ZERO RELAXATION AND DISSIPATION LIMITS FOR HYPERBOLIC CONSERVATION LAWS

By

Gui-Qiang Chen

and

Tai-Ping Liu

IMA Preprint Series # 866
August 1991
Zero Relaxation and Dissipation Limits for Hyperbolic Conservation Laws

Gui-Qiang Chen*
Department of Mathematics
University of Chicago

Tai-Ping Liu**
Department of Mathematics
Stanford University

*Email address: cheng@zaphod.uchicago.edu
**Email address: liu@pde.stanford.edu

Typeset by \texttt{AMS-\LaTeX}
Abstract

We are interested in hyperbolic systems of conservation laws with relaxation and dissipation, particularly the zero relaxation limit. Such a limit is of interest in several physical situations, including gas flow near thermo-equilibrium, kinetic theory with small mean free path, and viscoelasticity with vanishing memory. In this article we study hyperbolic systems of two conservation laws with relaxation. For the stable case where the equilibrium speed is subcharacteristic with respect to the frozen speeds, we illustrate for a model in viscoelasticity that no oscillation develops for the nonlinear system in the zero relaxation limit. For the marginally stable case where the equilibrium speed may equal one of the frozen speeds, we show for a model in phase transitions that no oscillation arises when the dissipation is present and goes to zero more slowly than the relaxation. Our analysis includes the construction of suitable entropy pairs to derive energy estimates. We need such energy estimates not only for the compactness properties but also for the deviation from the equilibrium of the solutions for the relaxation systems. The theory of compensated compactness is then applied to study the oscillation in the zero relaxation limit.
1. Introduction

Consider the hyperbolic system of conservation laws with relaxation

\[
\begin{align*}
 u_t + f(u, v)_x &= 0, \\
 v_t + g(u, v)_x &= \frac{V_*(u) - v}{\tau(u)}.
\end{align*}
\]

The first equation is a conservation law, while the second equation contains a relaxation mechanism with \(V_*(u)\) as the equilibrium value for \(v\) and \(\tau(u)\) the relaxation time [13]. We are interested in the zero relaxation limit \(\tau(u) \to 0\). In many physical situations, certain stability criteria hold, no oscillation is expected to develop in the limit, and the solution converges to that of the equilibrium hyperbolic conservation law

\[
u_t + f(u, V_*(u))_x = 0.
\]

The relaxation phenomenon is important in many physical situations: in the kinetic theory the relaxation time is the mean free path, and in viscoelasticity the strength of memory. In gas dynamics the phenomenon occurs when the gas is in the thermo-nonequilibrium. It also occurs in river flow and traffic flow (see [21]). The zero relaxation limit reduces the number of equations and is more singular than other limits such as the zero dissipation limit. Shock, initial layers, and boundary layers can develop.

There is a stability criterion for (1.1) under which (1.2) is expected to be the limiting equation. The criterion can be obtained through asymptotic expansion of the Chapman-Enskog type in kinetic theory [13]. The first order expansion of (1.1) is obtained by setting \(v\) to be the equilibrium, \(v = V_*(u)\). The resulting equation (1.2) is used in the second order expansion only to the extent of setting the primary characteristic direction by the equilibrium characteristic speed \(\lambda_*\):

\[
\begin{align*}
 \partial_t + \lambda_*(u)\partial_x &\equiv 0, \\
 \lambda_*(u) &\equiv \frac{d}{du} f(u, V_*(u)).
\end{align*}
\]

For the second order approximation, we set \(v_1\) to be the deviation from the equilibrium and obtain from the second equation in (1.1)

\[
\begin{align*}
 v &= V_*(u) + v_1, \\
 v_1 &= \tau(u)(v_t + g(u, v)_x) \\
 &\quad \equiv \tau(u)(V_*(u)_t + g(u, V_*(u))_x).
\end{align*}
\]

Here we have made an a priori hypothesis that \(v_1\) is small and that its gradients are even smaller as a result of the dissipation induced by the relaxation. Using (1.2)', we obtain

\[
v_1 \equiv \tau(u)(-\lambda_*(u)V'_*(u) + g_u(u, V_*(u)) + V'_*(u)g_v(u, V_*(u)))u_x.
\]
Inserting this into the first equation (1.1), we obtain the second order viscous approximation to (1.1):

(1.4) \[u_t + f(u, V_*(u))_x = (\beta(u)u_x)_x. \]

The viscosity \(\beta(u) \) is related to the equilibrium speed \(\lambda_* \), and the frozen speeds \(\lambda_1 \) and \(\lambda_2 \), characteristic speeds of (1.1), as follows:

(1.5) \[
\begin{align*}
\beta(u) &= \tau(u)(\lambda_*(u) - \lambda_1(u, V_*(u)))(\lambda_2(u, V_*(u)) - \lambda_*(u)), \\
\lambda_1(u, v) &= \frac{1}{2}(f_u + g_v) - \frac{1}{2}((f_u - g_v)^2 + 4f_vg_u)^{\frac{1}{2}}, \\
\lambda_2(u, v) &= \frac{1}{2}(f_u + g_v) + \frac{1}{2}((f_u - g_v)^2 + 4f_vg_u)^{\frac{1}{2}}.
\end{align*}
\]

The stability criterion is that the viscosity \(\beta(u) \) is positive and, equivalently, the equilibrium speed \(\lambda_* \) is subcharacteristic with respect to the frozen speeds \(\lambda_1 \) and \(\lambda_2 \):

(1.6) \[\lambda_1 < \lambda_* < \lambda_2. \]

Our first goal is to show that, in the stable case (1.6), no oscillation develops in the zero dissipation limit and that the solutions of (1.1) converge to those of (1.2). We show this fact for a model in viscoelasticity [11]:

(1.7) \[
\begin{align*}
&u_t + \sigma_x = 0, \\
&\left(\sigma - f(u)\right)_t + \frac{\sigma - \mu f(u)}{\delta} = 0, \\
&f(0) = 0.
\end{align*}
\]

Condition (1.6) holds when \(0 < \mu < 1, f'(u) > 0 \). This prevents the creeping phenomenon of Maxwell.

Our second goal is to show that when (1.4) is marginally stable, that is,

(1.8) \[\lambda_1 \leq \lambda_* \leq \lambda_2, \]

then the oscillation can be suppressed with the additional effect of dissipation. For this we study a model in phase transitions:

(1.9) \[
\begin{align*}
u_t + \left(\frac{1 + (\mu - 1)v}{u}\right)_x &= 0, \\
v_t &= \frac{V_*(u) - v}{\delta}, \mu > 1, \delta > 0,
\end{align*}
\]

where

\[V_*(u) = \begin{cases}
0, & \text{for } 0 < u < 1, \\
\frac{u - 1}{\mu - 1}, & \text{for } 1 < u < \mu, \\
1, & \text{for } \mu < u.
\end{cases} \]
The model shares the same essential qualitative behavior as the model for polymorphic phase transitions proposed in [18,10].

We show that the solutions of the viscous equations

\[
\begin{align*}
 u_t + \left(\frac{1 + (\mu - 1)v}{u} \right)_x &= \varepsilon u_{xx}, \\
 v_t &= \frac{V_\varepsilon(u) - v}{\delta} + \varepsilon v_{xx}
\end{align*}
\]

(1.10)

converge to the equilibrium solutions when \(\delta \) and \(\varepsilon \) tend to zero, but the dissipation dominates \(\delta \varepsilon^{-1} \rightarrow 0 \).

The main part of our analysis consists of energy estimates for the boundedness and compactness, and the deviation from the equilibrium for the solutions of (1.1). We also need to estimate the extent to which a solution of (1.1) satisfies the entropy inequality for (1.2) so as to ensure the admissibility of the limit solutions for (1.2). These are achieved by properly chosen entropy functions. We then apply the theory of compensated compactness to control the oscillation and to obtain convergence.

In the next section we discuss preliminaries for the models (1.7) and (1.9). Section 3 concerns the construction of entropy pairs for (1.1) and relates them to those for (1.2). In Section 4 we briefly review the theory of compensated compactness as needed for our study. Our approach is general in the sense that it applies to two general conservation laws with relaxation. We use the particular models (1.7) and (1.9) because both have invariant regions, which yield a priori sup norm estimates as shown in Section 5. This allows us to establish the existence of \(L^\infty \) solutions. Finally, in Sections 7 and 8, we study the convergence for (1.7) and (1.9), respectively, in the zero relaxation limits. We note that, since both (1.7) and (1.9) contain a linearly degenerate field in the sense of Lax [12], one might expect the oscillation to persist [4]. The reason why oscillation does not persist is due to the dissipation effect of relaxation. Our analysis makes use of this fact by first studying the convergence of \(u \) and, through the coupling, the convergence of \(v \). The convergence of \(v \) is not uniform near the time zero because of the initial layer that is expected to develop.

Relaxation is present for many physical models in gas dynamics, elasticity, kinetic theory, multiphase flow, and phase transition. It would be interesting to study the zero relaxation limit for these models. For qualitative studies of nonlinear waves for relaxation models, see [13], and for the zero relaxation limit with particular data, see [2,7].

2. Preliminaries

The elastic model (1.7) can be rewritten as

\[
\begin{align*}
 u_t + (f(u) - v)_x &= 0, \\
 v_t &= \frac{(1 - \mu)f(u) - v}{\delta}, \quad v \equiv \sigma - f(u), \quad \mu > 0, \quad \delta > 0.
\end{align*}
\]

(2.1)

The corresponding equilibrium equation is

\[
 u_t + (\mu f(u))_x = 0.
\]

(2.2)
The characteristic speeds λ_1 and λ_2 of (2.1) are called the frozen speeds, and that λ_\ast of (2.2) the equilibrium speed:

\begin{equation}
\lambda_1 = 0, \quad \lambda_2 = f'(u), \quad \lambda_\ast = \mu f'(u).
\end{equation}

The basic assumption for the model (2.1) is

\begin{equation}
0 < \mu < 1, \quad f'(u) > 0,
\end{equation}

which yields the stability criterion

\begin{equation}
\lambda_1 < \lambda_\ast < \lambda_2.
\end{equation}

The equilibrium equation for the phase transition model (1.9) is

\begin{equation}
u_t + f_\ast(u)x = 0,
\end{equation}

where

\begin{equation}
f_\ast(u) = \begin{cases}
\frac{1}{u^2}, & 0 < u < 1, \\
1, & 1 < u < \mu, \\
\frac{\mu^2}{u^2}, & u > \mu.
\end{cases}
\end{equation}

The frozen speeds λ_1 and λ_2, and the equilibrium speed λ_\ast are

\begin{equation}
\begin{cases}
\lambda_1 = -\frac{2(1 + (\mu - 1)v)^2}{u^3}, \quad \lambda_2 = 0, \\
\lambda_\ast = f_\ast'(u) = \begin{cases}
\frac{2}{u^3}, & u < 1, \\
0, & 1 < u < \mu, \\
-\frac{2\mu^2}{u^3}, & u > \mu.
\end{cases}
\end{cases}
\end{equation}

Thus, for the equilibrium states $v = V_\ast(u)$, the strict stability criterion (1.6) does not hold. Indeed

\begin{equation}
\begin{cases}
\lambda_\ast(u) = \lambda_1(u, V_\ast(u)), \text{ for } u < 1 \text{ and for } u > \mu, \\
\lambda_\ast(u) = \lambda_2(u, V_\ast(u)) = 0, \text{ for } 1 < u < \mu, \\
\lambda_1(u_1, V_\ast(u)) \leq \lambda_\ast(u) \leq \lambda_2(u, V_\ast(u)).
\end{cases}
\end{equation}

This weak stability property prompts us to introduce the dissipation into the model (2.6) to stabilize the process of the zero relaxation limit.

3. Entropy

This section is concerned with the entropy pairs (η, q) for our models (2.1) and (1.9). It is well known (see [12]) that, for the general conservation laws

\begin{equation}
u_t + F(U)x = G(U), \quad U \in \mathbb{R}^n,
\end{equation}
the entropy pairs satisfy

\[(3.2) \quad \nabla q = \nabla \eta \nabla F,\]

so that the smooth solutions \(U\) of (3.1) satisfy

\[\eta(U)_t + q(U)_x = \nabla \eta(U) \cdot G(U).\]

An admissible weak solution \(U\) of (3.1) satisfies the entropy condition

\[(3.3) \quad \eta(U)_t + q(U)_x \leq \nabla \eta(U) \cdot G(U),\]

for any convex entropy \(\eta(U)\). For scalar conservation laws, a weak solution is admissible if and only if it satisfies (3.3) for any convex \(\eta(U)\). For genuinely nonlinear systems, a weak solution is admissible if (3.3) holds for a convex entropy.

For the elastic model (2.1), we have from the compatibility condition for (3.2) that

\[\eta_{uu} + f'(u)\eta_{uv} = 0.\]

Thus the general representation of the entropy pairs is

\[\left\{\begin{align*}
\eta(u,v; H, G) &= \int_{u}^{u} H(f(\xi) - v)d\xi + G(v), \\
q(u,v; H) &= \int_{f(u)-v}^{f(u)-u} H(\xi)d\xi,
\end{align*}\right.\]

(3.4)

for any continuous functions \(H\) and \(G\). The following ones are particularly useful:

\[(3.5) \quad \eta_0(u,v; H) = \int_{f^{-1}(\frac{u}{1-\mu})}^{u} H(f(\xi) - v)d\xi + \int_{f^{-1}(\frac{v}{1-\mu})}^{f^{-1}(\frac{u}{1-\mu})} H(\mu f(\xi))d\xi,\]

\[(3.6) \quad \eta(u,v) = \int_{f^{-1}(\frac{v}{1-\mu})}^{u} (f(\xi) - v)d\xi + \mu \int_{f^{-1}(\frac{v}{1-\mu})}^{f^{-1}(\frac{u}{1-\mu})} f(\xi)d\xi.\]

The desired property for \(\eta\) in (3.5) and (3.6) is that \(\eta_v\) vanishes at the equilibrium state \(v = (1 - \mu)f(u)\) and that

\[\left\{\begin{align*}
\eta(u,v)_{v} - (1 - \mu)f(u) \geq C_1 \frac{(v - (1 - \mu)f(u))^2}{\delta}, \\
|\eta_0(u,v)_{v} - (1 - \mu)f(u) - \frac{(v - (1 - \mu)f(u))^2}{\delta}| &\leq C_2 \frac{(v - (1 - \mu)f(u))^2}{\delta},
\end{align*}\]

(3.7)

for positive constants \(C_1\) and \(C_2\), depending only on the function \(H\) and \(M\) defining the bounded set \(\{(u,v) : 0 \leq v \leq f(u) \leq M\}\). The estimates (3.7) follow from a simple
calculation with the hypothesis that $f'(0) \gg 1$ so that $\tilde{\eta}$ is convex. The usefulness of (3.7) follows from the fact that, for the model (2.1), the entropy inequality (3.3) takes the form

$$\eta(u, v)_t + q(u, v)_x \leq \eta(u, v)_v \frac{(1 - \mu)f(u) - v}{\delta},$$

and thus

$$\tilde{\eta}(u, v)_t + \tilde{q}(u, v)_x \leq -C_1 \frac{(v - (1 - \mu)f(u))^2}{\delta},$$

from (3.7). This yields an estimate for the deviation of the solutions of (2.1) from the equilibrium in Sections 6 and 7. The entropy functions $\eta_0(u, v; H)$ can become any entropy function $E(u)$ at the equilibrium:

$$H(w) \equiv E'(f^{-1} \left(\frac{w}{\mu} \right)),
\begin{align*}
E(u) = \eta_0(u, (1 - \mu)f(u); H).
\end{align*}$$

(3.10)

For the phase transition model (1.9), the entropy functions $\eta(u, v)$ satisfy

$$(\mu - 1)u\eta_{uu} + (1 + (\mu - 1)v)\eta_{uv} = 0.$$

Thus the general representation of the entropy pairs (η, q) is

$$\begin{align*}
\eta(u, v; H, G) &= \int^u H\left(\frac{1 + (\mu - 1)v}{\xi} \right) d\xi + G(v), \\
q(u, v; H) &= \int^\frac{1+(\mu-1)v}{u} H(\xi)d\xi,
\end{align*}$$

(3.11)

for any continuous functions H and G. A particular one

$$\tilde{\eta}(u, v) = \frac{(1 + (\mu - 1)v)^2}{u} - 2(\mu - 1)v$$

(3.12)

has the desired property that, on any bounded set

$$\{(u, v) : 0 \leq v \leq 1, M^{-1}(1 + (\mu - 1)v) \leq u \leq M(1 + (\mu - 1)v)\},$$

(3.13)

$$\begin{align*}
\nabla^2 \tilde{\eta}(u, v) &\geq 0, \\
\tilde{\eta}(u, v)_v(v - V_*(u)) &\geq C_0(v - V_*(u))^2,
\end{align*}$$

for any $C_0 > 0$, depending only on M. For the present case, the entropies $\eta(u, v; H, G)$ do not produce any convex entropy $E(u)$ for the equilibrium equation at the equilibrium $v = V_*(u)$. This prompts a different analytical approach in studying the zero relaxation and dissipation limits.
4. The Compensated Compactness Method

The theory of compensated compactness, originally introduced in [15,17,20] and a related observation in [1], is an efficient tool for studying the singular limit for conservation laws. In this section we review some results pertaining to our study.

Theorem 4.1([20]). Suppose that \(U^\varepsilon : \mathbb{R}^2_+ \to \mathbb{R}^n \) is a sequence of bounded measurable functions

\[
U^\varepsilon(x,t) \in K, \quad \text{a.e.,}
\]

for a bounded set \(K \) in \(\mathbb{R}^n \) and that, for function pairs \((\eta_i, q_i), i = 1, 2,\)

\[
\eta_i(U^\varepsilon)_t + q_i(U^\varepsilon)_x \quad \text{compact in } H^{-1}_{loc}.
\]

Then there exists a subsequence (still labeled \(U^\varepsilon \)) and Young measures

\[
\nu_{x,t}(\lambda) \in \text{Prob}(\mathbb{R}^n),
\]

such that

(i) for any continuous function \(g, \)

\[
w^* - \lim g(U^\varepsilon) = \langle \nu_{x,t}(\lambda), g(\lambda) \rangle = \int g(\lambda) d\nu_{x,t}(\lambda),
\]

and

\[
\langle \nu_{x,t}, \eta_1 q_2 - \eta_2 q_1 \rangle = \langle \nu_{x,t}, \eta_1 \rangle \langle \nu_{x,t}, q_2 \rangle - \langle \nu_{x,t}, \eta_2 \rangle \langle \nu_{x,t}, q_1 \rangle;
\]

(ii) \(U^\varepsilon(x,t) \to U(x,t) \) strongly if and only if \(\nu_{x,t} \) is a Dirac mass

\[
\nu_{x,t} = \delta_{U(x,t)},
\]

for almost all \((x,t).\)

This theorem provides a framework by which one can prove strong convergence of the sequence \(U^\varepsilon(x,t) \) satisfying (4.1) and (4.2) by deducing

\[
\nu_{x,t}(\lambda) = \delta_{w^* - \lim U^\varepsilon(x,t)}(\lambda)
\]

from the functional relation (4.3).

Theorem 4.2. Suppose \(\nu = \nu_{x,t} \) satisfies (4.3) for entropy pairs \((\eta_i, q_i)(U), i = 1, 2,\) for the conservation laws (3.1), \(U \in \mathbb{R}^n.\)

(i) For the scalar laws \((n = 1)\) with measure \(\{U : F''(U) = 0\} = 0,\) we set

\[
\begin{cases}
(\eta_1, q_1) = (U - k, F(U) - f(k)), \\
(\eta_2, q_2) = (F(U) - f(k), \int_k^U (F'(s))^2 ds), \quad k \text{ constant},
\end{cases}
\]
Then \(\nu_{x,t} = \delta_{U(x,t)} \) a.e., and
\[
(\nu_{x,t}, F(\lambda)) = F((\nu_{x,t}, \lambda)).
\]

(ii) For two strictly hyperbolic conservation laws \((n = 2)\) with the following property: For some \(j \in \{1, 2\}, \)
\[
\nabla \lambda_j(U) \cdot r_j(U) \neq 0, \quad U \in \mathbb{R}^2,
\]
or there exists a curve \(u_j = V(u_i), j \neq i, \) such that
\[
(u_j - V(u_i))(\nabla \lambda_j(U) \cdot r_j(U)) > 0, \quad U \in \mathbb{R}^2 - \{u_j \neq V(u_i)\}.
\]
Then
\[
supp \nu \subset \{U : w_j(U) = \bar{w}_j\}, \quad \bar{w}_j \text{ some constant},
\]
provided that (4.3) is satisfied for all entropy pairs, where \(\nabla f \cdot r_j = \lambda_j r_j, \) \(j = 1, 2, \) and \(w = (w_1, w_2) \) is the coordinate system of the Riemann invariants. In particular, if the system is genuinely nonlinear (i.e., \(\nabla \lambda_j \cdot r_j \neq 0, j = 1, 2, \)) then \(\nu_{x,t} = \delta_{U(x,t)} \).

Part (i) of Theorem 4.2 shows that two entropy pairs are sufficient to conclude the weak continuity of the flux function for the scalar conservation law [5] (see also [3,20]), while infinite pairs are needed for two conservation laws [9,19,16,3]. The following embedding theorems are useful for obtaining \(H^{-1} \) compactness needed in the above theorems.

Theorem 4.3 ([8]). Let \(\Omega \subset \mathbb{R}^n \) be bounded and open, and \(1 < q \leq p < r < \infty. \) Then
\[
(\text{compact set of } W^{-1,q}_{loc}(\Omega)) \cap (\text{bounded set of } W^{-1,r}_{loc}(\Omega)) \subset (\text{compact set of } W^{-1,p}_{loc}(\Omega)).
\]

Theorem 4.4 ([15]). The embedding of the positive cone of \(W^{-1,p}(\Omega) \) in \(W^{-1,q}(\Omega) \) is completely continuous for \(q < p. \)

Theorem 4.3 says that compactness in \(W^{-1,q}_{loc} \) coupled with boundedness in \(W^{-1,r}_{loc} \) yields compactness in \(W^{-1,p}_{loc}. \) This is useful for our study of the zero relaxation and dissipation limits in Sections 6 and 8. Theorem 4.4 is used in Section 7 for \(q = 2 \) and \(p > 2. \)

5. Invariant Regions

A closed set \(\Sigma \subset \mathbb{R}^n \) is called an invariant region for solutions \(U(x,t) \) of (3.5) if \(U(x,t) \in \Sigma, \) \(t \geq 0, \) whenever the initial data \(U(x,0) \) are in \(\Sigma \) [6]. This notion is useful for studying a priori \(L^\infty \) estimates. Consider first the viscous elastic model (2.1):

\[
\begin{cases}
 u_t + (f(u) - v)_x = \varepsilon u_{xx}, \\
 v_t + \frac{v - (1 - \mu)f(u)}{\delta} = \varepsilon v_{xx},
\end{cases}
\]

where \(f(0) = 0, \) \(f'(u) > 0, \) \(f''(0) \gg 1. \)

Theorem 5.1. Suppose that there exists \(u_\ast \in (0, \infty) \) with
\[
(u - u_\ast)f''(u) > 0, \quad u \in (0, \infty) - \{u_\ast\}.
\]
Then the following regions are invariant ones for (5.1) for all $\epsilon > 0, \delta > 0$:

$$
\Sigma_{C} = \{(u, v) : 0 \leq v \leq \frac{1-\mu}{\mu}C, \quad f^{-1}(v) \leq u \leq f^{-1}(v + C)\},
$$

where

$$
C \geq \max \left(\frac{\mu \sup v_{0}(x)}{1-\mu}, f(u_{*}) \right).
$$

See Fig. 5.1.

Fig. 5.1
Similarly we have invariant regions for the viscous phase transition model (1.9).

Theorem 5.2. The regions

$$\Sigma_{C_1, C_2} = \{(u, v) : 0 \leq v \leq 1, C_1(1 + (\mu - 1)v) \leq u \leq C_2(1 + (\mu - 1)v)\},$$

with $0 < C_1 < 1 < C_2 < \infty$, are invariant regions for (1.9) for all $\varepsilon, \delta > 0$. See Fig. 5.2.

Fig. 5.2
6. Existence of L^∞ Solutions

Consider first the Cauchy problem for the elastic model (2.1):

\[
\begin{align*}
 u_t + (f(u) - v)_x &= 0, \\
 v_t + \frac{v - (1 - \mu)f(u)}{\delta} &= 0, \\
 (u, v)(x, 0) &= (u_0(x), v_0(x)).
\end{align*}
\]

(6.1)

We shall construct its solution by the zero dissipation limit of solutions of the viscous system

\[
\begin{align*}
 u_t + (f(u) - v)_x &= \epsilon u_{xx}, \\
 v_t + \frac{v - (1 - \mu)f(u)}{\delta} &= \epsilon v_{xx}, \\
 (u, v)(x, 0) &= (u_0^\epsilon(x), v_0^\epsilon(x)).
\end{align*}
\]

(6.2)

Theorem 6.1. Suppose that $(u_0(x), v_0(x))$ satisfies

\[
\begin{align*}
 0 &\leq v_0(x) \leq f(u_0(x)) \leq M_0 < \infty, \\
 (u_0 - \bar{u}, v_0 - \bar{v}) &\in L^\infty \cap L^2(-\infty, \infty),
\end{align*}
\]

(6.3)

for some equilibrium state $(\bar{u}, \bar{v}) = (\bar{u}, (1 - \mu)f(\bar{u}))$. Let $(u_0^\epsilon, v_0^\epsilon)$ be some smooth L^2 approximation of (u_0, v_0). Then (6.2) has global solutions $(u^\epsilon, v^\epsilon)(x, t)$ satisfying

\[
\begin{align*}
 0 &\leq v^\epsilon(x, t) \leq f(u^\epsilon(x, t)) \leq M < \infty, \\
 \|v^\epsilon - (1 - \mu)f(u^\epsilon)\|_{L^2} &\leq \delta M, \\
 \sqrt{\epsilon}\|(u^\epsilon, v^\epsilon)_x\|_{L^2} &\leq M,
\end{align*}
\]

(6.4)

for some M independent of ϵ and δ. Moreover, there exists a sequence $\epsilon_k \to 0$ such that

\[
(u^\epsilon_k, v^\epsilon_k)(x, t) \to (u, v)(x, t), \quad \text{a.e.},
\]

and $(u, v)(x, t)$ is a global weak solution for (6.1) that has the same bound as the initial data (6.3),

\[
0 \leq v(x, t) \leq f(u(x, t)) \leq M_0,
\]

(6.5)

and satisfies the entropy condition

\[
\eta(u, v)_t + q(u, v)_x + \eta(u, v)v - \frac{(1 - \mu)f(u)}{\delta} \leq 0,
\]

(6.6)

and the estimate on the deviation from the equilibrium

\[
\|v - (1 - \mu)f(u)\|_{L^2} \leq \delta M,
\]

(6.7)
for some M independent of δ.

Proof: The initial data $(u_0^\varepsilon, v_0^\varepsilon)$ are obtained through the standard convolution with the smooth mollifiers $j_\varepsilon(x)$:

$$(u_0^\varepsilon, v_0^\varepsilon)(x) = \int_{-\frac{1}{\varepsilon}}^{\frac{1}{\varepsilon}} (u_0(y), v_0(y))j_\varepsilon(x - y)dy.$$

The existence of global solutions to (6.2) follows from the usual local existence theory and the a priori sup norm estimate on the solutions by the invariant region argument in Section 5. To show (6.4), we multiply (6.2) by $\nabla \bar{\eta}_*(u^\varepsilon, v^\varepsilon)$ with

$$\bar{\eta}_*(u, v) \equiv \bar{\eta}_*(u, v) - \bar{\eta}_*(\bar{u}, \bar{v}) - \nabla \bar{\eta}_*(\bar{u}, \bar{v}) \left(\frac{u - \bar{u}}{v - \bar{v}}\right),$$

and obtain

$$\bar{\eta}_*(u^\varepsilon, v^\varepsilon)_t + \tilde{g}_*(u^\varepsilon, v^\varepsilon)_x$$

$$= \bar{\eta}_*(u^\varepsilon, v^\varepsilon)_v \frac{(1 - \mu)f(u^\varepsilon) - v^\varepsilon}{\delta} + \varepsilon \bar{\eta}_*(u^\varepsilon, v^\varepsilon)_{xx} - \varepsilon(u^\varepsilon, v^\varepsilon)_x \nabla^2 \eta_*(u^\varepsilon, v^\varepsilon) \left(\begin{array}{c} u^\varepsilon \\ v^\varepsilon \end{array}\right).$$

The estimate (6.4) follows from integrating the above equality over $(-\infty, \infty) \times (0, t)$ by using (3.7). Similarly, (6.6) and (6.7) follow from (6.4) and the above equality in the limit $\varepsilon \to 0$.

It remains to show the convergence of $(u^\varepsilon, v^\varepsilon)$ as $\varepsilon \to 0$. To apply the theory of compensated compactness in Section 4, we need to check the condition (4.2). Let (η, q) be any entropy pair. Multiplying (6.2) by $\nabla \eta$, we have

$$\eta(u^\varepsilon, v^\varepsilon)_t + q(u^\varepsilon, v^\varepsilon)_x = \sum_{i=1}^{3} I_i^\varepsilon,$$

where

$$I_1^\varepsilon = \eta(u^\varepsilon, v^\varepsilon)_v \frac{(1 - \mu)f(u^\varepsilon) - v^\varepsilon}{\delta},$$

$$I_2^\varepsilon = -\varepsilon(u^\varepsilon, v^\varepsilon)_x \nabla^2 \eta(u^\varepsilon, v^\varepsilon) \left(\begin{array}{c} u^\varepsilon \\ v^\varepsilon \end{array}\right)_x,$$

$$I_3^\varepsilon = \varepsilon \eta(u^\varepsilon, v^\varepsilon)_{xx}.$$

From (6.4) we have

$$\int_0^T \int_{-\infty}^{\infty} (|I_1^\varepsilon| + |I_2^\varepsilon|)dxdt \leq M,$$

and, therefore, $I_1^\varepsilon + I_2^\varepsilon$ is compact in $W_{loc}^{-1, p}, 1 < p < 2$. Moreover, from the second estimate in (6.4),

$$\|I_2^\varepsilon\|_{H^{-1}_{loc}} = O(1)\sqrt{\varepsilon} \to 0,$$

as $\varepsilon \to 0$.
we have I_2^ε is compact in H^{-1}_{loc}. Since $(u^\varepsilon, v^\varepsilon)$ is uniformly bounded, we obtain that

$$\eta(u^\varepsilon, v^\varepsilon)_t + q(u^\varepsilon, v^\varepsilon)_x$$

are compact in $W^{-1,p}_{loc}(\Omega), 1 < p < 2$, and bounded in $W^{-1,r}_{loc}(\Omega), r > 2$. By Theorem 4.3, we conclude that

$$\eta(u^\varepsilon, v^\varepsilon)_t + q(u^\varepsilon, v^\varepsilon)_x \quad \text{compact in } H^{-1}_{loc},$$

and (4.2) follows. Thus we have from Theorem 4.2 that

$$u^\varepsilon(x,t) \to u(x,t) \quad \text{a.e. as } \varepsilon \to 0.$$

The convergence of v^ε is a consequence of the convergence of u^ε. From the second equation in (6.2) we have

$$v^\varepsilon(x,t) = e^{-\frac{1}{\delta}} \int_0^\infty \frac{e^{-\frac{(x-y)^2}{4\pi t}} v_0^\varepsilon(y) dy}{\sqrt{4\pi t}} + \frac{1 - \mu}{\delta} \int_0^t \int_0^\infty e^{-\frac{t-r}{\delta}} f(u^\varepsilon(y,\tau)) \frac{1}{\sqrt{4\pi(t-\tau)}} e^{-\frac{(x-y)^2}{4\pi(t-\tau)}} dy d\tau.$$

It is clear from the above equality that, for Lipschitz function f, the convergence of u^ε implies that

$$v^\varepsilon \to v \quad \text{a.e. as } \varepsilon \to 0,$$

for some L^∞ function v satisfying

$$v(x,y) = e^{-\frac{1}{\delta}} v_0(x,t) + \frac{1 - \mu}{\delta} \int_0^t e^{-\frac{t-r}{\delta}} f(u(x,\tau)) d\tau.$$

It is clear that (u,v) is a weak solution of (6.1).

By the same approach we have the existence theory for the phase transition model (1.9):

$$\begin{cases}
 u_t + \left(\frac{1 + (\mu - 1)v}{u} \right)_x = 0, \\
 v_t = \frac{V^*(u) - v}{\delta}, \quad \mu > 1, \quad \delta > 0, \\
 (u, v)(x,0) = (u_0(x), v_0(x)),
\end{cases}$$

from

$$\begin{cases}
 u_t + \left(\frac{1 + (\mu - 1)v}{u} \right)_x = \varepsilon u_{xx}, \\
 v_t = \frac{V^*(u) - v}{\delta} + \varepsilon v_{xx}, \\
 (u, v)(x,0) = (u_0^\varepsilon(x), v_0^\varepsilon(x))
\end{cases}$$
where

\[
V_\ast(u) = \begin{cases}
0, & 0 < u < 1, \\
\frac{u-1}{\mu-1}, & 1 < u < \mu, \\
1, & u > \mu.
\end{cases}
\]

\textbf{Theorem 6.2.} Suppose that \((u_0(x) - \bar{u}, v_0(x) - \bar{v}) \in L^2 \cap L^\infty(-\infty, \infty)\) for some equilibrium state \((\bar{u}, \bar{v}) = (\bar{u}, V_\ast(\bar{u}))\), and that, for some \(C_1 > 0\) and \(C_2 > 0\),

\[0 \leq v_0(x) \leq 1, \quad C_1(1 + (\mu - 1)v_0(x)) \leq u_0(x) \leq C_2(1 + (\mu - 1)v_0(x)).\]

Then there exist \((u_0^\varepsilon(x), v_0^\varepsilon(x))\) and the corresponding solutions \((u_\varepsilon(x, t), v_\varepsilon(x, t))\) of (6.11) such that for some \(\varepsilon_k \to 0\),

\[(u_\varepsilon^\varepsilon_k(x, t), v_\varepsilon^\varepsilon_k(x, t)) \to (u(x, t), v(x, t)), \quad \text{a.e.}\]

Moreover, \((u(x, t), v(x, t))\) is a weak solution of (6.10) satisfying

\[
0 \leq v(x, t) \leq 1, \quad C_1(1 + (\mu - 1)v(x, t)) \leq u(x, t) \leq C_2(1 + (\mu - 1)v(x, t)),
\]

\[
\eta(u, v)_t + q(u, v)_x + \nabla \eta(u, v) \frac{v - V_\ast(u)}{\delta} \leq 0,
\]

for any \(C^2\) convex entropy pair \((\eta, q)\).

\section{7. Zero Relaxation Limit for the Elastic Model}

We consider the limit of the solutions \((u, v)\) of (6.1) in Theorem 6.1 as the relaxation time \(\delta \to 0\). To indicate the dependence of \((u, v)\) on \(\delta\), we write \((u, v)\) of Theorem 6.1 as \((u_\delta, v_\delta)\).

\textbf{Theorem 7.1.} The solutions \((u_\delta, v_\delta)(x, t)\) of (6.1) with initial data satisfying (6.3) converge to bounded measurable functions \((u, v)(x, t)\) a.e. in \(t > 0\) as \(\delta \to 0\). Moreover, \(u = u(x, t)\) is an admissible weak solution of the Cauchy problem of the equilibrium equation:

\[
\begin{cases}
\frac{\partial u}{\partial t} + (\mu f(u))_x = 0, \\
u(x, 0) = u_0(x),
\end{cases}
\]

and \(v(x, t)\) equals the equilibrium value \((1 - \mu)f(u(x, t))\) for any \(t > 0\).

\textit{Proof:} For convergence and admissibility, we need to estimate the entropy inequality for (7.1) based on the entropy condition (6.6):

\[
\eta(u_\delta, v_\delta)_t + q(u_\delta, v_\delta)_x + \eta_v(u_\delta, v_\delta) \frac{v_\delta - V_\ast(u_\delta)}{\delta} \leq 0.
\]
We first claim that, given any entropy pair \((\eta, q)\) for (6.1) with \(\eta_v(u, v)\) vanishing on the equilibrium curve \(v = V_*(u) \equiv (1 - \mu)f(u)\), the pair

\[
\begin{cases}
\eta_*(u) = \eta(u, (1 - \mu)f(u)), \\
q_*(u) = q(u, (1 - \mu)f(u)),
\end{cases}
\]

forms an entropy pair for (7.1), that is,

\[q'_*(u) = \mu\eta'_*(u)f'(u).\]

Conversely, given any entropy pair \((\eta_*(u), q_*(u))\) for (7.1), there exists an entropy pair \((\eta(u, v), q(u, v))\) for (6.1) such that \(\eta_v(u, (1 - \mu)f(u)) \equiv 0\) and (7.3) hold. The first half of the claim follows from the compatibility condition (3.2) for \((\eta, q)\) and is valid for general relaxation models. The condition that \(\eta_v\) vanishes on the equilibrium curve \(v = V_*(u)\) is needed, of course. To verify the second half of the claim, we notice from the general expression (3.5) for \((\eta, q)\) that, for any given function \(\eta_*(u)\), we need only to find a function \(H\) such that

\[\int^u H(\mu f(\xi))d\xi = \eta_*(u).\]

Differentiate the above equality, and set \(w = \mu f(u)\) to obtain

\[H(w) = \eta'_*(f^{-1}\left(\frac{w}{\mu}\right)).\]

Next, note from (6.7) that

\[
\eta_*(u_\delta)_t + q_*(u_\delta)_x
= \eta(u_\delta, (1 - \mu)f(u_\delta))_t + q(u_\delta, (1 - \mu)f(u_\delta))_x
= \eta(u_\delta, v_\delta)_t + q(u_\delta, v_\delta)_x + \Delta_\delta,
\]

where

\[
\|\Delta_\delta\|_{H^{-1}_r(\Omega)}
\leq C \int^T_0 \int_\Omega \left((\eta(u_\delta, v_\delta) - \eta(u_\delta, (1 - \mu)f(u_\delta)))^2 + (q(u_\delta, v_\delta) - q(u_\delta, (1 - \mu)f(u_\delta)))^2 \right)dxdt
\leq C \int^T_0 \int_\Omega (v_\delta - (1 - \mu)f(u_\delta))^2 dxdt
\leq C\delta \to 0, \quad \text{as } \delta \to 0.\]

Thus the convergence of \(u_\delta\) to \(u\) follows from the theory of compensated compactness as in the proof of Theorem 6.1. The admissibility of \(u\) follows from the above estimate and (6.6). Finally, the convergence of \(v_\delta(x, t), t > 0\), to its equilibrium value \((1 - \mu)f(u(x, t))\) follows from (6.9) and the convergence of \(u_\delta\) to \(u\):

\[
v_\delta(x, t) = e^{-\frac{t}{\delta}}v_0(x, t) + \frac{1 - \mu}{\delta} \int^t_0 e^{-\frac{t - \tau}{\delta}} f(u_\delta(x, \tau))d\tau.
\]
This completes the proof of the theorem.

We remark from (7.4) that the convergence of $v_\delta(x, t)$ to $v(x, t)$ is singular as $t \to 0$. In other words, an initial layer develops as δ becomes small. This is expected as we do not assume the initial data $(u_0(x), v_0(x))$ to be in the equilibrium.

8. Zero Relaxation and Dissipation Limit for the Phase Transition Model

Consider the viscous phase transition model (6.11):

$$
\begin{align*}
&u_t + \left(\frac{1 + (\mu - 1)v}{u} \right)_x^2 = \varepsilon u_{xx}, \\
v_t = &\frac{V_*(u) - v}{\delta} + \varepsilon v_{xx}, \\
(u, v)(x, 0) = (u_0^\varepsilon(x), v_0^\varepsilon(x)),
\end{align*}
$$

where

$$V_*(u) = \begin{cases}
0, & 0 < u < 1, \\
\frac{u-1}{\mu-1}, & 1 < u < \mu, \\
1, & u > \mu.
\end{cases}$$

We wish to show that the solution $(u, v)(x, t) \equiv (u_\varepsilon^\varepsilon, v_\varepsilon^\varepsilon)(x, t)$ converges to that of the inviscid equilibrium equations

$$
\begin{align*}
&u_t + \left(\frac{1 + (\mu - 1)V_*(u)}{u} \right)_x = 0, \\
u(x, 0) = u_0(x),
\end{align*}
$$

as the relaxation time δ and the viscosity ε tend to zero. Moreover, for stability, we require δ to tend to zero faster than ε. We assume that the initial data are bounded:

$$
\begin{align*}
&\|u_0(x) - \bar{u}, v_0(x) - \bar{v}\|_{L^2} \leq M_0, \\
&0 \leq v_0(x) \leq 1, \\
&C_1(1 + (\mu - 1)v_0(x)) \leq u_0(x) \leq C_2(1 + (\mu - 1)v_0(x)),
\end{align*}
$$

for some equilibrium state (\bar{u}, \bar{v}) and positive constants M_0, C_1, and C_2.

Lemma 8.1. The solution (u, v) of (8.1) satisfies

$$
\begin{align*}
0 \leq v(x, t) \leq 1, \\
C_1(1 + (\mu - 1)v(x, t)) \leq u(x, t) \leq C_2(1 + (\mu - 1)v(x, t)),
\end{align*}
$$

$$
\int_0^T \int_{-\infty}^\infty (V_*(u) - v)^2 \leq \delta M,
$$
\((8.6) \quad \sqrt{\delta \varepsilon} \int_0^T \int_{-N}^N (u_x^2 + v_x^2 + u_t^2) \, dx \, dt \leq M, \)

for some \(M \) depending on \(T \) and \(N \) but not on \(\varepsilon \) and \(\delta \).

Proof: The estimates (8.4) and (8.5) follow from (6.13), (6.14), and (3.13). In fact, the entropy inequality, by multiplying (8.1) by \(\nabla \eta_* \) with

\((8.7) \quad \eta_* \equiv \eta_*(u, v) - \eta_*(\bar{u}, \bar{v}) - \nabla \eta_*(\bar{u}, \bar{v}) \left(\frac{u - \bar{u}}{v - \bar{v}} \right), \)

and then integrating, yields (8.5) and

\((8.8) \quad \varepsilon \int_0^T \int_{-\infty}^\infty \left(u_x + \frac{(\mu - 1)u}{1 + (\mu - 1)v} v_x \right)^2 \, dx \, dt \leq M. \)

Because of the degeneracy of (8.1), \(\nabla^2 \eta_* \) is not strictly convex and, therefore, (8.8) does not yield effective estimate for \(u_x \) and \(v_x \). To obtain (8.6), we multiply the second equation of (8.1) by \(2\sqrt{\delta} \varphi^2 \), where \(\varphi \) is a smooth function with

\((8.9) \quad \varphi(x) \equiv \begin{cases} 1, & x \in [-N, N], \\ 0, & x \not\in [-N - \beta, N + \beta], \beta > 0, \end{cases} \)

to get

\[\sqrt{\delta} (\varphi^2 v_x)_t \leq 2\varphi^2 v \frac{V_*(u) - v}{\sqrt{\delta}} + 2\sqrt{\delta} \varepsilon (\varphi^2 vv_x)_x - \sqrt{\delta} \varepsilon \varphi^2 v_x^2 + C\sqrt{\delta} \varepsilon \varphi^2 v_x^2. \]

Thus the boundedness of \((u, v), (8.4), (8.5) \), and the above equality yield

\((8.10) \quad \sqrt{\delta \varepsilon} \int_0^T \int_{-N}^N v_x^2 \, dx \, dt \leq M \left(1 + \int_0^T \int_{-\infty}^\infty \frac{(V_*(u) - v)^2}{\delta} \, dx \, dt \right) \leq M. \)

From (8.10) and (8.8) we have

\((8.11) \quad \sqrt{\delta \varepsilon} \int_0^T \int_{-N}^N u_x^2 \, dt \, dt \leq M. \)

Similarly, multiplying the first equation of (8.1) by \(\varphi^2 u_{xx} \) and integrating, we obtain

\((8.12) \quad \varepsilon \int_0^T \int_{-\infty}^\infty u_{xx}^2 \varphi^2 \, dx \, dt + \int_{-\infty}^\infty \varphi(x, T)^2 \, dx \)

\[\leq C \left[\int_{-\infty}^\infty u_{xx}^2 \varphi^2 \, dx + \frac{1}{\varepsilon} \int_0^T \int_{-\infty}^\infty (u_x^2 + v_x^2) \varphi^2 \, dx \, dt + \varepsilon \int_0^T \int_{-\infty}^\infty u_t^2 \varphi^2 \, dx \, dt \right]. \]
We have from the first equation of (8.1)

\[(8.13) \quad u_t^2 \leq 2 \left(\varepsilon^2 u_{xx}^2 + \left[2 \left(\frac{1 + (\mu - 1)\nu}{u} \right) \left(\frac{1 + (\mu - 1)\nu}{u} \right)_x \right]^2 \right). \]

Finally we have from (8.10)–(8.13) that

\[\sqrt{\delta \varepsilon^3} \int_0^T \int_{-N}^N u_{xx}^2 dxdt + \sqrt{\delta \varepsilon} \int_0^T \int_{-N}^N u_t^2 dxdt \leq M. \]

This completes the proof of Lemma 8.1.

To relate the solutions \((u, v) \equiv (u^\delta, v^\delta)\) of (8.1) to those of (8.2), we note from the second equation of (8.1) that

\[(8.14) \quad v(x, t) = e^{-\frac{1}{\delta}} \int_{-\infty}^{\infty} G^\delta(x - y, t)v_0(y)dy + \frac{1}{\delta} \int_{-\infty}^{\infty} \int_0^t G^\delta(x - y, t - \tau)e^{-\frac{1 - \tau}{\delta}} V_\tau(u(y, \tau))dyd\tau, \]

where

\[G^\delta(x, t) = \frac{1}{\sqrt{4\pi\delta t}} e^{-\frac{x^2}{4\delta t}}. \]

Substituting this into the first equation of (8.11), we have, for some \(0 \leq \theta = \theta(x, t) \leq 1, \)

\[(8.15) \quad \left\{ \begin{array}{l}
 u_t + f(u, V_\ast(u))_x \\
 = \varepsilon u_{xx} - \left(f_v(u, V_\ast(u)) + \theta(v - V_\ast(u)) \cdot \left(e^{-t/\delta} \int_{-\infty}^{\infty} G^\delta(x - y, t)v_0(y)dy \right. \\
 \left. + \int_{-\infty}^{\infty} \int_0^t \frac{1}{\delta} e^{-\frac{1 - \tau}{\delta}} G^\delta(x - y, t - \tau)(V_\tau(u(y, \tau)) - V_\tau(u(x, t)))dyd\tau \right) \right)_x,
\end{array} \]

with

\[f(u, v) = \left(\frac{1 + (\mu - 1)\nu}{u} \right)^2. \]

This measures the deviation from (8.2) for the solutions of (8.1). We also need to study entropy pairs \((E, F)\) with \(F' = E' f'\) for (8.2). Multiply (8.15) by \(E'(u)\) to yield

\[(8.16) \quad E(u)_t + F(u)_x = \sum_{i=1}^{6} I_i, \]
where

\[
\begin{align*}
I_1 &\equiv \varepsilon E(u)_{xx}, \\
I_2 &\equiv -\varepsilon E''(u)u_x^2, \\
I_3 &\equiv \left(E'(u)f_v(u, V_*(u) + \theta(v - V_*(u))) e^{-\frac{1}{\delta}(y - \frac{t-x}{\delta})} \int_{-\infty}^{\infty} G^\varepsilon(x - y, t) v_0(y) dy \right)_x, \\
I_4 &\equiv E''(u)f_v(u, V_*(u) + \theta(v - V_*(u))) u_x e^{-\frac{1}{\delta}(y - \frac{t-x}{\delta})} \int_{-\infty}^{\infty} G^\varepsilon(x - y, t) v_0(y) dy, \\
I_5 &\equiv -\left(E'(u)f_v(u, V_*(u) + \theta(v - V_*(u))) \right) \\
&\quad \times \int_{-\infty}^{\infty} \int_0^t \frac{1}{\delta} e^{-\frac{1}{\delta}(y - \frac{t-x}{\delta})} G^\varepsilon(x - y, t - \tau) \left(V_*(u(y, \tau)) - V_*(u(x, t)) \right) d\tau dy \right)_x, \\
I_6 &\equiv E''(u)f_v(u, V_*(u) + \theta(v - V_*(u))) u_x \\
&\quad \times \int_{-\infty}^{\infty} \int_0^t \frac{1}{\delta} \left(e^{-\frac{1}{\delta}(y - \frac{t-x}{\delta})} G^\varepsilon(x - y, t - \tau) \left(V_*(u(y, \tau)) - V_*(u(x, t)) \right) \right) d\tau dy.
\end{align*}
\]

Lemma 8.2. For some \(M > 0 \) independent of \(\varepsilon \) and \(\delta \), we have

\[
\sqrt{\varepsilon} \left(\|u_x\|_{L^2_{loc}} + \|v_x\|_{L^2_{loc}} + \|u_t\|_{L^2_{loc}} \right) \leq M,
\]

for \(\frac{\delta}{\varepsilon} \ll 1 \).

Proof. Multiply (8.15) by \(\varphi(x) \), use (8.9), and integrate to yield

(8.17)

\[
\varepsilon \int_0^\infty \int_{-\infty}^\infty u_x^2 \varphi^2 \, dx \, dt
\leq C \left[\int_{-\infty}^{\infty} (u_0 - \bar{u})^2 \varphi^2 \, dx + \int_0^\infty \int_{-\infty}^\infty |\varphi \varphi_x| \int_{-\infty}^u \xi f' \xi \, d\xi \, dx \, dt \right.
\]

\[
+ \varepsilon \int_0^\infty \int_{-\infty}^\infty |\varphi u \varphi u_x| \, dx \, dt + \int_0^\infty \int_{-\infty}^\infty |\varphi \varphi_x| e^{-\frac{1}{\delta} \frac{x - y}{\delta}} \, dx \, dt \int_{-\infty}^{\infty} G^\varepsilon(x - y, t) v_0(y) \, dy
\]

\[
+ \int_0^\infty \int_{-\infty}^\infty \varphi^2 |u_x| e^{-\frac{1}{\delta} \frac{x - y}{\delta}} \, dx \, dt \int_{-\infty}^{\infty} G^\varepsilon(x - y, t) v_0(y) \, dy
\]

\[
+ \int_0^\infty \int_{-\infty}^\infty |\varphi \varphi_x| \, dx \, dt \int_{-\infty}^\infty \int_0^t \frac{1}{\delta} \left(e^{-\frac{1}{\delta} \frac{t - x}{\delta}} G^\varepsilon(x - y, t - \tau) \left(V_*(u(y, \tau)) - V_*(u(x, t)) \right) \right) d\tau dy
\]

\[
+ \int_0^\infty \int_{-\infty}^\infty \varphi^2 u_x^2 \, dx \, dt \int_{-\infty}^\infty \int_0^t \frac{1}{\delta} \left(e^{-\frac{1}{\delta} \frac{t - x}{\delta}} G^\varepsilon(x - y, t - \tau) \left(V_*(u(y, \tau)) - V_*(u(x, t)) \right) \right) d\tau dy \right].
\]

Noting that \(\varphi(x) \) has compact support (8.9), we have

(8.18) \(\varepsilon \int_0^\infty \int_{-\infty}^\infty |\varphi \varphi_x u u_x| \, dx \, dt \leq \frac{\varepsilon}{L} \int_0^\infty \int_{-\infty}^\infty u_x^2 \varphi^2 \, dx \, dt + C L \varepsilon \),

and

(8.19) \(\varepsilon \int_0^\infty \int_{-\infty}^\infty \varphi^2 |u_x| e^{-\frac{1}{\delta} \frac{x - y}{\delta}} \, dx \, dt \int_{-\infty}^{\infty} G(x - y, t) v_0(y) \, dy \leq \frac{\varepsilon}{L} \int_0^\infty \int_{-\infty}^\infty |u_x \varphi|^2 \, dx \, dt + C L \frac{\delta}{\varepsilon} \),
for sufficiently large \(L > 0 \).

From Lemma 8.1, we obtain

\[
(8.20) \int_0^\infty \int_{-\infty}^\infty |\varphi \varphi_x| dx dt \int_0^\infty \int_0^t \frac{1}{\delta} e^{-\frac{t-x}{\delta}} G^\varepsilon(x - y, t - \tau) \left| V_\varepsilon(u(y, \tau)) - V_\varepsilon(u(x, t)) \right| dy d\tau \\
\leq \frac{\varepsilon}{L} \int_0^\infty \int_{-\infty}^\infty \varphi^2 u_x^2 dx dt + CL \delta^{\frac{1}{4}},
\]

and

\[
(8.21) \int_0^\infty \int_{-\infty}^\infty \varphi^2 |u_x| dx dt \int_0^\infty \int_0^t \frac{1}{\delta} e^{-\frac{t-x}{\delta}} G^\varepsilon(x - y, t - \tau) \left| V_\varepsilon(u(y, \tau)) - V_\varepsilon(u(x, t)) \right| dy d\tau \\
\leq \frac{\varepsilon}{L} \int_0^\infty \int_{-\infty}^\infty \varphi^2 u_x^2 dx dt + CL,
\]

for sufficiently large \(L > 0 \).

From (8.17)–(8.21), we have

\[
\varepsilon \int_0^\infty \int_{-\infty}^\infty (u_x \varphi)^2 dx dt \leq \frac{4C}{L} \int_0^\infty \int_{-\infty}^\infty (u_x \varphi)^2 dx dt + CL.
\]

Set \(L = 8C \). We then obtain

\[
(8.22) \quad \varepsilon \int_0^T \int_{-N}^N u_x^2 dx dt \leq M.
\]

This fact and (8.8) yield

\[
(8.23) \quad \varepsilon \int_0^T \int_{-N}^N v_x^2 dx dt \leq M.
\]

By a similar process in deriving (8.14), we have from (8.22) and (8.23) that

\[
\varepsilon^3 \int_0^T \int_{-N}^N u_{xx}^2 dx dt + \varepsilon \int_0^T \int_{-N}^N u_t^2 dx dt \leq M.
\]

This completes the proof of Lemma 8.2.

Lemma 8.3. For \(\delta/\varepsilon \ll 1 \), we have, for \(C^2 \) entropy pairs \((E(u), F(u))\) with \(F' = E' f' \) and solutions \((u, v)\) of (8.1),

\[
E(u)_t + F(u)_x \quad \text{compact in } H^{-1}_{loc}.
\]

Proof. Since \((u, v)\) is bounded from (8.4), we have

\[
E(u)_t + F(u)_x \quad \text{bounded in } W^{-1,\infty}_{loc}.
\]
Thus by Theorem 4.3, it suffices from (8.16) to prove

\[\sum_{i=1}^{6} I_i \] compact in \(W^{-1,p}_{loc} \), \(1 < p < 2 \).

From Lemmas 8.1 and 8.2, we easily deduce

\[I_1 + I_2 \] compact in \(W^{-1,p}_{loc} \), \(1 < p < 2 \),

by direct calculations. Moreover,

\[
\| I_3 \|_{H^{-1}_{loc}} = \sup_{\| \phi \|_{H^{-1}_{loc}} \leq 1} \left| \int \int I_3 \phi \, dx \, dt \right| \\
\leq C \sup_{\| \phi \|_{H^{-1}_{loc}} \leq 1} \left| \int \int e^{-\frac{t}{\delta}} |\phi_x| \, dx \, dt \right| \\
\leq C \left[\int_{-N}^{N} \int_{0}^{T} e^{-\frac{2t}{\delta}} \, dx \, dt \right]^{1/2} \\
\leq C \sqrt{\delta} \to 0, \quad \text{as } \delta \to 0 ,
\]

and, therefore,

\[I_3 \] compact in \(H^{-1}_{loc} \).

Similarly we have

\[
\int_{0}^{T} \int_{-N}^{N} |I_4| \, dx \, dt \\
\leq C \int_{-N}^{N} dx \int_{0}^{T} |u_x| e^{-\frac{t}{\delta}} \left| \int_{-\infty}^{\infty} G^\epsilon(x-y, t)v_0(y) \, dy \right| \, dt \\
\leq \int_{0}^{T} \int_{-N}^{N} |u_x| e^{-\frac{t}{\delta}} \, dx \, dt \\
\leq C \left(\int_{0}^{T} \int_{-N}^{N} u_x^2 \, dx \, dt \right)^{1/2} \left(\int_{0}^{T} \int_{-N}^{N} e^{-\frac{2t}{\delta}} \, dx \, dt \right)^{1/2} \\
\leq C \left(\frac{\delta}{\epsilon} \right)^{1/2} , \quad \text{for any } N > 0 ,
\]

whence

\[I_4 \] compact in \(W^{-1,p}_{loc} \), \(1 < p < 2 \).

(8.27)
Finally, we have

\[
||I_5||_{H_{loc}^{-1}}^1 \\
\leq C \sup_{||\phi||_{H_{0}^{-1}} \leq 1} \int_0^\infty \int_{-\infty}^\infty |\phi_x| \left| \int_{-\infty}^\infty \int_0^t \frac{1}{\delta} e^{-\frac{t-x}{\delta}} G^\varepsilon(x-y,t-\tau)(V_*(u(y,\tau)) - V_*(u(x,t)))d\tau dy \right| \, dx dt \\
\leq C \left(\int_0^T \int_{-N}^N \left(\int_{-\infty}^\infty \frac{1}{\delta} e^{-\frac{t-x}{\delta}} G^\varepsilon(x-y,t-\tau)(V_*(u(y,\tau)) - V_*(u(x,t)))d\tau dy \right)^2 \, dx dt \right)^{\frac{1}{2}} \\
\leq C \left(\varepsilon \delta \|u_x\|_{L_{loc}^2}^2 + \delta^2 \|u_t\|_{L_{loc}^2}^2 \right)^{\frac{1}{2}} \\
\leq C \sqrt{\delta} \to 0, \quad \text{as } \delta \to 0,
\]

and

\[
\int_0^T \int_{-N}^N |I_6| \, dx dt \\
\leq C \int_0^T \int_{-N}^N |u_x| \int_0^t \int_{-\infty}^\infty \frac{1}{\delta} e^{-\frac{t-x}{\delta}} G^\varepsilon(x-y,t-\tau)|V_*(u(y,\tau)) - V_*(u(x,t))| \, dy d\tau \, dx dt \\
\leq C \left(\int_0^T \int_{-N}^N u_x^2 \, dx dt \right)^{\frac{1}{2}} \\
\times \left(\int_0^T \int_{-N}^N \left(\int_0^t \int_{-\infty}^\infty \frac{1}{\delta} e^{-\frac{t-x}{\delta}} G^\varepsilon(x-y,t-\tau)|V_*(u(y,\tau)) - V_*(u(x,t))| \, dy d\tau \right)^2 \, dx dt \right)^{\frac{1}{2}} \\
\leq C \varepsilon^{-\frac{1}{2}} \left(\varepsilon \delta \|u_x\|_{L_{loc}^2}^2 + \delta^2 \|u_t\|_{L_{loc}^2}^2 \right)^{\frac{1}{2}} \\
\leq C \sqrt{\frac{\delta}{\varepsilon}} \leq C.
\]

Thus we have

\[(8.28) \quad I_5, \quad I_6 \quad \text{compact in } W_{loc}^{-1,p}, \ 1 < p < 2.\]

The lemma follows from (8.24)–(8.28).

Theorem 8.1. The solutions \((u, v) = (u_\delta^\varepsilon, v_\delta^\varepsilon)\) of (8.1) in Theorem 6.2 converge strongly to an \(L^\infty\) function \((\bar{u}, \bar{v})\) a.e. as \(\varepsilon\) and \(\delta/\varepsilon\) tend to zero. Moreover, \(\bar{u}\) is the unique admissible weak solution of (8.2), and

\[(8.29) \quad \bar{v}(x, t) = V_*(\bar{u}(x, t)), \quad \text{a.e. for } t > 0.\]

With Lemmas 8.1 and 8.2, the proof of Theorem 8.1 follows from the same argument as in the proof of Theorem 7.1. As with the elastic model, \(v(x, t)\) also has an initial layer at \(t = 0\) and (8.29) does not hold at \(t = 0\).
Acknowledgments. This research was initiated when the authors were at the Courant Institute, and completed when they visited IMA at Minnesota and MSRI at Berkeley. Gui-Qiang Chen’s research was supported in part by ONR grant N00014-91-J-1384, by DOE grant under Contract W-31-109-Eng-38, and by an Alfred P. Sloan Foundation Fellowship. Tai-Ping Liu’s research was supported in part by NSF grant DMS 90-0226 and by Army grant DAAL03-87-K-0063.
References

11 Greenberg, J., Hsiao, L.: The Riemann problem for system \(u_t + \sigma_x = 0 \) and \((\sigma - f(u))_t + (\sigma - \mu f(u)) = 0 \). Arch. Rat. Mech. Anal. 82, 87–108 (1983).
<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>779</td>
<td>Jack Carr and Robert Pego</td>
<td>Self-similarity in a coarsening model in one dimension</td>
</tr>
<tr>
<td>780</td>
<td>J.M. Greenberg</td>
<td>The shock generation problem for a discrete gas with short range repulsive forces</td>
</tr>
<tr>
<td>781</td>
<td>George R. Sell and Mario Taboada</td>
<td>Local dissipativity and attractors for the Kuramoto–Sivashinsky equation in thin 2D domains</td>
</tr>
<tr>
<td>782</td>
<td>T. Subba Rao</td>
<td>Analysis of nonlinear time series (and chaos) by bispectral methods</td>
</tr>
<tr>
<td>783</td>
<td>Nicholas Baumann, Daniel D. Joseph, Paul Molhr and Yuriko Renardy</td>
<td>Vortex rings of one fluid in another free fall</td>
</tr>
<tr>
<td>784</td>
<td>Oscar Bruno, Avner Friedman and Fernando Reitich</td>
<td>Asymptotic behavior for a coalescence problem</td>
</tr>
<tr>
<td>785</td>
<td>Johannes C.C. Nitsche</td>
<td>Periodic surfaces which are extremal for energy functionals containing curvature functions</td>
</tr>
<tr>
<td>786</td>
<td>F. Abergel and J.L. Bona</td>
<td>A mathematical theory for viscous, free-surface flows over a perturbed plane</td>
</tr>
<tr>
<td>787</td>
<td>Gunduz Caginalp and Xinfu Chen</td>
<td>Phase field equations in the singular limit of sharp interface problems</td>
</tr>
<tr>
<td>788</td>
<td>Robert P. Gilbert and Yongzhi Xu</td>
<td>An inverse problem for harmonic acoustics in stratified oceans</td>
</tr>
<tr>
<td>789</td>
<td>Roger Fosdick and Eric Volkman</td>
<td>Normality and convexity of the yield surface in nonlinear plasticity</td>
</tr>
<tr>
<td>790</td>
<td>H.S. Brown, I.G. Kevrekidis and M.S. Jolly</td>
<td>A minimal model for spatio–temporal patterns in thin film flow</td>
</tr>
<tr>
<td>791</td>
<td>Chao–Nien Chen</td>
<td>On the uniqueness of solutions of some second order differential equations</td>
</tr>
<tr>
<td>792</td>
<td>Xinfu Chen and Avner Friedman</td>
<td>The thermistor problem for conductivity which vanishes at large temperature</td>
</tr>
<tr>
<td>793</td>
<td>Xinfu Chen and Avner Friedman</td>
<td>The thermistor problem with one-zero conductivity</td>
</tr>
<tr>
<td>794</td>
<td>E.G. Kalnins and W. Miller, Jr.</td>
<td>Separation of variables for the Dirac equation in Kerr Newman space time</td>
</tr>
<tr>
<td>795</td>
<td>E. Knobloch, M.R.E. Proctor and N.O. Weiss</td>
<td>Finite-dimensional description of doubly diffusive convection</td>
</tr>
<tr>
<td>796</td>
<td>V.V. Pukhnachov</td>
<td>Mathematical model of natural convection under low gravity</td>
</tr>
<tr>
<td>797</td>
<td>M.C. Knaap</td>
<td>Existence and non-existence for quasi-linear elliptic equations with the p-laplacian involving critical Sobolev exponents</td>
</tr>
<tr>
<td>798</td>
<td>Stathis Filippas and Wenxiong Liu</td>
<td>On the blowup of multidimensional semilinear heat equations</td>
</tr>
<tr>
<td>799</td>
<td>A.M. Meirmanov</td>
<td>The Stefan problem with surface tension in the three dimensional case with spherical symmetry: non-existence of the classical solution</td>
</tr>
<tr>
<td>800</td>
<td>Bo Guan and Joel Spruck</td>
<td>Interior gradient estimates for solutions of prescribed curvature equations of parabolic type</td>
</tr>
<tr>
<td>801</td>
<td>Hi Jun Choe</td>
<td>Regularity for solutions of nonlinear variational inequalities with gradient constraints</td>
</tr>
<tr>
<td>802</td>
<td>Peter Shi and Yongzhi Xu</td>
<td>Quasistatic linear thermoelasticity on the unit disk</td>
</tr>
<tr>
<td>803</td>
<td>Satyanad Kichenassamy and Peter J. Olver</td>
<td>Existence and non-existence of solitary wave solutions to higher order model evolution equations</td>
</tr>
<tr>
<td>804</td>
<td>Dening Li</td>
<td>Regularity of solutions for a two-phase degenerate Stefan Problem</td>
</tr>
<tr>
<td>805</td>
<td>Marek Fila, Bernhard Kawohl and Howard A. Levine</td>
<td>Quenching for quasilinear equations</td>
</tr>
<tr>
<td>806</td>
<td>Yoshikazu Giga, Shun'ichi Goto and Hitoshi Ishii</td>
<td>Global existence of weak solutions for interface equations coupled with diffusion equations</td>
</tr>
<tr>
<td>807</td>
<td>Mark J. Friedman and Eusebius J. Doedel</td>
<td>Computational methods for global analysis of homoclinic and heteroclinic orbits: a case study</td>
</tr>
<tr>
<td>808</td>
<td>Mark J. Friedman</td>
<td>Numerical analysis and accurate computation of heteroclinic orbits in the case of center manifolds</td>
</tr>
<tr>
<td>809</td>
<td>Peter W. Bates and Songmu Zheng</td>
<td>Inertial manifolds and inertial sets for the phase-field equations</td>
</tr>
<tr>
<td>810</td>
<td>J. López Gómez, V. Márquez and N. Wolanski</td>
<td>Global behavior of positive solutions to a semilinear equation with a nonlinear flux condition</td>
</tr>
<tr>
<td>811</td>
<td>Xinfu Chen and Fahuai Yi</td>
<td>Regularity of the free boundary of a continuous casting problem</td>
</tr>
<tr>
<td>812</td>
<td>Eden, A., Foias, C., Nicolenko, B. and Temam, R.</td>
<td>Inertial sets for dissipative evolution equations Part I: Construction and applications</td>
</tr>
<tr>
<td>813</td>
<td>Jose–Francisco Rodrigues and Boris Zaltzman</td>
<td>On classical solutions of the two-phase steady-state Stefan problem in strips</td>
</tr>
<tr>
<td>814</td>
<td>Viorel Barbu and Srdjan Stojanovic</td>
<td>Controlling the free boundary of elliptic variational inequalities on a variable domain</td>
</tr>
<tr>
<td>815</td>
<td>Viorel Barbu and Srdjan Stojanovic</td>
<td>A variational approach to a free boundary problem arising in electrophotography</td>
</tr>
<tr>
<td>816</td>
<td>B.H. Gilding and R. Kersner</td>
<td>Diffusion-convection-reaction, free boundaries, and an integral equation</td>
</tr>
<tr>
<td>817</td>
<td>Shoshana Kamin, Lambertus A. Peletier and Juan Luis Vazquez</td>
<td>On the Barenblatt equation of elasto-plastic filtration</td>
</tr>
<tr>
<td>818</td>
<td>Avner Friedman and Bei Hu</td>
<td>The Stefan problem with kinetic condition at the free boundary</td>
</tr>
<tr>
<td>819</td>
<td>M.A. Grinfeld</td>
<td>The stress driven instabilities in crystals: mathematical models and physical manifestations</td>
</tr>
<tr>
<td>820</td>
<td>Bei Hu and Lihe Wang</td>
<td>A free boundary problem arising in electrophotography: solutions with connected toner region</td>
</tr>
<tr>
<td>821</td>
<td>Yongzhi Xu, T. Craig Poling, and Trent Brundage</td>
<td>Direct and inverse scattering of time harmonic</td>
</tr>
</tbody>
</table>
acoustic waves in an inhomogeneous shallow ocean

Steven J. Altschuler, Singularities of the curve shrinking flow for space curves

Steven J. Altschuler and Matthew A. Grayson, Shortening space curves and flow through singularities

Tong Li, On the Riemann problem of a combustion algebras

L.A. Peletier & W.C. Troy, Self-similar solutions for diffusion in semiconductors

Minkyu Kwak, Finite dimensional description of convective reaction-diffusion equations

Minkyu Kwak, Finite dimensional inertial forms for the 2D Navier–Stokes equations

Victor A. Galaktionov and Sergey A. Posashkov, On some monotonicity in time properties for a quasilinear parabolic equation with source

Victor A. Galaktionov, Remark on the fast diffusion equation in a ball

Hi Jun Choe and Lihe Wang, A regularity theory for degenerate vector valued variational inequalities

Vladimir I. Oliker and Nina N. Ural'tseva, Evolution of nonparametric surfaces with speed depending on curvature, II. The mean curvature case.

S. Kamin and W. Liu, Large time behavior of a nonlinear diffusion equation with a source

Shoshana Kamin and Juan Luis Vazquez, Singular solutions of some nonlinear parabolic equations

Bernhard Kawohl and Robert Kersner, On degenerate diffusion with very strong absorption

Avner Friedman and Fernando Reitich, Parameter identification in reaction-diffusion models

E.G. Kalpins, H.L. Manocha and Willard Miller, Jr., Models of q-algebra representations I. Tensor products of special unitary and oscillator algebras

Robert J. Sacker and George R. Sell, Dichotomies for linear evolutionary equations in Banach spaces

Oscar P. Bruno and Fernando Reitich, Numerical solution of diffraction problems: a method of variation of boundaries

Oscar P. Bruno and Fernando Reitich, Solution of a boundary value problem for Helmholtz equation via variation of the boundary into the complex domain

Victor A. Galaktionov and Juan L. Vazquez, Asymptotic behaviour for an equation of superslow diffusion. The Cauchy problem

Josephus Hulshof and Juan Luis Vazquez, The Dipole solution for the porous medium equation in several space dimensions

Shoshana Kamin and Juan Luis Vazquez, The propagation of turbulent bursts

Miguel Escobedo, Juan Luis Vazquez and Enrike Zuazua, Source-type solutions and asymptotic behaviour for a diffusion-convection equation

Marco Biroli and Umberto Mosco, Discontinuous media and Dirichlet forms of diffusion type

Stathis Filippas and Jong-Shenq Guo, Quenching profiles for one-dimensional semilinear heat equations

H. Scott Dumas, A Nekhoroshev-like theory of classical particle channeling in perfect crystals

R. Natalini and A. Tesei, On a class of perturbed conservation laws

Paul K. Newton and Shinya Watanabe, The geometry of nonlinear Schrödinger standing waves

S.S. Thirathan, On the nonsmooth verification technique for the dynamic programming of viscous flow

Mario Taboada and Yuncheng You, Global attractor, inertial manifolds and stabilization of nonlinear damped beam equations

Shigeru Sakaguchi, Critical points of solutions to the obstacle problem in the plane

F. Abergel, D. Hilhorst and F. Issard-Roch, On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution

Erasmus Langer, Numerical simulation of MOS transistors

Haïm Brezis and Shoshana Kamin, Sublinear elliptic equations in \mathbb{R}^n

Johannes C.C. Nitsche, Boundary value problems for variational integrals involving surface curvatures

Chao-Nien Chen, Multiple solutions for a semilinear elliptic equation on \mathbb{R}^N with nonlinear dependence on the gradient

D. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential attractor for the phase field model

Joseph D. Fehribach, Mullins-Sekerka stability analysis for melting-freezing waves in helium-4

Walter Schempp, Quantum holography and neurocomputer architectures

D.V. Anosov, An introduction to Hilbert's 21st problem

Herbert E Huppert and M Grae Worster, Vigorous motions in magma chambers and lava lakes

Robert L. Pego and Michael I. Weinstein A class of eigenvalue problems, with applications to instability of solitary waves

Mahmoud Affouf, Numerical study of a singular system of conservation laws arising in enhanced oil reservoirs

Darin Beigie, Anthony Leonard and Stephen Wiggins, The dynamics associated with the chaotic tangles of two dimensional quasiperiodic vector fields: theory and applications

Gui-Qiang Chen and Tai-Ping Liu, Zero relaxation and dissipation limits for hyperbolic conservation laws

Gui-Qiang Chen and Jian-Guo Liu, Convergence of second-order schemes for isentropic gas dynamics