A BOUND ON THE EXPONENT OF A PRIMITIVE MATRIX USING BOOLEAN RANK

By

D.A. Gregory
S.J. Kirkland

and

N.J. Pullman

IMA Preprint Series # 959
April 1992
A BOUND ON THE EXPONENT OF A PRIMITIVE MATRIX USING BOOLEAN RANK*

D.A. GREGORY**, S.J. KIRKLAND† AND N.J. PULLMAN**

Abstract. We present a bound on the exponent \(\exp(A) \) of an \(n \times n \) primitive matrix \(A \) in terms of its boolean rank \(b = b(A) \); namely \(\exp(A) \leq (b - 1)^2 + 2 \). Further, we show that for each \(2 \leq b \leq n - 1 \), there is an \(n \times n \) primitive matrix \(A \) with \(b(A) = b \) such that \(\exp(A) = (b - 1)^2 + 2 \), and we explicitly describe all such matrices. The new bound is compared to a well-known bound of Dulmage and Mendelsohn, and to a conjectured bound of Hartwig and Neumann. Several open problems are posed.

1. Introduction. A real \(n \times n \) (entrywise) nonnegative matrix \(A \) is primitive if one of its powers, \(A^k \), has all positive entries for some integer \(k \geq 1 \). The smallest such \(k \) is called the exponent of \(A \), and is denoted by \(\exp(A) \). Since a primitive matrix \(A \) can have no zero line (i.e. row or column), we see that each entry of \(A^m \) is positive whenever \(m \geq \exp(A) \). There is an extensive literature on exponents of primitive matrices, and a good survey of results and references can be found in Braudi and Ryser [1; Section 3.5].

It is clear that neither the primitivity nor the exponent of a primitive matrix depend on the size of the nonzero entries in a nonnegative matrix \(A \); they only depend on the location of the nonzero entries within \(A \). Consequently, it is natural to make the following definition. Two \(n \times n \) nonnegative matrices are said to be combinatorially equivalent if their nonzero entries are in precisely the same locations. Thus any matrix \(B \) which is combinatorially equivalent to a primitive matrix \(A \) is also primitive, and \(\exp(B) = \exp(A) \).

A number of authors have worked on obtaining upper bounds on the exponent of a primitive matrix. The earliest such bound is due to Wielandt [8], and we summarize his result below (a proof can be found in [1]).

Proposition 1.1. If \(A \) is an \(n \times n \) primitive matrix, then

\[
\exp(A) \leq (n - 1)^2 + 1.
\]

Further, equality holds in (1.1) if and only if there is a permutation matrix \(P \) such that \(PAP^t \) is combinatorially equivalent to \(W_n \), where \(W_1 = [1] \), \(W_2 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \), and

\[
W_n = \begin{bmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & & \ddots & \ddots & 0 \\
1 & 0 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 0 & 0
\end{bmatrix}
\text{ for } n \geq 3.
\]

*This work was supported in part by the Natural Sciences and Engineering Research Council of Canada, under grants OGP0004041 and OGP0005134.

**Department of Mathematics and Statistics, Queen’s University, Kingston, Ont. K7L3N6.

†Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455.
Wielandt’s bound was later generalized by Dulmage and Mendelsohn [2]. They showed that if A is an $n \times n$ primitive matrix, and s is the smallest integer $k \geq 1$ such that A^k has a diagonal entry, then

\[(1.2) \quad \exp(A) \leq n + s(n - 2).\]

We will provide another upper bound on the exponent in terms of the “boolean rank” of a nonnegative matrix, a concept which we now discuss. Given a nonzero $m \times n$ nonnegative matrix A, we define its boolean rank, $b(A)$, to be the smallest integer k such that for some nonnegative matrices F and G with F $m \times k$ and G $k \times n$, A is combinatorially equivalent to the product FG. The boolean rank of the zero matrix is defined to be 0. (In Section 2, we discuss the notion of boolean rank in more detail).

It follows from Theorem 3.1 below that for any $n \times n$ primitive matrix A, if $b(A) = b$ and $1 < b < n$, then

\[(1.3) \quad \exp(A) \leq (b - 1)^2 + 2.\]

In Theorem 3.2, we show that the bound (1.3) can be attained for each such b, and we give an explicit characterization of those matrices that do so. That extends Proposition 1.1 above, which characterizes the matrices realizing equality in (1.1) (note that those matrices all have boolean rank n).

In Section 4, we compare Dulmage and Mendelsohn’s bound (1.2) with (1.3), showing by example that sometimes it is better and sometimes it is worse. Examples illustrating other points of interest are also presented there. Finally, we suggest some open problems in Section 5.

Throughout, our results are obtained by using the machinery of $(0, 1)$ boolean matrices. In Section 2 below, we give the relevant definitions and basic properties of these matrices.

2. Preliminaries. Given a nonnegative matrix A, we define its pattern, A_+, to be the $(0, 1)$ matrix which is combinatorially equivalent to A. In computing sums and products of $(0, 1)$ matrices and vectors, we will use boolean arithmetic – that is, the usual arithmetic except that $1 + 1 = 1$. It now follows that for any $m \times n$ nonnegative matrices A and B, and any $n \times k$ nonnegative matrix C, $(A + B)_+ = A_+ + B_+$ and $(AC)_+ = A_+ C_+$. The $(0, 1)$ matrices under this boolean arithmetic are called $(0, 1)$ boolean (or just boolean) matrices. The book of Kim [6] gives an extensive treatment of boolean matrix theory.

The definitions of primitivity and the exponent of a primitive matrix extend quite naturally to $(0, 1)$ boolean matrices. Specifically, if B is an $n \times n$ $(0, 1)$ boolean matrix, then B is primitive if one of its powers, B^k, has no zero entry, in which case, its exponent, $\exp(B)$, is the smallest such integer k. Thus we see that a nonnegative matrix A is primitive if and only if its pattern A_+ (a boolean matrix) is, and that when both are
primitive, \(\exp(A) = \exp(A_+) \). For this reason, we will henceforth confine our investigation of the exponent to \((0,1)\) boolean matrices.

Notice that for any nonnegative matrix \(A\), the boolean ranks of \(A\) and \(A_+\) are the same. Since we will be concerning ourselves with \((0,1)\) boolean matrices (such as \(A_+\)) throughout the sequel, we will take a brief look at the boolean rank of a \((0,1)\) boolean matrix. If \(B\) is an \(m \times n\) \((0,1)\) boolean matrix, it is not difficult to see that \(b(B)\) is the smallest integer \(k\) such that there are \((0,1)\) boolean matrices \(X\) and \(Y\), with \(X\) \(m \times k\) and \(Y\) \(k \times n\), and \(B = XY\). (Indeed, this is the standard definition of boolean rank for a \((0,1)\) boolean matrix; see Kim [6] for example, who calls it “Schein rank”.) If \(b(B) = b\), \(X\) is \(m \times b\), \(Y\) is \(b \times n\) and the product \(XY\) equals \(B\), we will say that \(B = XY\) is a \((boolean) rank factorization of \(B\). The boolean rank of \(B\) can also be thought of as the minimum number of matrices of boolean rank 1 (i.e. outer products of the form \(xy^t\) where \(x\) is a \((0,1)\) boolean \(m\)-vector and \(y\) is a \((0,1)\) boolean \(n\)-vector) that sum to \(B\).

A set of positions \(\{(i_k, j_k) : 1 \leq k \leq l\}\) is said to be isolated (in the matrix \(B\)) if the following conditions hold:

(a) for each \(1 \leq k \leq l\), the \((i_k, j_k)\) entry of \(B\) is 1,

(b) no two positions in the set are in the same row or column of \(B\), and

(c) no two positions in the set are in the same \(2 \times 2\) all ones submatrix of \(B\).

Such a set of positions is referred to as a set of isolated ones (in \(B\)) (see Gregory and Pullman [3]). Using our second interpretation of boolean rank, it follows that \(b(B)\) is always bounded below by the cardinality of any set of isolated ones in \(B\). We will occasionally need this fact in order to estimate the boolean rank from below; in particular, the following result will be useful.

Proposition 2.1. Suppose that \(B\) is an \(m \times n\) \((0,1)\) boolean matrix, and that \(b(B) \leq k\). If \(B\) has a \(k\)-element set of isolated ones, then \(b(B) = k\).

Throughout the sequel, we will use the following notation and terminology. Given an \(m \times n\) matrix \(A\), we will denote its entry in the \((i,j)\) spot by \(A_{ij}\), its \(i^{th}\) row by \(A_i\), and its \(j^{th}\) column by \(A_j\). If \(B\) is another \(m \times n\) matrix, we say that \(B\) is dominated by \(A\), and write \(B \leq A\), if \(B_{ij} \leq A_{ij}\) for all \(i\) and \(j\); the same terminology and notation will be used for vectors. We denote the \(m \times n\) all ones matrix by \(J_{m,n}\) (and by \(J_n\) if \(m = n\)), the \(m \times n\) all zeroes matrix by \(0_{m,n}\), the all ones \(n\)-vector by \(j_n\), the \(n \times n\) identity matrix by \(I_n\), and its \(i^{th}\) column by \(e_i(n)\). The subscripts \(m\) and \(n\) will be omitted whenever their values are clear from the context.

3. **A bound on the exponent.** Our bound on the exponent rests on the following observations. The first was noted by Shao [7], and the second will be discussed further in Section 4.
PROPOSITION 3.1. Suppose that X and Y are $n \times m$ and $m \times n$ $(0,1)$ boolean matrices (respectively) and that neither has a zero line. Then

(a) XY is primitive if and only if YX is primitive, and

(b) if XY and YX are primitive, then

$$|\exp(XY) - \exp(YX)| \leq 1.$$

Proof. Suppose that XY is primitive, with $\exp(XY) = k$. Then $(YX)^{k+1} = Y(XY)^k X = YJ_n X = J_m$, the last equality following from the fact that neither X nor Y has a zero line. Thus YX is primitive and $\exp(YX) \leq \exp(XY) + 1$. The result follows by exchanging the roles of X and Y. □

It follows from Proposition 3.1 that if X_1, X_2, \ldots, X_d are $n_1 \times n_2, n_2 \times n_3, \ldots, n_d \times n_1$ $(0,1)$ boolean matrices (respectively) with no zero lines, then

(a) each of the cyclic products $X_1 X_2 \cdots X_d$, $X_2 X_3 \cdots X_d X_1$, \ldots, $X_d X_1 X_2 \cdots X_{d-1}$ is primitive if any one of them is, and

(b) in the case that each is primitive, the exponents of any two differ by at most 1.

These statements also follow from a result of Dulmage and Mendelsohn (see [1; pg 78, exercise 5]).

Now we apply our proposition to get an upper bound on the exponent of a primitive matrix.

THEOREM 3.1. Suppose that $n \geq 2$ and that B is an $n \times n$ primitive $(0,1)$ boolean matrix with $b(B) = b$. Then

$$\exp(B) \leq (b - 1)^2 + 2.$$

 Proof. Let $B = XY$ be a boolean rank factorization of B. Then X is $n \times b$, Y is $b \times n$, and neither has a zero line. By Proposition 3.1, the $b \times b$ matrix YX is primitive, and $\exp(B) \leq \exp(YX) + 1$. Wielandt’s inequality (1.1) implies that $\exp(YX) \leq (b - 1)^2 + 1$, and so (3.1) follows. □

From (1.1) we see that no matrix of boolean rank n can realize equality in (3.1). Further, since the only $n \times n$ primitive $(0,1)$ boolean matrix of boolean rank 1 is J_n, we see that no matrix of boolean rank 1 can realize equality in (3.1). However, we will show that for each $1 < b < n$, there is an $n \times n$ matrix of boolean rank b realizing equality in (3.1). In order to do so, we need to make some observations about the matrix W_n of Proposition 1.1.
PROPOSITION 3.2. If \(n \geq 2 \), the only zero entry in \(W_n^{(n-1)^2} \) occurs in the \((n,n)\) position.

Proof. As always, we are thinking of \(W_n \) as a \((0,1)\) boolean matrix. The result is immediate if \(n = 2 \). For \(n \geq 3 \), a straightforward proof by induction on \(k \) shows that for \(1 \leq k \leq n-1 \), \(W_n^k = \begin{bmatrix} U & I_{n-k} \\ V & 0_{k,n-k} \end{bmatrix} \), where the \((n-k) \times k\) matrix \(U \) is all 0 except for a 1 in the \((n-k,1)\) position, and the \(k \times k\) matrix \(V \) has 1's on the diagonal and superdiagonal, and 0's elsewhere. It follows that \(W_n^n = W_n + I \), and hence \(W_n^{(n-1)^2} = W_n(W_n + I)^{n-2} = \sum_{k=1}^{n-1} W_n^k \). The formulae for \(W_n^k, 1 \leq k \leq n-1 \) now yield the result. \(\square \)

Next, we give a characterization of the matrices for which equality holds in (3.1).

PROPOSITION 3.3. Suppose that \(B \) is an \(n \times n \) \((0,1)\) boolean matrix with \(2 \leq b = b(B) \leq n-1 \). Then \(B \) is primitive with \(\exp(B) = (b-1)^2 + 2 \) if and only if \(B \) has a boolean rank factorization \(B = XY \), where \(X \) and \(Y \) have the following properties:

i) \(YX = W_b \), and

ii) some row of \(X \) is \(e_b^1(b) \) and some column of \(Y \) is \(e_b(b) \).

Proof. First, suppose that \(B \) is primitive with \(\exp(B) = (b-1)^2 + 2 \), and that \(B = XY \) is a boolean rank factorization of \(B \). By Proposition 3.1, \(\bar{Y} \bar{X} \) is primitive and \(\exp(\bar{Y} \bar{X}) \geq (b-1)^2 + 1 \). Thus by Proposition 1.1, \(\exp(\bar{Y} \bar{X}) = (b-1)^2 + 1 \), and so there is a permutation matrix \(P \) such that \(P \bar{Y} \bar{X} P^t = W_b \). Letting \(X = \bar{X} P^t \) and \(Y = P \bar{Y} \), we find that \(B = XY \) is a rank factorization of \(B \), and that \(YX = W_b \). Thus \(X \) and \(Y \) satisfy i).

Since \(B \) is primitive, it follows that \(\sum_{i=1}^b X_i = j_n = \sum_{i=1}^b Y_i^t \). Further, since \(\exp(B) = (b-1)^2 + 2 \), \(B^{(b-1)^2+1} \) must have a zero entry, say in the \((p,q)\) position. But by Proposition 3.2, \(B^{(b-1)^2+1} = XW_b^{(b-1)^2}Y = XZY \), where \(Z \) is the \(b \times b \) matrix whose only zero entry is in the \((b,b)\) position. Thus

\[
B^{(b-1)^2+1} = \begin{bmatrix} J_{n,b-1} & \sum_{i=1}^{b-1} X_i Y_i^t & \sum_{i=1}^{b-1} X_i \end{bmatrix} Y = j_n \left(\sum_{i=1}^{b-1} Y_i^t \right) + \left(\sum_{i=1}^{b-1} X_i \right) Y_b,
\]

and hence \(\sum_{i=1}^{b-1} Y_{i q} + \sum_{i=1}^{b-1} X_{pi} Y_{bq} = 0 \). So the first \(b-1 \) entries in \(Y_{-q} \) are zero, and since \(Y \) has no zero lines, we see that \(Y_q \) must equal \(e_b(b) \). Hence the first \(b-1 \) entries of \(X_p \) are zero also, and we find that \(X_p \) must equal \(e_b^1(b) \). Consequently, \(X \) and \(Y \) satisfy ii).

Finally, suppose that \(B = XY \) is a rank factorization of \(B \) and that \(X \) and \(Y \) satisfy i) and ii). Then \(B \) is primitive by Proposition 3.1 (a) and \(\exp(B) \leq (b-1)^2 + 2 \) by
Proposition 3.1 (b) and Theorem 1.1. But it follows from Proposition 3.2 and conditions i) and ii) that $B^{(b-1)^2+1}$ has a zero entry, and so we conclude that $\exp(B) = (b - 1)^2 + 2$. \[\square\]

Our last result of this section will reinterpret conditions i) and ii) of Proposition 3.3 to show that if B yields equality in (3.1), then B is one of 14 basic types of matrices.

Theorem 3.2. Suppose B is an $n \times n$ $(0,1)$ boolean matrix with $b(B) = b$, and that $2 \leq b \leq n - 1$. Then B is primitive with $\exp(B) = (b - 1)^2 + 2$ if and only if there is a permutation matrix Q such that QBQ^t has one of the forms displayed in Table 3.1 (if $3 \leq b \leq n - 1$) or Table 3.2 (if $b = 2$).
Table 3.1 (for $b \geq 3$)

$$
M_1 = \begin{bmatrix}
0 & J & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & \ldots & J & 0 & J \\
0 & \ldots & 0 & J & 0 \\
J & 0 & \ldots & 0 & 0 \\
\end{bmatrix}, \\
M_2 = \begin{bmatrix}
0 & J & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & \ldots & J & 0 & J \\
0 & \ldots & 0 & J & 0 \\
J & 0 & \ldots & 0 & 0 \\
\end{bmatrix}, \\
M_3 = \begin{bmatrix}
0 & J & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & \ldots & J & 0 & J \\
0 & \ldots & 0 & J & 0 \\
J & 0 & \ldots & 0 & 0 \\
\end{bmatrix}, \\
M_4 = \begin{bmatrix}
0 & J & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & \ldots & J & 0 & J \\
0 & \ldots & 0 & J & 0 \\
J & 0 & \ldots & 0 & 0 \\
\end{bmatrix}, \\
M_5 = \begin{bmatrix}
0 & J & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & \ldots & J & 0 & J \\
0 & \ldots & 0 & J & 0 \\
J & 0 & \ldots & 0 & 0 \\
\end{bmatrix}, \\
M_6 = \begin{bmatrix}
0 & J & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & \ldots & J & 0 & J \\
0 & \ldots & 0 & J & 0 \\
J & 0 & \ldots & 0 & 0 \\
\end{bmatrix}, \\
M_7 = \begin{bmatrix}
0 & J & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & \ldots & J & 0 & J \\
0 & \ldots & 0 & J & 0 \\
J & 0 & \ldots & 0 & 0 \\
\end{bmatrix}.
$$

Here the rows and columns of M_1, \ldots, M_7 are partitioned conformally, so that each diagonal block is square, and the top left hand submatrix common to each has b blocks in its partitioning.
Table 3.2 (for \(b = 2 \))

\[
N_1 = \begin{bmatrix}
0 & J \\
J & 0 \\
J & J \\
\end{bmatrix}, \quad N_2 = \begin{bmatrix}
0 & J \\
J & 0 \\
J & J \\
\end{bmatrix}, \quad N_3 = \begin{bmatrix}
0 & J \\
J & 0 \\
J & J \\
\end{bmatrix},
\]

\[
N_4 = \begin{bmatrix}
0 & J \\
J & 0 \\
J & J \\
J & J \\
\end{bmatrix}, \quad N_5 = \begin{bmatrix}
0 & J \\
J & 0 \\
J & J \\
J & J \\
\end{bmatrix}, \quad N_6 = \begin{bmatrix}
0 & J \\
J & 0 \\
J & J \\
J & J \\
\end{bmatrix},
\]

\[
N_7 = \begin{bmatrix}
0 & J \\
J & 0 \\
J & J \\
J & J \\
\end{bmatrix}.
\]

Again, the rows and columns of \(N_1, \ldots, N_7 \) are partitioned conformally.

Proof. Suppose that \(B \) is primitive, \(b \geq 3 \) and \(\exp(B) = (b - 1)^2 + 2 \); by Proposition 3.3, there is a boolean rank factorization of \(B \) as \(B = XY \) such that i) \(YX = W_b \), and ii) some row of \(X \) is \(e^t_b(b) \) and some column of \(Y \) is \(e_b(b) \). Since \(B \) is primitive, \(X \) has no zero row, and so each column of \(Y \) is dominated by a column of \(W_b \). Similarly, each row of \(X \) is dominated by a row of \(W_b \). Thus, each column of \(Y \) is in the set \(\mathcal{C} = \{e_1(b), e_2(b), \ldots, e_b(b), u\} \), where \(u = e_{b-1}(b) + e_b(b) \), and each row of \(X \) is in the set \(\mathcal{R} = \{e^t_1(b), \ldots, e^t_b(b), v^t\} \), where \(v = e_1(b) + e_b(b) \).

Next, we note that for each \(1 \leq i \leq b \), the outer product \(Y_iX_i \) is dominated by \(W_b \). Since each such \(Y_i \) and \(X_i \) must be in \(\mathcal{C} \) and \(\mathcal{R} \) respectively, we find that \((Y_i, X_i) \) must be one of the following pairs: \((e_i, e^t_{i+1})\), \(1 \leq i \leq b - 1\), \((e_{b-1}, e^t_1)\), \((e_1, e^t_b)\), \((u, e^t_1)\), and \((e_{b-1}, v^t)\). For each \(1 \leq i \leq b - 2 \), \(e_i \) is column of \(W_b \) that contains the only nonzero entry of row \(i \). Thus, for each such \(i \), \((e_i, e^t_{i+1}) = (Y_{k_i}, X_{k_i}) \) for some \(k_i \). Further, from ii), some \(X_j \) is \(e^t_b \), so \((e_{b-1}, e^t_b) = (Y_{k_{b-1}}, X_{k_{b-1}}) \) for some \(k_{b-1} \). Similarly, ii) implies that some \(Y_j \) is \(e_b \), so \((e_b, e^t_1) = (Y_{k_b}, X_{k_b}) \) for some \(k_b \). Finally, some outer product \(Y_jX_j \) must have a 1 in the \((b - 1, 1)\) spot, and hence for some \(k_{b+1} \), \((Y_{k_{b+1}}, X_{k_{b+1}}) \) is one of \((e_{b-1}, e^t_1)\), \((u, e^t_1)\), or \((e_{b-1}, v^t)\).

From the above considerations, it follows that there is an \(n \times n \) permutation matrix \(Q \) such that \(YQ^t = [\bar{Y} | \bar{Y}] \) and \(QX = [\bar{X} | \bar{X}] \), where \(\bar{Y} = [e_1j^t_{n_1} | e_2j^t_{n_2} | \cdots | e_bj^t_{n_b}] \) and \(\bar{X} = \).
\[
\begin{bmatrix}
\frac{j_{n_1} e_2^t}{j_{n_2} e_3^t} \\
\frac{j_{n_2} e_3^t}{j_{n_3} e_4^t} \\
\vdots \\
\frac{j_{n_{b-1}} e_b^t}{j_{n_b} e_1^t}
\end{bmatrix}
\]
for some \(n_1, \ldots, n_b \geq 1\), and where each \((\bar{Y}_i, \bar{X}_i)\) is one of \((e_{b-1}, e_1^t)\), \((u, e_1^t)\), or \((e_{b-1}, v^t)\). Thus the pair \(\bar{Y}\) and \(\bar{X}\) can be taken to be one of the following pairs of matrices:

\[
\begin{align*}
\bar{Y}_1 &= e_{b-1} j_{m_1}^t, \bar{X}_1 = j_{m_1} e_1^t \text{ for some } m_1 \geq 1; \\
\bar{Y}_2 &= u j_{m_2}^t, \bar{X}_2 = j_{m_2} e_1^t \text{ for some } m_2 \geq 1; \\
\bar{Y}_3 &= e_{b-1} j_{m_3}^t, \bar{X}_3 = j_{m_3} v^t \text{ for some } m_3 \geq 1; \\
\bar{Y}_4 &= [e_{b-1} j_{m_4}^t | u j_{p_4}^t], \bar{X}_4 = \begin{bmatrix} j_{m_4} e_1^t \\ j_{p_4} e_1^t \end{bmatrix} \text{ for some } m_4, p_4 \geq 1; \\
\bar{Y}_5 &= [e_{b-1} j_{m_5}^t | e_{b-1} j_{p_5}^t], \bar{X}_5 = \begin{bmatrix} j_{m_5} e_1^t \\ j_{p_5} v^t \end{bmatrix} \text{ for some } m_5, p_5 \geq 1; \\
\bar{Y}_6 &= [u j_{m_6}^t | e_{b-1} j_{p_6}^t], \bar{X}_6 = \begin{bmatrix} j_{m_6} e_1^t \\ j_{p_6} v^t \end{bmatrix} \text{ for some } m_6, p_6 \geq 1; \\
\bar{Y}_7 &= [e_{b-1} j_{m_7}^t | u j_{p_7}^t | e_{b-1} j_{q_7}^t], \bar{X}_7 = \begin{bmatrix} j_{m_7} e_1^t \\ j_{p_7} e_1^t \\ j_{q_7} v^t \end{bmatrix} \text{ for some } m_7, p_7, q_7 \geq 1.
\end{align*}
\]

It is now readily verified that \(\begin{bmatrix} \bar{X} \\ \bar{X} \end{bmatrix} + [\bar{Y}] = M_i\) for \(1 \leq i \leq 7\), so that \(QBQ^t\) is one of the matrices in Table 3.1. Minor modifications of this argument show that if \(b = 2\), \(B\) is primitive and \(\exp(B) = (2 - 1)^2 + 2 = 3\), then \(B\) is permutationally similar to one of the matrices in Table 3.2.

Finally, since the rank factorization \(M_i = \begin{bmatrix} \bar{X} \\ \bar{X} \end{bmatrix} + [\bar{Y}]\) satisfies conditions i) and ii) of Proposition 3.3, we see that each \(M_i\) is primitive and \(\exp(M_i) = (b - 1)^2 + 2\); a similar argument applies to the \(N_i\)'s in Table 3.2. \]

4. Comparisons. If \(B\) is an \(n \times n\) \((0, 1)\) boolean matrix and \(b(B) = n\), then obviously Wielandt's bound (1.1) on \(\exp(B)\) is sharper than that of (3.1). However, if \(b(B) \leq n - 1\) we see that (3.1) is an improvement on (1.1). It is natural to wonder how (3.1) compares with Dulmage and Mendelsohn's bound (1.2); the example below shows that they are not comparable in general.
Example 4.1. For any $n \geq 3$, let A be the $n \times n$ matrix
\[
A = \begin{bmatrix}
1 & 1 & \cdots & 1 & 0 \\
1 & 0 & 1 & \cdots & 1 & 1 \\
1 & 0 & 1 & \cdots & 1 & 1 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
1 & 0 & 1 & \cdots & 1 & 1
\end{bmatrix},
\]
and note that $\exp(A) = 2$. Since A has exactly two distinct rows, we find that $b(A) = 2$. Thus the right hand side of (3.1) is equal to 3. Since A has a one on the diagonal (indeed several), the right hand side of (1.2) is $2n - 2$. Thus for the matrix A, (3.1) is a sharper bound than (1.2).

Next, for any $n \geq 5$, let B be the $n \times n$ matrix
\[
B = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 & 1 & 1 \\
1 & 1 & 0 & \cdots & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & \cdots & 0 & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & \cdots & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & \cdots & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\
\end{bmatrix}.
\]
A straightforward calculation shows that $\exp(B) = 3$. Since the $n-1^{\text{st}}$ and $n-2^{\text{nd}}$ rows of B are the same, $b(B) \leq n - 1$. Now B has a set of isolated ones in positions $(1,1), (2,2), \ldots, (n-2, n-2), (n, n-1)$, and so $b(B) = n - 1$ by Proposition 2.1. Thus the right side of (3.1) is equal to $(n-2)^2 + 2$. However, the right side of (1.2) is equal to $2n - 2$ since B has a one on the diagonal, so we see that for B, (1.2) is sharper than (3.1).

Finally, we remark that if $2 \leq n \leq 4$ and $b \leq n - 1$, then $n + s(n-2) \geq 2n - 2 \geq (n-2)^2 + 2 \geq (b-1)^2 + 2$ for any $s \geq 1$, so that for such n and b, (1.2) is never tighter than (3.1).

It is interesting to examine the bound (3.1) in connection with some recent work on exponents. In a working paper, Hartwig [4] conjectured that if M is a primitive matrix, then

\begin{equation}
\exp(M) \leq d^2 + 1,
\end{equation}

where $d = d(M)$ is the smallest integer k such that $I + M + M^2 + \cdots + M^k = J$. Now d is the diameter of the directed graph associated with M, and since the positions in M corresponding to the arcs of a shortest directed path must be isolated in M, it follows that $d(M) \leq b(M)$ for any primitive M. By looking at the directed graph associated with the matrix A of Example 4.1, we find that $d(A) = 2$. But $b(A) = 2$ as well, so the bound (3.1) is better than the conjectured bound (4.1) for this example. However, if M is a primitive matrix such that $d(M) < b(M)$, then (4.1) is better than (3.1). The matrix B of Example 4.1 provides an example of such a matrix since $b(B) = n - 1$, while it is easily seen that $d(B) = 3$.
Recently, Hartwig and Neumann [5] have conjectured that if M is a real primitive matrix, then

\[(4.2) \quad \exp(M) \leq (m - 1)^2 + 1,\]

where $m = m(M)$ is the degree of the minimal polynomial of M. Since $M^m_n \leq (I + M + \cdots + M^{m-1})_+$, it follows that $d \leq m - 1$ as long as M is irreducible. (There is no simple inequality relating $m(M)$ and $b(M)$ however). This conjecture is weaker than (4.1) and has been verified in [5] for all but a few cases. As before, (3.1) is sometimes better than (4.2) and sometimes worse. For example, if the J blocks in the matrix M_1 of Table 3.1 are all 1×1 (or even if they are all square and of the same size), then (thinking of M_1 as a real (0,1) matrix for the moment) $m(M_1) \leq b(M_1) + 1$. But $d(M_1) = b(M_1)$ here, so it follows that $m(M_1) = b(M_1) + 1$. Thus (3.1) is better than (4.2) in this case. On the other hand, let $M = I + H$ where H is an $n \times n$ skew-Hadamard design; that is, H is a real (0,1) matrix such that $H + H^t = J - I$, and \(HH^t = \left(\frac{n-3}{4} \right) J + \left(\frac{n+1}{4} \right) I \). (Here real matrix arithmetic is used). Then M is normal with three distinct eigenvalues, and so $m = 3$. However, the diagonal 1's of M_+ are isolated, so $b = n$. Consequently, the conjectured bound (4.2) is better than (3.1) in this case.

Our last comparison takes its cue from Proposition 3.1 (b). Suppose that B is a primitive (0,1) boolean matrix and that $B = XY$ is a boolean rank factorization of B. According to Proposition 3.1(b), $\exp(B) = \exp(YX) + \varepsilon$, where ε is 1, -1, or 0. The next result shows that all three possible values of ε can be realized when $\exp(YX)$ is maximum.

Theorem 4.1. Suppose that ε is either 1, -1, or 0 and that $2 \leq b \leq n - 1$. There is a primitive $n \times n$ (0,1) boolean matrix B with boolean rank b and a boolean rank factorization $B = XY$ such that $\exp(YX) = (b - 1)^2 + 1$ and $\exp(B) = \exp(YX) + \varepsilon$.

Proof. For $\varepsilon = 1$, consider any matrix B in Table 3.1 (or Table 3.2 if $b = 2$). Then $b(B) = b$ and $\exp(B) = (b - 1)^2 + 2$ by Theorem 3.2. It follows from Propositions 3.1 and 1.1 that if $B = XY$ is any rank factorization of B, then $\exp(YX) = (b - 1)^2 + 1$, so that $\exp(B) = \exp(YX) + \varepsilon$ with $\varepsilon = 1$.

\[
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & 0 \\
\vdots \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
\vdots \\
0 & 1 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots \\
0 & 1 & 0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
0 & \cdots & 0 \\
0 & \cdots & 0 \\
\vdots \\
0 & \cdots & 0 \\
1 & \cdots & 1 \\
1 & \cdots & 1 \\
0_{n-b,n-b}
\end{bmatrix}
\]

For $\varepsilon = -1$, consider the $n \times n$ matrix $B = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & 0 \\
\vdots \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
\vdots \\
0 & 1 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots \\
0 & 1 & 0 & \cdots & 0
\end{bmatrix}$. Note that B has a set of isolated ones in positions $(b,1)$ and $(i,i+1)$, $1 \leq i \leq b - 1$. Now
let X be the $n \times b$ matrix $X = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ 1 & 0 & \cdots & 0 & 1 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$ and let Y be the $b \times n$ matrix

\[
Y = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ 1 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \cdots 0 \\ 0 \cdots 0 \\ \vdots \\ 0 \cdots 0 \\ 1 \cdots 1 \\ 1 \cdots 1 \end{bmatrix}
\]

Then $XY = B$, so $b(B) \leq b$ and hence $b(B) = b$ by Proposition 2.1. Further, $YX = W_b$, so $\exp(YX) = (b-1)^2 + 1$ by Proposition 1.1.

Let the principal submatrix of B on its first b rows and columns be C. Note that B can be written as

\[
\begin{bmatrix} C & C \epsilon_1 j_{n-b}^t \\ j_{n-b} \epsilon_1^t C & C_{11} J_{n-b} \end{bmatrix}
\]

A straightforward proof by induction on k shows that for any $k \geq 1$, $B^k = \begin{bmatrix} C^k & C^{k-1} \epsilon_1 j_{n-b}^t \\ j_{n-b} \epsilon_1^t C^k & C_{11}^{(k)} J_{n-b} \end{bmatrix}$, where $C_{11}^{(k)}$ is the $(1,1)$ entry of C^k. Thus we find that $\exp(B) = \exp(C)$. But C is known to have exponent $(b-1)^2$ (see Brualdi and Ryer, [1; pg. 83]). So we see that in this case, $\exp(B) = \exp(YX) + \varepsilon$ with $\varepsilon = -1$.

For $\varepsilon = 0$, consider the $n \times n$ matrix $\tilde{B} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 & 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 0 & 0 & 0 & 1 & \cdots & 1 \\ 0 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 & 0_{n-b,n-b} \end{bmatrix}$.

Again, \tilde{B} has a set of b isolated ones, and $\tilde{B} = \tilde{X}Y$, where Y is as above, and $\tilde{X} = \ldots$
\[
\begin{bmatrix}
I_b \\
1 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \cdots & 0
\end{bmatrix}
\]. Thus by Proposition 2.1, \(b(\vec{B}) = b \). An argument similar to the one above shows that the exponent of \(\vec{B} \) is the same as that of its principal submatrix on the first \(b \) rows and columns. But that submatrix is \(W_b \), so we have \(\exp(\vec{B}) = (b - 1)^2 + 1 \). However, \(\vec{Y}X = W_b \), so we see that in this case, \(\exp(\vec{B}) = \exp(\vec{Y}X) + \varepsilon \) with \(\varepsilon = 0 \).

5. Problems. In this section, we suggest a few problems arising from the ideas in the preceding sections.

1. Let \(E_b \) be the set whose members are the exponents of the \(b \times b \) primitive matrices, and let \(E_{n,b} \) be the set whose members are the exponents of the \(n \times n \) primitive matrices of boolean rank \(b \). It is not difficult to show that \(E_{n,b} \subseteq E_{n+1,b} \), and Theorem 3.1 implies that \(\lim_{n \to \infty} E_{n,b} \) exists. Can this limit set be described more explicitly? Perhaps in terms of \(E_b \)?

2. Fix an \(n \geq 3 \), a \(b \) with \(2 \leq b \leq n - 1 \), and an \(\varepsilon \) equal to either 1, -1, or 0. Given \(k \in E_b \), is there an \(n \times n \) primitive matrix \(B \) with \(b(B) = b \) which has a boolean rank factorization \(B = XY \) such that \(\exp(YX) = k \) and \(\exp(B) = k + \varepsilon \)? Theorem 4.1 answers the question in the affirmative when \(k = (b - 1)^2 + 1 \), but what about other values of \(k \)?

REFERENCES

Gui-Qiang Chen and Tai-Ping Liu, Zero relaxation and dissipation limits for hyperbolic conservation laws
Gui-Qiang Chen and Jian-Guo Liu, Convergence of second-order schemes for isentropic gas dynamics
Aleksander M. Simon and Zbigniew J. Grzywna, On the Larché–Cahn theory for stress-induced diffusion
Jerzy Lyczek, Adam Gadomski and Zbigniew J. Grzywna, Growth driven by diffusion
Mitchell Luskin and Tsorng-Whay Pan, Nonplanar shear flows for nonaligning nematic liquid crystals
Mahmoud Affouf, Unique global solutions of initial-boundary value problems for thermodynamic phase transitions
Richard A. Brualdi and Keith L. Chavey, Rectangular L-matrices
Xinfu Chen, Avner Friedman and Bei Hu, The thermistor problem with zero–one conductivity II
Raoul LePage, Controlling a diffusion toward a large goal and the Kelly principle
Raoul LePage, Controlling for optimum growth with time dependent returns
Marc Hallin and Madan L. Puri, Rank tests for time series analysis a survey
V.A. Solonnikov, Solvability of an evolution problem of thermocapillary convection in an infinite time interval
Horia I. Ene and Bogdan Vernescu, Viscosity dependent behaviour of viscoelastic porous media
Kaushik Bhattacharya, Self-accommodation in martensite
D. Lewis, T. Ratiu, J.C. Simo and J.E. Marsden, The heavy top: a geometric treatment
Leonid V. Kalachev, Some applications of asymptotic methods in semiconductor device modeling
David C. Dobson, Phase reconstruction via nonlinear least-squares
Patricio Aviles and Yoshikazu Giga, Minimal currents, geodesics and relaxation of variational integrals on mappings of bounded variation
Patricio Aviles and Yoshikazu Giga, Partial regularity of least gradient mappings
Charles R. Johnson and Michael Lundquist, Operator matrices with chordal inverse patterns
B.J. Bayly, Infinitely conducting dynamos and other horrible eigenproblems
Charles M. Elliott and Stefan Luckhaus, ‘A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy’
Christian Schmeiser and Andreas Unterreiter, The derivation of analytic device models by asymptotic methods
LeRoy B. Beasley and Norman J. Pullman, Linear operators that strongly preserve the index of imprimitivity
Jerry Donato, The Boltzmann equation with lie and cartan
Thomas R. Hoffend Jr., Peter Smereka and Roger J. Anderson, A method for resolving the laser induced local heating of moving magneto-optical recording media
E.G. Kalnins, Willard Miller, Jr. and Sanchita Mukherjee, Models of q-algebra representations: the group of plane motions
T.R. Hoffend Jr. and R.K. Kaul, Relativistic theory of superpotentials for a nonhomogeneous, spatially isotropic medium
Reinhold von Schwerin, Two metal deposition on a microdisk electrode
Vladimir I. Oliker and Nina N. Uraltseva, Evolution of nonparametric surfaces with speed depending on curvature, III. Some remarks on mean curvature and anisotropic flows
Wayne Barrett, Charles R. Johnson, Raphael Loewy and Tamir Shalom, Rank incrementation via diagonal perturbations
Mingxiang Chen, Xu-Yan Chen and Jack K. Hale, Structural stability for time-periodic one-dimensional parabolic equations
Hong-Ming Yin, Global solutions of Maxwell’s equations in an electromagnetic field with the temperature-dependent electrical conductivity
Robert Grone, Russell Merris and William Watkins, Laplacian unimodular equivalence of graphs
Miroslav Fiedler, Structure-ranks of matrices
Miroslav Fiedler, An estimate for the nonstochastic eigenvalues of doubly stochastic matrices
Miroslav Fiedler, Remarks on eigenvalues of Hankel matrices
Charles R. Johnson, D.D. Olesky, Michael Tsatsomeros and P. van den Driessche, Spectra with positive elementary symmetric functions
Pierre-Alain Gremaud, Thermal contraction as a free boundary problem
K.L. Cooke, Janos Turi and Gregg Turner, Stabilization of hybrid systems in the presence of feedback delays
Robert P. Gilbert and Yongzhi Xu, A numerical transmutation approach for underwater sound propagation
LeRoy B. Beasley, Richard A. Brualdi and Bryan L. Shader, Combinatorial orthogonality
Richard A. Brualdi and Bryan L. Shader, Strong hall matrices
Håkan Wennnerström and David M. Anderson, Difference versus Gaussian curvature energies; monolayer versus bilayer curvature energies applications to vesicle stability
Shmuel Friedland, Eigenvalues of almost skew symmetric matrices and tournament matrices
Avner Friedman, Bei Hu and J.L. Velazquez, A Free Boundary Problem Modeling Loop Dislocations in Crystals
Ezio Venturino, The Influence of Diseases on Lotka-Volterra Systems
Steve Kirkland and Bryan L. Shader, On Multivariate Tournament Matrices with Constant Team Size
Richard A. Brualdi and Jennifer J.Q. Massey, More on Structure-Ranks of Matrices

Douglas B. Meade, Qualitative Analysis of an Epidemic Model with Directed Dispersion

Kazuo Murota, Mixed Matrices Irreducibility and Decomposition

Richard A. Brualdi and Jennifer J.Q. Massey, Some Applications of Elementary Linear Algebra in Combinations

Carl D. Meyer, Sensitivity of Markov Chains

Hong-Ming Yin, Weak and Classical Solutions of Some Nonlinear Volterra Integrodifferential Equations

B. Leinikammer and A. Rueli, Exploiting Symmetry and Regularity in Waveform Relaxation Convergence Estimation

Xinfu Chen and Charles M. Elliott, Asymptotics for a Parabolic Double Obstacle Problem

Yongzhi Xu and Yi Yan, An Approximate Boundary Integral Method for Acoustic Scattering in Shallow Oceans

Yongzhi Xu and Yi Yan, Source Localization Processing in Perturbed Waveguides

Kenneth L. Cooke and Janos Turi, Stability, Instability in Delay Equations Modeling Human Respiration Maps Describing the Equilibrium of Nematic Phases Between Cylinders

F. Bethuel, H. Brezis, B.D. Coleman and F. Hélein, Bifurcation Analysis of Minimizing Harmonic

Frank W. Elliott, Jr., Signed Random Measures: Stochastic Order and Kolmogorov Consistency Conditions

D.A. Gregory, S.J. Kirkland and B.L. Shader, Pick's Inequality and Tournaments

J.W. Demmel, N.J. Higham and R.S. Schreiber, Block LU Factorization

Victor A. Galaktionov and Juan L. Vazquez, Regional Blow-Up in a Semilinear Heat Equation with Convergence to a Hamilton-Jacobi Equation

Bryan L. Shader, Convertible, Nearly Decomposable and Nearly Reducible Matrices

Dianne P. O'Leary, Iterative Methods for Finding the Stationary Vector for Markov Chains

Nicholas J. Higham, Perturbation theory and backward error for $AX - XB = C$

Z. Strakos and A. Greenbaum, Open questions in the convergence analysis of the lanczos process for the real symmetric eigenvalue problem

Zhaojun Bai, Error analysis of the lanczos algorithm for the nonsymmetric eigenvalue problem

Pierre-Alain Gremaud, On an elliptic-parabolic problem related to phase transitions in shape memory alloys

Bojan Mohar and Neil Robertson, Disjoint essential circuits in toroidal maps

Bojan Mohar, Convex representations of maps on the torus and other flat surfaces

Bojan Mohar and Svatopluk Poljak, Eigenvalues in combinatorial optimization

Richard A. Brualdi, Keith L. Chavey and Bryan L. Shader, Conditional sign-solvability

Roger Fosdick and Ying Zhang, The torsion problem for a nonconvex stored energy function

René Ferland and Gaston Giroux, An unbounded mean-field intensity model: Propagation of the convergence of the empirical laws and compactness of the fluctuations

Wei-Ming Ni and Izumi Takagi, Spike-layers in semilinear elliptic singular Perturbation Problems

Henk A. Van der Vorst and Gerard G.L. Sleijpen, The effect of incomplete decomposition preconditioning on the convergence of conjugate gradients

S.P. Hastings and L.A. Peletier, On the decay of turbulent bursts

Apostolos Hadjidimos and Robert J. Plemmons, Analysis of p-cyclic iterations for Markov chains

ÅBjörck, H. Park and L. Eldén, Accurate downdating of least squares solutions

E.G. Kalnins, William Miller, Jr. and G.C. Williams, Recent advances in the use of separation of variables methods in general relativity

G.W. Stewart, On the perturbation of LU, Cholesky and QR factorizations

G.W. Stewart, Gaussian elimination, perturbation theory and Markov chains

G.W. Stewart, On a new way of solving the linear equations that arise in the method of least squares

G.W. Stewart, On the early history of the singular value decomposition

G.W. Stewart, On the perturbation of Markov chains with nearly transient states

Umberto Mosco, Composite media and asymptotic dirichlet forms

Walter F. Mascarenhas, The structure of the eigenvectors of sparse matrices

Walter F. Mascarenhas, A note on Jacobi being more accurate than QR

Raymond H. Chan, James G. Nagy and Robert J. Plemmons, FFT-based preconditioners for Toeplitz-Block least squares problems

Zhaojun Bai, The CSD, GSVD, their applications and computations

D.A. Gregory, S.J. Kirkland and N.J. Pullman, A bound on the exponent of a primitive matrix using Boolean rank

Richard A. Brualdi, Shmuel Friedland and Alex Potechin, Sparse bases, elementary vectors and nonzero minors of compound matrices

J.W. Demmel, Open problems in numerical linear algebra

James W. Demmel and William Gragg, On computing accurate singular values and eigenvalues of acyclic matrices

James W. Demmel, The inherent inaccuracy of implicit tridiagonal QR

J.J.L. Velázquez, Estimates on the $(N - 1)$-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation