
URL: http://www.ima.umn.edu
ENTROPY MAXIMIZATION

K.B. ATHREYA
Iowa State University

Abstract. It is shown i) that every probability density is the unique maximizer of relative entropy in an appropriate class and ii) that in the class of all pdfs \(f \) that satisfy \(\int f h_i d\mu = \lambda_i \) for \(i = 1, 2, \ldots, k \) the maximizer of entropy is an \(f_0 \) that is proportional to \(\exp(\sum c_i h_i) \) for some choice of \(c_i \). An extension of this to a continuum of constraints and many examples are presented.

Let \((\Omega, B, \mu)\) be a measure space. A \(B \) measurable function \(f \) from \(\Omega \) to \(R^+ = [0, \infty) \) is called a probability density function (p.d.f.) if \(\int f d\mu = 1 \). For such an \(f \) let \(P_f(A) \equiv \int_A f d\mu \) for \(A \in B \). Then \(P_f(.) \) is a probability measure. The entropy of \(P_f \) relative to \(\mu \) is defined by

\[
H(f, \mu) \equiv -\int \log f d\mu
\]

provided the integral on the right exists.

If \(f_1 \) and \(f_2 \) are two pdfs on \((\Omega, B, \mu)\) then for all \(\omega \) (we define \(0 \log 0 = 0 \))

\[
f_1(\omega) \log f_2(\omega) - f_1(\omega) \log f_1(\omega) \leq (f_2(\omega) - f_1(\omega)).
\]

This is due to the fact that \(\phi(x) = x - 1 - \log x \) has a derivative \(\phi'(x) = 1 - \frac{1}{x} \) that is \(< 0 \) for \(x < 1 \) and \(> 0 \) for \(x > 1 \) and hence has a unique minimum in \((0, \infty)\) at \(x = 1 \) where it is zero so that \(\log x \leq x - 1 \) for all \(x > 0 \), with equality holding iff \(x = 1 \).

Now integrating (2) yields

\[
\int_\Omega f_1(\omega) \log f_2(\omega) d\mu - \int_\Omega f_1(\omega) \log f_1(\omega) d\mu \leq \int_\Omega (f_2(\omega) - f_1(\omega)) d\mu = 0
\]

1991 Mathematics Subject Classification. 60E.

Key words and phrases. Entropy, relative entropy, entropy maximization.

Research supported in part by NSF Grant DMS 8343932, and IMA, Minneapolis.
since
\[\int_{\Omega} f_1 d\mu = 1 = \int_{\Omega} f_2 d\mu. \]

We note that in view of (2), equality holds in (3) iff equality holds in (2) and that holds iff \(f_2(\omega) = f_1(\omega) \) a.e. This simple idea is well known in the literature and is mentioned in Durrett([1] pp.318). We summarize the above discussion as

Proposition 1. Let \((\Omega, B, \mu)\) be a measure space. Let \(f_1\) and \(f_2\) be \(B\) measurable functions from \(\Omega\) to \(R^+ = [0, \infty)\) such that \(\int f_1(\omega) d\mu = 1 = \int f_2(\omega) d\mu\). Then

\[H(f_1, \mu) = -\int f_1(\omega) \log f_1(\omega) d\mu \leq -\int f_1(\omega) \log f_2(\omega) d\mu \]

with equality holding iff \(f_1(\omega) = f_2(\omega)\) a.e.

Let \(f_0\) be a p.d.f. such that \(\lambda = -\int f_0 \log f_0 d\mu\) exists in \(R\). Let

\[\mathcal{F}_\lambda = \{ f : f \text{ a pdf and } -\int f \log f_0 d\mu = \lambda \}. \]

From (4) it follows that for \(f \in \mathcal{F}_\lambda\)

\[H(f, \mu) = -\int f \log f d\mu \leq -\int f \log f_0 d\mu = \lambda = -\int f_0 \log f_0 d\mu. \]

Thus we get

Corollary 1.

\[\sup \{ H(f, \mu) : f \in \mathcal{F}_\lambda \} = H(f_0, \mu) \]

and \(f_0\) is the unique maximizer.

Remark 1. This corollary says that any probability density \(f_0\) such that \(-\int f_0 \log f_0 d\mu = \lambda\) is defined appears as the unique solution to an entropy maximization problem in an appropriate class of densities. Of course, this has some meaning only if \(\mathcal{F}_\lambda\) does not consist of \(f_0\) alone.

A useful reformulation of Corollary 1 is
Corollary 2. Let \(h : \Omega \rightarrow \mathbb{R} \) be \(B \) measurable. Let \(\lambda \) and \(c \) real be such that

\[
\psi(c) \equiv \int e^{ch \mu} d\mu < \infty, \quad \int \mu |e^{ch \mu} d\mu < \infty,
\]

\[
\lambda \int e^{ch \mu} d\mu = \int he^{ch \mu} d\mu.
\]

(6)

Let

\[
f_0 = \frac{e^{ch}}{\psi(c)},
\]

(7)

Then let \(\mathcal{F}_\lambda = \{ f : \text{ a pdf and } \int fhd\mu = \lambda \} \). Then \(\sup\{ H(f, \mu) : f \in \mathcal{F}_\lambda \} = -\int f_0 \log f_0 d\mu \)
and \(f_0 \) is the unique maximizer.

As an application of the above corollary we get the following examples.

Ex.1. \(\Omega = \{1, 2, \ldots, N\}, \quad N < \infty, \mu \) counting measure, \(h \equiv 1, \lambda = 1, \)

\[\mathcal{F}_\lambda \equiv \{\{p_i\}_1^N, p_i \geq 0, \sum_{i=1}^{N} p_i = 1\}\]

For any \(c \) real (6) holds and (7) becomes

\[f_0(j) = \frac{1}{N} \quad j = 1, 2, \ldots, N, \text{ i.e. } f_0 \text{ is the 'uniform' density.}\]

Ex.2. \(\Omega = \{1, 2, \ldots, N\}, \, N < \infty, \mu \) counting measure, \(h(j) \equiv j, 1 \leq \lambda \leq N, \)

\[\mathcal{F}_\lambda \equiv \{\{p_i\}_1^N, p_i \geq 0, \sum_{i=1}^{N} p_i = 1, \sum_{j=1}^{N} j p_j = \lambda\}. \text{ The optimal } f_0 \text{ is } f_0(j) = p^{j-1} \frac{(\frac{\lambda}{j} - 1)}{\sum_{i=j}^{N} (\frac{\lambda}{j} - 1)}\]

where \(p > 0 \) is the unique solution of \(\sum_{i=1}^{N} (j-\lambda)p^{j-1} = 0. \) Since \(\varphi(p) = \frac{\sum_{i=1}^{N} i p^{i-1}}{\sum_{i=1}^{N} p^{i-1}} \) is continuous and strictly nondecreasing in \((0, \infty)\) (see Remark 2 below) and \(\lim_{p \to 0} \varphi(p) = 1 \) and \(\lim_{p \to \infty} \varphi(p) = N, \) for each \(\lambda \in [1, N], \) there exists a unique \(p \) in \((0, \infty)\) such that \(\varphi(p) = \lambda. \) This \(f_0 \) is the conditional geometric (given that \(\lambda \leq N \)).

Ex.3. \(\Omega = \{1, 2, \ldots\}, \mu \) counting measure, \(h(j) = j, 1 \leq \lambda < \infty, \mathcal{F}_\lambda = \)

\[\{\{p_i\}_1^\infty, p_i \geq 0, \sum_{i=1}^{\infty} p_i = 1, \sum_{j=1}^{\infty} j p_j = \lambda\}. \text{ The optimal } f_0 \text{ is } f_0(j) = (1 - p)p^{j-1} \text{ where } p = 1 - \frac{1}{\lambda}. \text{ This } f_0 \text{ is the unconditional geometric.}\]

Ex.4. \(\Omega = \{1, 2, \ldots, N\}, N < \infty, \mu \) counting measure, \(h(j) = j^2, 1 < \lambda < \infty, \)

\[\mathcal{F}_\lambda \equiv \{\{p_i\}_1^N, p_i \geq 0, \sum_{i=1}^{N} p_i = 1, \sum_{j=1}^{N} j^2 p_j = \lambda\}. \text{ The optimal } f_0 \text{ is the 'discrete folded
normal $f_0(j) = \frac{e^{-c_j^2}}{\sum_1^N e^{-c_j^2}}$ for some $c > 0$ such that
\[
\sum_1^N j^2 e^{-c_j^2} = \lambda \sum_1^N e^{-c_j^2}.
\]

Since $\varphi(c) = \frac{\sum_1^N j^2 e^{-c_j^2}}{\sum_1^N e^{-c_j^2}}$ is continuous and strictly nondecreasing in $(0, \infty)$ (see Remark 2 below) and
\[
\lim_{c \to -\infty} \varphi(c) = N^2 \quad \text{and} \quad \lim_{c \to \infty} \varphi(c) = 1,
\]
for each $1 < \lambda < N^2$ there is a unique c in $(-\infty, \infty)$ such that $\varphi(c) = \lambda$. For $\lambda = 1$ or N^2, \mathcal{F}_λ is a singleton.

Ex.5. $\Omega = \mathbb{R}^+ = [0, \infty), \mu = \text{Lebesgue measure, } h(x) \equiv x, 0 < \lambda < \infty$,
\[\mathcal{F}_\lambda = \{ f : f \geq 0, \int_0^\infty f(x) \, dx = 1, \lambda \int_0^\infty x f(x) \, dx = \lambda \}.\]
The optimal f_0 is $f_0(x) = \frac{1}{\lambda} e^{-\frac{x}{2}}$, i.e., the exponential density with mean λ.

Ex.6. $\Omega = \mathbb{R}, \mu = \text{Lebesgue measure, } h(x) \equiv x^2, 0 < \lambda < \infty$,
\[\mathcal{F}_\lambda = \{ f : f \geq 0, \int_{-\infty}^{+\infty} f(x) \, dx = 1, \lambda \int_{-\infty}^{+\infty} x^2 f(x) \, dx = \lambda \}.\]
The optimal f_0 is $\frac{1}{\sqrt{2\pi\lambda}} e^{-\frac{x^2}{2\lambda}}$, i.e., the normal density with mean 0 and variance λ.

Ex.7. $\Omega = \mathbb{R}, \mu = \text{Lebesgue measure, } h(x) = \log(1 + x^2), 0 < \lambda < \infty$,
\[\mathcal{F}_\lambda = \{ f : f \geq 0, \int_{-\infty}^{+\infty} f(x) \, dx = 1, \lambda \int_{-\infty}^{+\infty} f(x) \log(1 + x^2) \, dx = \lambda \}.\]
Let $c > \frac{1}{2}$ be such that
\[\int_{-\infty}^{+\infty} \frac{\log(1 + x^2)}{(1 + x^2)^c} \, dx = \lambda \int_{-\infty}^{+\infty} \frac{1}{(1 + x^2)^c} \, dx.
\]
Then the optimal f_0 is $f_0(x) = \alpha \frac{1}{(1 + x^2)^c}$ ("α" means proportional to). If $\lambda = \frac{1}{\pi} \int \frac{\log(1 + x^2)}{(1 + x^2)^c} \, dx$ then f_0 is the Cauchy $(0,1)$ density.

Since $\varphi(c) = \left(\frac{\int \log(1 + x^2) \, dx}{\int \frac{1}{(1 + x^2)^c} \, dx} \right)$ is continuous and strictly decreasing in $(\frac{1}{2}, \infty)$ (see Remark 2 below) and $\lim_{c \to \frac{1}{2}^+} \varphi(c) = \infty, \lim_{c \to \infty} \varphi(c) = 0$, for each $0 < \lambda < \infty$ there is a unique c in $\left(\frac{1}{2}, \infty\right)$ such that $\varphi(c) = \lambda$.

Remark 2. The claim made about the properties of φ in examples 2, 4 and 7 is justified as follows. Let $h : \Omega \to \mathbb{R}$ be B measurable and $\psi(c) = \int e^{ch} \, d\mu$ and $I_h = \{ c : \psi(c) < \infty \}$.

It can be shown that I_h is a connected set in \mathbb{R}, i.e., an interval (Rudin [4]) that could
be empty, a single point, an interval that is half open, fully open, closed, semi infinite, finite. If \(I_h \) has a nonempty interior \(I_h^0 \) then in \(I_h^0 \), \(\psi(\cdot) \) is infinitely differentiable with

\[
\psi'(c) = \int h e^{c h} d\mu, \psi''(c) = \int h^2 e^{c h} d\mu.
\]

Further,

\[
\varphi(c) = \frac{\psi'(c)}{\psi(c)} \text{ satisfies}
\]

\[
\varphi'(c) = \frac{\psi''(c)}{\psi(c)} - \left(\frac{\psi'(c)}{\psi(c)} \right)^2 = 0,
\]

\[
\text{variance of } X_c > 0
\]

where \(X_c \) is the random variable \(h(\omega) \) with density \(g_c = \frac{e^{c h}}{\psi(c)} \) w.r.t. \(\mu \).

Thus for any \(\inf I_h \varphi(c) < \lambda < \sup I_h \varphi(c) \) there is a unique \(c \) such that \(\varphi(c) = \lambda \).

Remark 3. Examples 1,3,5 and 6 are in Shannon [5] where the method of Lagrange multiplier is used.

Corollary 2 can be generalized easily

Corollary 3. Let \(h_1, h_2, \ldots, h_k \) be \(\mathcal{B} \) measurable functions from \(\Omega \) to \(\mathbb{R} \) and \(\lambda_1, \lambda_2, \ldots, \lambda_k, c_1, c_2, c_k \) be real numbers such that

\[
\int e \sum_{i=1}^k c_i h_i \ d\mu < \infty, \int \left(\sum_{i=1}^k |h_j| \right) e \sum_{i=1}^k c_i h_i \ d\mu < \infty
\]

and

\[
\int h_j e \left(\sum_{i=1}^k c_i h_i \right) \ d\mu = \lambda_j \int e \sum_{i=1}^k c_i h_i \ d\mu, j = 1, 2, \ldots, k.
\]

Let \(f_0 \sum_{i=1}^k c_i h_i \) and

\[
\mathcal{F} \equiv \{ f : f \text{ a pdf and } \int f \ h_j d\mu = \lambda_j, j = 1, 2, \ldots, k \}
\]

Then

\[
\sup \{ - \int f \log f d\mu, f \in \mathcal{F} \} = - \int f_0 \log f_0 d\mu
\]

and \(f_0 \) is the unique maximizer.
As an application of the above corollary we get the following examples.

Ex.8. The question of whether Poisson distribution has an entropy maximization characterization has been asked in the literature. This example shows that it does. Let \(\Omega = \{0, 1, 2, \ldots \} \), \(\mu \) counting measure, \(h_1(j) = j \), \(h_2(j) = \log j \). Let \(c_1, c_2, \lambda_1, \lambda_2 \) be such that

\[
\Sigma j e^{c_1 j(j!)} e^{c_2} = \lambda_1 \Sigma e^{c_1 j(j!)} e^{c_2}
\]

\[
\Sigma (\log j!) e^{c_1 j(j!)} e^{c_2} = \lambda_2 \Sigma e^{c_1 j(j!)} e^{c_2}.
\]

For convergence we need \(c_2 < 0 \). In particular if we take \(c_2 = -1 \), \(e^{c_1} = \lambda_1 \) and \(\lambda_2 = \sum_j \frac{e^{-\lambda_1 j(j!)}}{j(j!)} \log j! \) then we find that Poisson \(\lambda \) is the unique maximizer of entropy among all nonnegative integer valued random variables \(X \) such that \(EX = \lambda \) and \(E(\log X!) = \sum_j \frac{e^{-\lambda_1 j(j!)}}{j(j!)} (\log j!) \). If \(\lambda_2 \) is chosen independently of \(\lambda_1 \) then the optimal distribution is Poisson like and is of the form

\[
f_0(j) = \frac{\mu^j(j!)^{-c}}{\sum_0^\infty \mu^j(j!)^{-c}}
\]

where \(0 < \mu, c < \infty \) and satisfy

\[
\Sigma j \mu^j(j!)^{-c} = \lambda_1 \sum_0^\infty \mu^j(j!)^{-c}
\]

\[
\Sigma (\log j!) \mu^j(j!)^{-c} = \lambda_2 \sum_0^\infty \mu^j(j!)^{-c}
\]

The function

\[
\psi(\mu, c) = \sum_0^\infty \mu^j(j!)^{-c}
\]

is well defined in \((0, \infty) \times (0, \infty) \) and is infinitely differentiable as well. The constraints on \(\mu \) and \(c \) may be rewritten as

\[
\frac{\partial \psi}{\partial \mu} = \mu \lambda_1 \psi(\mu, c)
\]

\[
\frac{\partial \psi}{\partial c} = -\lambda_2 \psi(\mu, c).
\]

(14)
Let \(\varphi(\mu, c) = \log \psi(\mu, c) \). Then the map \((\mu, c) \mapsto \left(\frac{1}{\mu} \frac{\partial \varphi}{\partial \mu}, \frac{\partial \varphi}{\partial c} \right)\) from \((0, \infty) \times (0, \infty)\) to \((0, \infty) \times (-\infty, 0)\) can be shown to be one to one onto. Thus for any \(\lambda_1 > 0, \lambda_2 > 0 \) there exist unique \(\mu > 0 \) and \(c > 0 \) such that

\[
\frac{1}{\mu} \frac{\partial \varphi}{\partial \mu} = \frac{1}{\mu \psi(\mu, c)} \frac{\partial \psi}{\partial \mu} = \lambda_1 \\
\frac{\partial \varphi}{\partial c} = \frac{1}{\psi} \frac{\partial \psi}{\partial c} = -\lambda_2.
\]

Ex. 9. The exponential family of densities in mathematical statistics literature is of the form

\[
(15) \quad f(\theta, \omega) \propto e^{\sum \phi(x_i) h_i(\omega) + c_0 h_0(\omega)}
\]

From Corollary 3 it follows that for each \(\theta, f(\theta, \omega) \) is the unique maximizer of entropy among all densities \(f \) such that

\[
\int f(\omega) h_i(\omega) d\mu = \int f(\theta, \omega) h_i(\omega) \mu(d\omega)
\]

for \(i = 0, 1, 2, \ldots k \).

Given \(\lambda_0, \lambda_1, \lambda_2, \lambda_k \) to find a value of \(\theta \) such that \(f(\theta, \omega) \) is the maximizer of entropy subject to \(\int f h_i d\mu = \lambda_i \) for \(i = 0, 1, 2, \ldots k \) is equivalent to first finding \(c_0, c_1, c_2, \ldots \) such that if \(\psi(c_0, c_1, \ldots c_k) = \int e^{\sum c_i h_i} d\mu \) and \(\phi = \log \psi \) then \(\frac{\partial \phi}{\partial c_i} = \lambda_i \) for \(i = 0, 1, \ldots k \) \(\Rightarrow \), and then \(\theta \) such that \(\phi_i(\theta) = c_i \) for \(i = 1, 2, \ldots k \). Under fairly general assumptions the range of \(\left(\frac{\partial \phi}{\partial c_i} ; i = 1, 2, \ldots k \right) \) is a big enough set so that requiring \((\lambda_0, \lambda_1, \ldots, \lambda_k) \) belongs to that set would not be too stringent.

Corollary 3 can be generalized to an infinite family of functions as follows.

Corollary 4. Let \((S, S)\) be a measurable space,

\[
h = S \times \Omega \rightarrow R \quad \text{be } B \times S \quad \text{measurable and}
\]

\[
(16) \quad \lambda = S \rightarrow R \quad \text{be } S \quad \text{measurable}.
\]

Let \(\mathcal{F}_\lambda = \{ f : f \text{ a pdf such that for } \forall s \text{ in } S, \int f(\omega) h(s, \omega) d\mu = \lambda(s) \} \).
Let \(\nu \) be a measure on \((S, \mathcal{S})\) and \(c = S \to \mathbb{R} \) be \(\mathcal{S} \) measurable such that

\[
(17) \quad \int_{\Omega} \exp \left(\int_{S} h(s, \omega) c(s) \nu(ds) \right) \mu(d\omega) < \infty.
\]

and

\[
(18) \quad \int_{\Omega} h(s, \omega) e^{\int_{s}^{t} \lambda(s,t) \nu(ds')} \mu(d\omega) = \lambda(s) \text{ for all } s \text{ in } S.
\]

Then

\[
\sup_{f} \left\{ -\int_{\Omega} f \log f \, d\mu : f \in \mathcal{F}_\lambda \right\} = -\int_{\Omega} f_0 \log f_0 \, d\mu
\]

where \(f_0(\omega) = \exp \left(\int_{s}^{t} c(s) \nu(ds) \right) \).

Ex.10. Let \(\Omega = C[0,1], \mathcal{B} \) the Borel \(\sigma \)-algebra generated by the sup norm on \(\Omega, \mu \) be a Gaussian measure with mean function \(m(s) \equiv 0 \) and covariance \(r(s,t) \). Let \(\lambda(\cdot) \) be a Borel measurable function on \([0,1] \to \mathbb{R} \). Let \(\mathcal{F}_\lambda \equiv \{ f : f \text{ a pdf on } (\Omega, \mathcal{B}, \mu) \text{ such that } \int \omega(t) f(\omega) \mu(d\omega) = \lambda(t) \forall 0 \leq t \leq 1 \} \). That is, \(\mathcal{F}_\lambda \) is the set of pdf of all those stochastic processes on \([0,1]\) that have continuous trajectories, mean function \(\lambda(\cdot) \) and whose probability distribution on \(\Omega \) is absolutely continuous w.r.t.\(\mu \). Let \(\nu \) be a Borel measure on \([0,1]\) and \(c(\cdot) \) a Borel measurable function. Then

\[
f_0(\omega) \alpha \exp \left(\int_{0}^{1} c(s) \omega(s) \nu(ds) \right)
\]

maximizes \(-\int_{\Omega} f \log f \, d\mu\) over all \(f \) in \(\mathcal{F}_\lambda \) provided

\[
(19) \quad \int_{\Omega} \omega(t) e^{\int_{0}^{t} \lambda(t) \nu(ds)} \mu(d\omega) = \lambda(t) \int_{0}^{t} e^{\int_{0}^{s} \lambda(s) \nu(ds)} \mu(d\omega) \text{ for all } t \in [0,1].
\]

Since \(\mu \) is a Gaussian measure with mean function \(0 \) and covariance function \(r(s,t) \) the joint distribution of \(\omega(t) \) and \(\int_{0}^{1} c(s) \omega(s) \nu(ds) \) is bivariate normal with mean \(0 \) and covariance matrix

\[
\begin{pmatrix}
\sigma_{11} & \sigma_{12} \\
\sigma_{12} & \sigma_{22}
\end{pmatrix}
\]

where \(\sigma_{11} = r(t,t), \sigma_{12} = \int_{0}^{1} c(s) r(s,t) \nu(ds) \)

\[\sigma_{22} = \int_{0}^{1} \int_{0}^{1} c(s_1) c(s_2) r(s_1, s_2) \nu(ds_1) \nu(ds_2)\]
It can be verified by differentiating the joint m.g.f. that if \((X, Y)\) is bivariate normal with mean 0 and covariance matrix \(
abla_{11} \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}\) then
\[
E(Xe^{Y}) = e^{\frac{1}{2}\sigma_{22}\sigma_{12}} \text{ and } E(e^{Y}) = e^{\frac{1}{2}\sigma_{22}}
\]

Applying this to (19) with \(X = w(t)\) and \(Y = \int_{0}^{1} c(s)w(s)\nu(ds)\) we get
\[
\int_{0}^{1} c(s)r(s,t)\nu(ds) = \lambda(t) \quad 0 \leq t \leq 1.
\]

Thus, if \(c(\cdot)\) and \(\nu(\cdot)\) satisfy the above equation and
\[
\int_{0}^{1} \int_{0}^{1} |c(s_1)c(s_2)r(s_1,s_2)|\nu(ds_1)\nu(ds_2) < \infty
\]
then
\[
\sup\{-\int f \log f d\mu : f \in \mathcal{F}_\lambda \} = -\int f_0 \log f_0 d\mu
\]
and \(f_0\) is the unique maximizer. Notice that
\[
(20) \quad f_0(\omega) = e^{\frac{1}{2} \int c(s)\omega(s)\nu(ds)} / e^{\frac{\sigma_{22}}{2}}.
\]

The joint m.g.f. \(\omega(t_1), \omega(t_2), \ldots, \omega(t_k))\) under \(P_{f_0}(A) = \int_{A} f_0 d\mu\) is
\[
(21) \quad E_{P_{f_0}} \left(\sum_{i=1}^{k} \theta_i \omega(t_i) \right) = \int_{\Omega} \sum_{i=1}^{k} \theta_i \omega(t_i) e^{\frac{1}{2} \int c(s)\omega(s)\nu(ds)} e^{\frac{\sigma_{22}}{2}} d\mu(d\omega)
\]

But \(\sum_{i}^{k} \theta_i \omega(t_i) + \int_{0}^{1} c(s)\omega(s)\nu(ds)\) is a Gaussian random variable under \(\mu\) with mean 0 and variance
\[
\sigma^2 = \sum_{i,j} \theta_i \theta_j r(t_i,t_j) + \sigma_{22} + 2 \sum_{i}^{k} \theta_i \int_{0}^{1} c(s)r(s,t_i)\nu(ds))
\]
\[
= \sum_{i,j} \theta_i \theta_j r(t_i,t_j) + \sigma_{22} + 2 \sum_{i}^{k} \theta_i \lambda(t_i).
\]
The right side of (20) becomes

\[
\exp \left(\frac{1}{2} \left(\sum_{i,j} \theta_i \theta_j r(t_i, t_j) \right) + \sum_{i=1}^{k} \theta_i \lambda(t_i) \right)
\]

That is, \(P_{f_0} \) is Gaussian with mean \(\lambda(\cdot) \) and covariance \(r(\cdot, \cdot) \), same as \(\mu \). Thus, among all stochastic processes on \(\Omega \) that are absolutely continuous w.r.t. \(\mu \) and whose mean function is specified to be \(\lambda(\cdot) \) the one that maximizes the relative entropy is a Gaussian process with mean \(\lambda(\cdot) \) and same covariance kernel as that of \(\mu \). This suggests that the density \(f_0(\cdot) \) in (20) should be independent of \(c(\cdot) \) and \(\nu(\cdot) \) so long as (18) holds. This is indeed so. Let \((c_1, \nu_1)\) and \((c_2, \nu_2)\) be two solutions to (13). Let \(f_1 \) and \(f_2 \) be the corresponding densities. We claim \(f_1 = f_2 \), a.e.\(\mu \). That is,

\[
\frac{\int_0^1 c_1(s) \omega(s) \nu_1(ds)}{\int_0^1 c_1(s) \omega(s) \mu(ds)} = \frac{\int_0^1 c_2(s) \omega(s) \nu_2(ds)}{\int_0^1 c_2(s) \omega(s) \mu(ds)}
\]

Under \(\mu \), \(\int_0^1 c(s) \omega(s) \nu(ds) \) is univariate normal with mean 0 and variance

\[
\int_0^1 \int_0^1 c(s_1)c(s_2)r(s_1, s_2)\nu(ds)\nu(ds) = \int_0^1 c(s)\lambda(s)\nu(ds)
\]

if \((c, \nu)\) satisfy (18). Now, if \(Y_1 = \int_0^1 c_1(s) \omega(s) \nu_1(ds) \) and \(Y_2 = \int_0^1 c_2(s) \omega(s) \nu_2(ds) \) then \(EY_1 = EY_2 = 0 \) and since \((c_1, \nu_1), (c_2, \nu_2)\) satisfy (18) we get

\[
Cov(Y_1, Y_2) = \int_0^1 c_1(s)\lambda(s)\nu_1(ds) = \int_0^1 c_2(s)\lambda(s)\nu_2(ds)
\]

= \(\int_0^1 c_2(s)\lambda(s)\nu_1(ds) = \int_0^1 c_2(s)\lambda(s)\nu_2(ds) \)

\[
V(Y_1) = \int_0^1 c_1(s)\lambda(s)\nu_1(ds)
\]

\[
V(Y_2) = \int_0^1 c_2(s)\lambda(s)\nu_2(ds).
\]
Thus \((Y_1 - Y_2)^2 = 0\) implying \(Y_1 = Y_2\) a.e.\(\mu\) and hence \(f_1 = f_2\) a.e.\(\mu\).

The result that the measure maximizing relative entropy w.r.t. a given Gaussian measure with a given covariance kernel and subject to a given mean function \(\lambda(\cdot)\) is a Gaussian with mean \(\lambda(\cdot)\) and covariance \(r(\cdot, \cdot)\) is a direct generalization of the corresponding univariate result that says of all pdf \(f\) on \(R\) subject to \(\frac{1}{\sqrt{2\pi}} \int z f(x)e^{-\frac{z^2}{2}}dx = \mu\) the one that maximizes \(-\frac{1}{\sqrt{2\pi}} \int f(x)\log f(x)e^{-\frac{x^2}{2}}dx\) is \(f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2}}\). Although the generalization that is stated above is to the case of Gaussian measure on \(C[0,1]\) the result and the argument hold much more generally. If \(\Omega = C[0,1]\) and \(\mu\) is standard Wiener measure then by Girsanov’s theorem (Karatzas and Shreve [3]) the process \(\omega(t) + \int_0^t \alpha(s,\omega) d\omega(s)\) where \(\alpha(\cdot)\) is a nonanticipating functional induces a probability measure that is absolutely continuous w.r.t. \(\mu\) and has a p.d.f. of the form

\[
\exp\left(\int_0^1 \alpha(s,\omega) d\omega(s) - \frac{1}{2} \int_0^1 \alpha^2(s,\omega) ds\right)
\]

where the first integral is an Ito integral and the second a Lebesgue integral. Our result says that among these the one that maximizes the relative entropy subject to a mean function \(\lambda(\cdot)\) restriction is a process where the Ito integral can be expressed as \(\int_0^1 c(s)\omega(s) ds\) i.e. of the type that Weiner defined for nonrandom integrands. (McKean[2])

References.