RECURSIVE SOLUTION FOR DIFFUSE TOMOGRAPHIC SYSTEMS
OF ARBITRARY SIZE

By

S.K. Patch

IMA Preprint Series # 1334
August 1995

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455
RECURSIVE SOLUTION FOR DIFFUSE TOMOGRAPHIC SYSTEMS OF ARBITRARY SIZE

S. K. PATCH*

Abstract. The first presentation of recursive scheme for recovering Markov transition probabilities from boundary-value data generated by two dimensional diffuse tomographic systems was of prohibitively high computational complexity. Matrix factorizations, the Laplace expansion, and the Graßmann-Plücker identities are combined in an inductive argument to present a efficient algorithm for splitting a $n \times n$ system into four $n/2 \times n/2$ subsystems.

1. Introduction
 (a) Description of model
 (b) Forward Problem
 (c) Consistency Conditions
2. Modified Problem
 (a) Matrix Solutions
 (b) Matrix Identities
 (c) Matrix solutions revisited
3. Elimination of parameters
 (a) Hidden-outgoing
 (b) More Matrix Identities
 (c) Incoming-hidden
4. Conclusion

1. Introduction. Applications in optical imaging motivated Grünbaum to study anisotropic random walks on two dimensional lattices of finite size [1], [2]. One possible application is imaging the brains of neonates. (Cranial bleeds are a leading cause of death among premature infants. Repeated CT scans would overexpose the infant’s brain to harmful X-rays; MRI scans are prohibitively expensive for periodic monitoring.) Imaging requires solving the inverse problem. Later work on Grünbaum’s “diffuse tomographic” model resulted in a cumbersome recovery algorithm. In its initial form, the complexity of this recursive algorithm skyrocketed with the number of recursive levels. Naturally, as system size increases the complexity of the recovery scheme presented here grows faster than the number of unknowns. The author is optimistic, however, that

* Institute for Mathematics and its Applications, 514 Vincent Hall, 206 Church St. S.E., Minneapolis, MN 55455. email: patch@ima.umn.edu. The author was supported by a NSF postdoctoral fellowship held at the IMA.
several recursive levels can be carried out in the generality presented here. Use of a priori information is required to make inversion practical for seven or eight recursions, enough to generate an image of 256×256 pixels.

At each recursive level a $n \times n$ system is broken into four $n/2 \times n/2$ subsystems and families of solutions for the subsystems’ data sets are computed. Too many parameters are introduced in all but the lowest level. Most of the work required by this algorithm goes into eliminating the unnecessary parameters. This is done by enforcing range conditions upon the newly-found subsystems’ data. “Hidden-outgoing” transition probabilities representing travel from the middle of the system outward are much more helpful in efficiently eliminating parameters than their “incoming-hidden” counterparts.

1.1. Description of the model. Consider a $n \times n$ array of pixels in the plane. On each outer face there are two devices. One device shoots photons across the outside edge into the neighboring pixel; the other device detects photons as they leave the system. For each of the $4n$ outside edges $4n$ pieces of data are collected. These data are stored as a $4n \times 4n$ transition matrix, Q. Within the system, photons travel either horizontally or vertically. Label the horizontal and vertical axes x_1 and x_2, respectively. A photon traveling parallel to the x_i axis in the positive direction moves with velocity x_i^+. Photons traveling in the opposite direction travel with velocity x_i^-. They do not interact and may be absorbed within a pixel. Photons move according to a Markov process. The probabilities with which a photon moves to a neighboring pixel depend upon its previous, as well as present, location. In this two step formulation the state space consists of locations. The state space may be redefined so that photons move according to a one step Markov process. In the new state space a single state consists of the photon’s location and direction of travel.

There are three different types of these Markov states: incoming, outgoing, and hidden. The probabilities with which photons move from one state to another are referred to as transition probabilities. For example, a photon which travels with velocity
x_i^\dagger into pixel O and travels straight through pixel O does so with some probability, denoted by $x_i^\dagger O x_i^\dagger$. For each pixel O and incident direction the sum of the absorption probability and the four possible transition probabilities must be identically one. The absorption probability is therefore be neglected in the rest of this paper. Each pixel corresponds to 16 transition probabilities. The same photon travels to O’s neighbor in the x_j^\dagger direction with probability $x_i^\dagger O x_j^\dagger$. These probabilities are the nonzero entries of the Markov transition matrix M. M is sparse and may be written as a block matrix with nontrivial subblocks P_{io}, P_{ih}, P_{ho}, and P_{hh}. P_{io}, for example, contains the probabilities with which photons in incoming states move directly to outgoing states. P_{ih} contains the probabilities with which photons in incoming states move to hidden states. P_{ho} and P_{hh} are the transition matrices for photons starting in hidden states traveling to outgoing and hidden states, respectively. P_{io} and P_{hh} are always square matrices.

1.2. Forward Problem. The forward map takes $16n^2$ transition probabilities to the $4n \times 4n$ data matrix Q. The domain of the forward map lies in the unit cube in \mathbb{R}^{16n^2} and is defined by

\begin{equation}
(x_i^\dagger O x_1^\dagger + x_i^\dagger O x_1^-) + (x_i^\dagger O x_2^\dagger + x_i^\dagger O x_2^-) \leq 1 \quad \pm = +, - \quad i = 1, 2
\end{equation}
for each pixel \(O \). Furthermore, none of these transition probabilities is permitted to be zero. \(Q^j_i \) represents the probability that a photon which enters the system at source \(i \) exits the system at detector \(j \). \(Q \) provides no time-of-flight information. Because \(Q \) is a transition matrix acceptable solutions lie in the unit cube in \(\mathbb{R}^{16n^2} \) and satisfy

\[
0 \leq \sum_{\lambda=1}^{4n} Q^\lambda_i \leq 1, \quad i = 1, 2, \ldots, 4n
\]

The forward map is given by the following matrix expression:

\[
Q = P_{io} + P_{ih} \sum_{n=0}^{\infty} P_{hh}^n P_{ho} = P_{io} + P_{ih} (I - P_{hh})^{-1} P_{ho}
\]

1.3. Consistency Conditions. Range conditions appear as rank deficient submatrices of \(Q \). Each of these rank deficient submatrices represents travel from one “side” of the system to the other “side”. Let \(b \) be a (not necessarily straight) barrier of \#\(b \) hidden states separating the “sides”. The Markovian nature of the system can be used to show that the corresponding submatrix is generically of rank \#\(b \) [3]. For the purposes of this paper it is only necessary to consider straight barriers.

Notation: Let \(Q^c_r \) denote the submatrix of \(Q \) taken from rows \(r \) and columns \(c \). Let \(dQ^c_r \) denote the determinant of this submatrix. Furthermore, let \(a - b \) denote \(a, a+1, \ldots, b \) where \(a, b \in \mathbb{N}^+ \) and \(a < b \)

For example, the data matrix for a \(2 \times 2 \) system has many rank deficient submatrices of rank two. See figure 1. The submatrix representing travel from left to right, \(Q_{1,2,3,4}^{5,6,7,8} \), is generically rank two, as is \(Q_{5,6,7,8}^{1,2,3,4} \). Similarly, the submatrices \(Q_{3,4,5,6}^{1,2,7,8} \) and \(Q_{1,2,7,8}^{3,4,5,6} \) are generically of rank two as well.

2. The Modified Problem. Although the final goal is to recover the microscopic transition probabilities for each pixel from BV data, the purpose of this section is more modest. The original \(n \times n \) system is broken into four \(n/2 \times n/2 \) subsystems; \(2n^2 \) parameter families of the subsystems’ data sets is computed from the data set for the
$n \times n$ array. (Here $n = 2^k$, $k \in \mathbb{N}$.) Once the data sets for each of the $n/2 \times n/2$ subsystems are found, the recursion can be implemented in parallel until $k = 1$.

2.1. Matrix Solutions. A “trick” is to solve the inverse problem for a 2×2 system; a recursive scheme takes advantage of the same “trick” many times over [4]. In the standard formulation of the forward problem Pio is $4n \times 4n$; Pih is $4n \times 4n(n-1)$; Phh is $4n(n-1) \times 4n(n-1)$; and Pho is $4n(n-1) \times 4n$. The “trick” requires invertibility of Pho, a non-square matrix for $n > 2$. By considering only the $4n$ hidden states dividing the $n \times n$ system into four $n/2 \times n/2$ subsystems, the “modified” transition matrices are square. In fact, they have the same block structure as their 2×2 counterparts. See figure 2. The only difference is that each entry of a 2×2 transition matrix is now a $n/2 \times n/2$ block of the modified transition matrices for the $n \times n$ system. Note that the entries of these modified transition matrices are the data for the $n/2 \times n/2$ subsystems.

and define $A = Pho^{-1}$. Then 1.3 expresses the data generated by the $n \times n$ system in terms the $n/2 \times n/2$ subsystems’ data. Note that the only “bad” term in 1.3 is $(I - Phh)^{-1}$ and define $A \equiv Pho^{-1}$. The governing equations may be written as a matrix equation of degree three in A, Pio, Phh, and Pih:

$$(2.4) \quad Q \ A - Pio \ A - Q \ A \ Phh + (Pio \ A \ Phh - Pih) = 0$$

The following notation is useful in manipulating 2.4, a matrix equation whose summands are functions of sparse block matrices.

Notation: $[M : N]$ denotes the concatenation of matrices M and N (where M and N have the same number of rows). left, right, top, and bottom denote any choice of one half of the states on the left, right, top, and bottom of the system. There are $\binom{n}{n/2}$ possibilities for each. Finally, let $i = (i - 1)n/2 + 1, \ldots, in/2$ for $i = 1, \ldots, 8$.

Just as was done in [5], it is possible to solve for each of the nontrivial subblocks of Pio, Pih, Phh, and Pho as functions of A and Q. The following blocks will be used later to eliminate some of the parameters A_i^j from the solutions:
Fig. 2. The leftmost array represents the block structure of \(\Pi_0 \) and \(\Phi_0 \) (and of course \(A \)) for a modified \(n \times n \) problem where \(n = 2^k \), \(k \in \mathbb{N}^+ \). Each * is an \(n/2 \times n/2 \) block. The array on the right gives the off diagonal block structure for modified transition matrices \(\Pi_1 \) and \(\Phi_1 \).

\[
\Pi_{1,8}^{7,8} = \Phi_{0,7,8}^{7,8} (Q_{\text{bot}}^{7,8})^{-1} Q_{\text{bot}}^{1,2} A_{1,2}^{1,2}
\]

\[
(2.6) \quad \Pi_{1,2}^{7,8} = Q_{1,2}^{7,8} - Q_{1,2}^{7,8} (Q_{\text{bot}}^{7,8})^{-1} Q_{\text{bot}}^{1,2} A_{1,2}^{1,2} : Q_{1,2}^{3,4} (Q_{\text{right}}^{3,4})^{-1} Q_{\text{right}}^{1,2} A_{1,2}^{1,2} \Phi_{1,2}^{7,8}
\]

\[
(2.7) \quad \Pi_{1,8}^{7,8} = \left[Q_{1,2}^{7,8} - (Q_{7,8}^{7,8} - \Pi_{0,7,8}^{7,8}) (Q_{\text{bot}}^{7,8})^{-1} Q_{1,2}^{7,8} \right] A_{1,2}^{1,2}
\]

The solution for \(\Pi_0^{7,8} \) is not used above as it will be considerably simplified in section 2.3. Expressions for other nontrivial blocks of \(\Pi_{1,8} \), \(\Pi_0 \), and \(\Pi_{1,8} \) take the same forms as 2.5, next two sections parallel work done in [5], they are included here for completeness.

2.2. Matrix Identities. Since the inverse problem involves linear systems, it is not surprising that Graßmannians and the Graßmann-Plücker embedding come into play. The identities which embed Graßmannians \(G(k, n) \) in \(\mathbb{P}^{(2)} \) are derived below. A cursory explanation of the embedding can be found in [4, 6]. For a more thorough exposition see [7, 8]. Let \(\Lambda \) be any rectangular matrix with \(k \) rows and \(n \) columns where
Fig. 3. A 4×4 system. The incoming and outgoing states are labeled; all unlabeled states are hidden states. There are 16 incoming and 16 outgoing states, but 48 hidden states.

Fig. 4. Decomposition of a 4×4 system into four 2×2 subsystems. The thick lines separate the subsystems. The “modified” 4×4 system disregards individual pixels. Only the subsystems are relevant at the first level of this recursive procedure.
$k < n - 1$ and $\Lambda = (a)_{ij}$. Let $I = (i_1, i_2, i_3, \ldots, i_{k-1})$ index $(k - 1)$ distinct columns of Λ. Let $J = (j_1, j_2, j_3, \ldots, j_{k+1})$ index $(k + 1)$ distinct columns of Λ. Then,

$$
\sum_{\lambda=1}^{k+1} \pi(i_1, i_2, \ldots, i_{k-1}, j_{\lambda}) \pi(j_1, j_2, \ldots, j_{\lambda-1}, j_{\lambda+1}, \ldots, j_{k+1}) = 0
$$

Equation 2.8 defines the Grassmann relations. Let $\alpha, \beta, \gamma, \eta, \kappa \in \mathbb{N}^k$. For any matrix Q basic matrix properties imply

$$
(Q^\gamma)^{-1}Q^\eta = \left(\frac{dQ^\gamma_\alpha \gamma_\eta \gamma_{k-1} \gamma_{k+1} \ldots \gamma_n}{dQ^\gamma_\alpha}\right)_{i,j}
$$

$$
Q^\kappa (Q^\gamma)^{-1}Q^\eta = Q^\kappa - (1/dQ^\gamma_\alpha)(dQ^\eta_\kappa_\alpha)_{i,j}
$$

The identity 2.9 combines with Grassmann-Plücker relations to imply

$$
(dQ^\gamma_\kappa \beta)_i (Q^\gamma)^{-1}Q^\eta_{i,k} = (dQ^\gamma_\kappa \beta)_i, k \left(\frac{dQ^\gamma_\alpha \gamma_\eta \gamma_{k-1} \gamma_{k+1} \ldots \gamma_n}{dQ^\gamma_\alpha}\right)_{i,j}
$$

$$
= \frac{-1}{dQ^\gamma_\alpha} \sum_{k=1}^{n} (-1)^k \left(\frac{dQ^\gamma_\kappa \beta}{dQ^\gamma_\alpha} dQ^\eta_\kappa \gamma_\alpha \gamma_{k-1} \gamma_{k+1} \ldots \gamma_n\right)_{i,j}
$$

$$
= \left(\frac{dQ^\eta_\kappa \beta}{dQ^\gamma_\alpha} - \frac{dQ^\gamma_\beta}{dQ^\gamma_\kappa_\alpha} \right)_{i,j}
$$

These matrix identities will be used to simplify 2.6 and 2.7, as will

$$
I = A_{2\alpha-1,2\alpha} P h_{2\alpha-1,2\alpha} = A_{2\alpha-1,2\alpha} P h_{2\alpha-1,2\alpha} + A_{2\alpha-1,2\alpha} P h_{2\alpha-1,2\alpha}
$$

where $\alpha = 1, 2, 3, 4$.

2.3. Matrix Solutions Revisited. Identity 2.10 permits the solution for $Pio_{1,2}^{1,2}$ to be written quite succinctly:

$$
Pio_{1,2}^{1,2} = M^1 + \left(\frac{dQ^\gamma_3 \alpha}{dQ^\gamma_3 \alpha}\right)_{i,j}
$$
where

\begin{equation}
M_1^1 \equiv \frac{\left(\frac{dQ_{i,bot}^{j,7,8}}{dQ_{bot}^{7,8}} - \frac{dQ_{i,right}^{j,3,4}}{dQ_{right}^{3,4}} \right)}{i,j} A_{1,2}^{1,2} Pho_{1,2}^{1,2}
\end{equation}

and

\begin{equation}
M_4^4 \equiv \left(\frac{dQ_{i+3n,bot}^{j,5,6}}{dQ_{bot}^{5,6}} - \frac{dQ_{i+3n,bot}^{j,1,2}}{dQ_{bot}^{1,2}} \right)_{i,j} A_{7,8}^{7,8} Pho_{7,8}^{7,8}
\end{equation}

Furthermore,

\begin{equation}
Pio_{7,8}^{7,8} = M_4^4 + \left(\frac{dQ_{i+3n,bot}^{j,1,2}}{dQ_{bot}^{1,2}} \right)_{i,j}
\end{equation}

All of the nonzero blocks of \(Pio \) can be written in such simple form. These simpler solutions for \(Pio \) can be used to express \(Pih \) more succinctly. For instance, substituting 2.16 and the following identities

\begin{equation}
Q_{7,8}^{7,8} \left(Q_{bot}^{7,8} \right)^{-1} Q_{bot}^{1,2} = Q_{7,8}^{1,2} - \left(\frac{dQ_{i+3n,bot}^{j,7,8}}{dQ_{bot}^{7,8}} \right)_{i,j}
\end{equation}

\begin{equation}
\left(\frac{dQ_{i+3n,bot}^{j,1,2}}{dQ_{bot}^{1,2}} \right)_{i,j} \left(Q_{bot}^{7,8} \right)^{-1} Q_{bot}^{1,2} = \left(\frac{dQ_{i+3n,bot}^{j,1,2}}{dQ_{bot}^{1,2}} - \frac{dQ_{i+3n,bot}^{j,7,8}}{dQ_{bot}^{7,8}} \right)_{i,j} \equiv - \left(\frac{dQ_{i+3n,bot}^{j,7,8}}{dQ_{bot}^{7,8}} \right)_{i,j}
\end{equation}

\begin{equation}
\left(\frac{dQ_{i+3n,bot}^{j,5,6}}{dQ_{bot}^{5,6}} \right)_{i,j} \left(Q_{3,4}^{7,8} \right)^{-1} Q_{3,4}^{1,2} = \left(\frac{dQ_{i+3n,bot}^{j,5,6}}{dQ_{bot}^{5,6}} - \frac{dQ_{i+3n,bot}^{j,7,8}}{dQ_{bot}^{7,8}} \right)_{i,j}
\end{equation}

into equation 2.7 yields

\begin{equation}
Pih_{7,8}^{1,2} = M_4^4 \left(Q_{bot}^{7,8} \right)^{-1} Q_{bot}^{1,2} A_{1,2}^{1,2}
\end{equation}

Similarly,

\begin{equation}
Pih_{1,2}^{3,4} = M_1^1 \left(Q_{right}^{1,2} \right)^{-1} Q_{right}^{3,4} A_{3,4}^{3,4}
\end{equation}

The nonzero blocks of \(Pih, Pio, Pho, \) and \(Phh \) can be written in terms of the data and \(A \), a matrix with four \(n \times n \) blocks along its diagonal.
3. Elimination of Parameters. In this section $4(n^2 - 2n)$ of the A_i^j's will be eliminated from the solutions of Pho, Phh, Pih, and Pio in terms of Q and A. There are two classes of identities: those resulting from zero-valued minors of predominantly “hidden-outgoing” submatrices and those from predominantly “incoming-hidden” submatrices. Derivations of the former identities parallel those of their counterparts for 4×4 systems. The latter are more difficult to derive. Only when $n = 4$ does the derivation found in [5] hold. An inductive argument is used to derive the remaining “incoming-hidden” identities in section 3.3.

The solutions derived above give the data for each of the $n/2 \times n/2$ subsystems. These solutions, however, do not obey the range conditions mentioned in section 1.3. The particular range conditions studied below are zero valued $(n/2+1) \times (n/2+1)$ minors of the subsystems’ data sets. Forcing these minors to be zero results in polynomials in the A_i^j which factor and have a linear relevant term. Although there are many such conditions, only $4(n^2 - 2n)$ of them are independent. $8n$ of the parameters A_i^j in the solutions for Pho, Phh, Pih, and Pio cannot be eliminated by virtue of these range conditions.

Each of the four subsystems has a $2n \times 2n$ data matrix. The data matrix for the 1,1 subsystem is shown below:

\[
Q11 = \begin{bmatrix}
\frac{Pio}{n/4+1}, \ldots, n & \frac{Pih}{n/4+1}, \ldots, n \\
\frac{Pho}{n,n-1}, \ldots, 1 & \frac{Phh}{n,n-1}, \ldots, 1 \\
\frac{Pio}{n/4+1}, \ldots, n/4 & \frac{Pih}{n,1}, \ldots, n/4
\end{bmatrix}
\]

(3.22)

$Q11$ has many rank deficient submatrices. They are $(n/2 + 2k) \times (3n/2 - 2k)$ submatrices of rank $n/2$ (or less). Substituting the solutions for the modified transition probabilities into the zero-valued $(n/2 + 1) \times (n/2 + 1)$ minors forces highly nonlinear polynomials of the A_i^j's to be identically zero. Since the solutions for Pho are much simpler than those for Pih, the rank-deficient submatrices with the greatest proportion of hidden-outgoing transitions are the simplest to analyse. Those with a large fraction of
incoming-hidden transitions are more difficult and are left until section 3.3. One quarter of the conditions are identities of the form \(A_i^j = 0 \). The rest reduce (at a generic point) to four term linear equations. In the rest of this section, the \((n/2 + 2k) \times (3n/2 - 2k)\) right-left, left-right, top-bottom, and bottom-top rank deficient submatrices are labeled as \(Q_{ij}^k \), \(Q_{ij}^{k_1} \), \(Q_{ij}^{k_2} \), and \(Q_{ij}^{k_3} \) where \(i, j = 1, 2, k = 1, 2, \ldots, (n/2 - 1) \). For example, for some permutation matrices \(P, P' \),

\[
Q^{1_k}_{rl} = Q^{1_{(5n/4-k)(7n/4+k+1),\ldots,2n}}_{(5n/4-k+1),(7n/4+k)} = P \begin{bmatrix} Pio^{(k+1),\ldots,n}_{1, \ldots, k} & \pih^{(n+1),\ldots,(3n/2-k)}_{1, \ldots, k} \\ Pho^{(k+1),\ldots,n}_{1, \ldots, n/2+k} & Phh^{(n+1),\ldots,(3n/2-k)}_{1, \ldots, n/2+k} \end{bmatrix} P'
\]

(3.23)

3.1. “Hidden-Outgoing” Transitions. The rank deficient submatrices in

\[
\begin{bmatrix} Pho^{(k+1),\ldots,n}_{1, \ldots, n/2+k} & Phh^{(n+1),\ldots,(3n/2-k)}_{1, \ldots, n/2+k} \end{bmatrix}
\]

have zero-valued determinants. Forcing these determinants to be zero results in identities and linear conditions upon the \(A_i^j \)'s. Not surprisingly, the simplest identities result from zero-valued “hidden-outgoing” minors. The entries of \(A \) furthest from the diagonal are in fact identically zero, as is shown by the following

CLAIM 1.

\[
A_{mn+k}^{mn+\beta} = 0 \equiv A_{mn+k}^{mn+\beta} \quad \text{where} \quad k = 1, 2, \ldots, (n/2 - 1); \quad \beta = (n/2 + k + 1), \ldots, n; \quad \text{and} \quad m = 0, 1, 2, 3.
\]

Proof. Since \(Q^{1_k}_{rl} \) is rank \(n/2 \), rank \(Pho^{(k+1),\ldots,n}_{1, \ldots, n/2+k} = n/2 \). Then

rank \(Pho^{(k+1),\ldots,n}_{1, \ldots, \beta - 1, \beta + 1, \ldots, n} \leq (n - k - 1) \); rank \(Pho^{1, \ldots, k-1, k+1, \ldots, n}_{1, \ldots, \beta - 1, \beta + 1, \ldots, n} \leq (n - 2) \). However,

\[
A_\beta = (-1)^{\beta+k}dPho^{1, \ldots, k-1, k+1, \ldots, n}_{1, \ldots, \beta - 1, \beta + 1, \ldots, n} / dPho^{1, \ldots, n}_{1, \ldots, n} = 0.
\]

The same argument holds upon the hidden-outgoing blocks within the other “hidden-outgoing” submatrices to prove the claim. □
These identities account for one quarter of the conditions upon the parameters A_i^js. Another quarter of the conditions can be easily derived, following the method used to derive their counterparts for the 4×4 problem. They result from forcing the remaining $(n/2 + 1) \times (n/2 + 1)$ minors of 3.24 to be zero. Since

$$P hh_{i_1,\ldots,i_k,(n/2+k)}^{(n+1),\ldots,(3n/2-k)} = P h_{i_1,\ldots,i_k,(n/2+k)}^{1,2} \left(Q_{right}^{1,2}\right)^{-1} Q_{right}^{3,4} A_{3,4}^{(n+1),\ldots,(3n/2-k)}$$

it helps to define

$$v = \left(Q_{right}^{1,2}\right)^{-1} Q_{right}^{3,4} A_{3,4} = \frac{1}{dQ_{right}^{1,2}} \left(dQ_{right}^{1,2}\right)_{i,j} A_{3,4}^{3,4}$$

Then rank \[P h_{i_1,\ldots,i_k,(n/2+k)}^{(n+1),\ldots,n} P h_{i_1,\ldots,i_k,(n/2+k)}^{1,2} v_{1,\ldots,(n/2-k)} \] = $n/2$ Since rank $P h_{i_1,\ldots,i_k,(n/2+k)}^{(n+1),\ldots,n}$ = $n/2$, it is sufficient to force for $\alpha = 1, \ldots, k$, $k = 1, 2, \ldots, (n/2 - 1)$

$$0 = \begin{vmatrix} P h_{i_1,\ldots,i_k,(n/2+\alpha)}^{(n/2+1),\ldots,n} P h_{i_1,\ldots,i_k,(n/2+\alpha)}^{1,\ldots,(n/2-k)} \end{vmatrix}$$

$$= \sum_{\eta=1}^{k} v_{\eta}^{(n/2-k)} \begin{vmatrix} P h_{i_1,\ldots,i_k,(n/2+\alpha)}^{(n/2+1),\ldots,n} \end{vmatrix}$$

$$= \sum_{\eta=1}^{\alpha} v_{\eta}^{(n/2-k)} d P h_{i_1,\ldots,i_k,(n/2+\alpha)}^{\eta,(n/2+1),\ldots,n}$$

Equation 3.27 follows from 3.26 because for $\eta > \alpha$, $d P h_{i_1,\ldots,i_k,(n/2+\alpha)}^{\eta,(n/2+1),\ldots,n} = 0$. Since 3.27 holds for k different values of α, it is a homogeneous system of k equations for \{v_{\eta}^{(n/2-k)}\}_{\eta=1,\ldots,k}.

The Jacobian for this system is lower triangular and has a generically nonzero determinant, $\Pi_{i=1}^{k} d P h_{i_1,\ldots,i_k,(n/2+\alpha)}^{\eta,(n/2+1),\ldots,n}$. Therefore, $0 = v_{\alpha}^{(n/2-k)}$,

$$0 = v_{\alpha}^{(n/2-k)} = \sum_{j=1}^{n} d Q_{right}^{1,j,\ldots,\alpha-1,j+n,\alpha+1,\ldots,n} A_{j+n}^{(3n/2-k)}$$

for $\alpha = 1, 2, \ldots, k$

This identity forces the submatrix 3.24 to be rank $n/2$, as required by the range conditions upon $Q1_{i_1}^{k}$. Similar calculations hold for other primarily "hidden-outgoing"
rank deficient submatrices of Q_{11}, Q_{12}, Q_{21}, and Q_{22}. These conditions are shown below and can be used to eliminate $2\times 4 \times \sum_{k=1}^{n/2-1} k = n(n-2)$ of the A_i^j's from the solutions for Pio, Pih, Phh, and Pho in terms of Q and A.

\[
\begin{array}{|c|c|}
\hline
\text{Identity} & \alpha \\
\hline
\sum_{j=1}^{n} d \hat{Q}_{\text{bottom}}^{1,\ldots,\alpha-1,j+3n,\alpha+1,\ldots,n} A_{j+3n}^{(7n/2+k+1)} & (n-k+1), \ldots, n \\
\hline
\sum_{j=1}^{n} d \hat{Q}_{\text{bottom}}^{3n+1,\ldots,3n+\alpha-1,j+3n+\alpha+1,\ldots,4n} A_{j}^{(n/2-k)} & 1, \ldots, k \\
\hline
\sum_{j=1}^{n} d \hat{Q}_{\text{left}}^{3n+1,\ldots,3n+\alpha-1,j+2n,3n+\alpha+1,\ldots,4n} A_{j+2n}^{(5n/2+k+1)} & (n-k+1), \ldots, n \\
\hline
\sum_{j=1}^{n} d \hat{Q}_{\text{right}}^{n+1,\ldots,n+\alpha-1,j+n+\alpha+1,\ldots,2n} A_{j}^{(n/2+k+1)} & (n-k+1), \ldots, n \\
\hline
\sum_{j=1}^{n} d \hat{Q}_{\text{top}}^{n+1,\ldots,n+\alpha-1,j+2n,n+\alpha+1,\ldots,3n} A_{j+2n}^{(5n/2-k)} & 1, \ldots, k \\
\hline
\sum_{j=1}^{n} d \hat{Q}_{\text{top}}^{2n+1,\ldots,2n+\alpha-1,j+n,2n+\alpha+1,\ldots,3n} A_{j+n}^{(3n/2+k+1)} & (n-k+1), \ldots, n \\
\hline
\sum_{j=1}^{n} d \hat{Q}_{\text{left}}^{2n+1,\ldots,2n+\alpha-1,j+3n,2n+\alpha+1,\ldots,3n} A_{j+3n}^{(7n/2-k)} & 1, \ldots, k \\
\hline
\end{array}
\]

These equations may be combined with the identities in claim 1 to eliminate A_i^j's. Afterwards $4n^2 - 2n(n-2) = 2n^2 + 4n$ of the A_i^j's remain. Modulo the identities in claim 1 and equations 3.28 and 3.29 the solutions for the subsystems' data can be written in terms of Q and $2n^2 + 4n$ of the A_i^j's. In section 3.3 another $2n(n-2)$ linear conditions upon the remaining A_i^j's are derived.

3.2. More Matrix Identities. In the following section, Graßmann-Plücker relations and the Laplace expansion of a determinant are often used in conjunction with range conditions. For example, the Laplace expansion and Graßmann-Plücker relations can be used to simplify the minor
\[(3.30) \quad \left| dQ_{\beta, \kappa}^{\gamma, \eta} \right|_{i,j=1, \ldots, m} = dQ_{\beta, \kappa}^{\gamma, \eta} (dQ_{\alpha}^{\gamma})^{m-1} \quad \text{where } \beta, \kappa \in \mathbb{R}^m \text{ and } \alpha, \gamma \in \mathbb{R}^n. \]

Furthermore, range conditions also imply that for \(\gamma = (3n + 1), \ldots, (7n/2 - k), \)

\[
Q_{1, \ldots, (n/2-k):\alpha; (7n/2-k+1), \ldots, 4n}^{(n/2+k+1), \ldots, 2n} \text{ is a } (n+1) \times (3n/2 - k) \text{ matrix of rank } n \text{ and }
\]

\[
Q_{1, \ldots, (n/2-k):\alpha; (7n/2-k+1), \ldots, 4n}^{(n/2+k+1), \ldots, 2n} \text{ is a } (n+1) \times (3n/2 - k + 1), \text{ rank } n \text{ matrix.}
\]

Adding a few more rows to these rank deficient rectangular matrices results in rank deficient square matrices. Therefore,

\[(3.31) \quad dQ_{1, \ldots, (n/2-k);\alpha; (3n+1), \ldots, \gamma-1, \gamma+1, \ldots, 4n}^{(n/2+k+1), \ldots, 2n} = 0 = dQ_{1, \ldots, (n/2-k);\alpha; (3n+1), \ldots, 4n}^{(n/2+k+1), \ldots, 2n} \]

Finally,

\[(3.32) \quad dQ_{\alpha; (n+1), \ldots, 2n}^{(3n+1), \ldots, 4n} \equiv 0 \quad \text{for each } j = (2n+1), \ldots, 3n \]

These identities are used to derive another \(2n^2 - 4n \) coditions upon the remaining \(A_{i}^{j} \)'s in the following section.

3.3. “Incoming-Hidden” Conditions.

In this section the remaining range conditions upon the subsystem’s data are enforced. The submatrices of \(Q_{11}, Q_{12}, Q_{21}, \) and \(Q_{22} \) which should be rank deficient and (primarily) represent travel from incoming states to hidden states are used. Consider now the “incoming-hidden” submatrix

\[(3.33) \quad Q_{11 k_{tb}} = \begin{bmatrix}
Pi_{1, \ldots, (n/2+k)}^{(n/2+k+1), \ldots, n} & Pi_{1, \ldots, (n/2+k)}^{(n+1), \ldots, 3n/2(7n/2+1), \ldots, 4n} \\
Ph_{1, \ldots, k}^{(n/2+k+1), \ldots, n} & Ph_{1, \ldots, k}^{(n+1), \ldots, 3n/2(7n/2+1), \ldots, 4n}
\end{bmatrix} \]

\(Q_{11 k_{tb}} \) should be of rank \(n/2 \). Only for \(k = (n/2 - 1) \) can \(Q_{11 k_{tb}} \) be factored as was done in [5] to derive linear conditions upon the \(A_{i}^{j} \)'s. An inductive argument is used to
derive analogous linear conditions from \(Q_{11b}^k \) for \(k \neq (n/2 - 1) \). Start on the inductive step by defining

\[
(3.34) \quad l_{1,\ldots,\eta} \equiv \left(\frac{dQ_{1bot}^7.8}{dQ_{bot}^1} - \frac{dQ_{1right}^3.4}{dQ_{right}^3.4} \right)_{i=1,\ldots,\eta}
\]

\[
(3.35) \quad L_{1,\ldots,\eta} = \begin{bmatrix} l_{1,\ldots,\eta} & A_{1,2}^{1,1} & \cdots & A_{1,2}^{1,n-\eta} \\ I_{\eta-n/2} & \theta^{n-\eta}_{\eta-n/2} \end{bmatrix}
\]

and recall the definition of \(M^1 \). Rather than forcing all of \(Q_{11b}^k \) to be rank \(n/2 \) we undertake a less ambitious endeavor, forcing

\[
(3.36) \quad \text{rank} \left[\begin{array}{cc} Pio_{1,\ldots,(n/2+k)}^{(n/2+k+1),\ldots,n} & Pih_{1,\ldots,(n/2+k)}^{(n+1),\ldots,3n/2} \\ Pho_{1,\ldots,k}^{(n/2+k+1),\ldots,n} & Phh_{1,\ldots,k}^{(n+1),\ldots,3n/2} \end{array} \right] = \frac{n}{2}
\]

The blocks of 3.36 can be written as follows:

\[
(3.37) \quad Pio_{1,\ldots,(n/2+k)}^{(n/2+k+1),\ldots,n} = l_{1,\ldots,(n/2+k)} A_{1,2}^{1,1} Pho_{1}^{n/2+k+1,\ldots,n} + \frac{dQ_{1right}^3.4}{dQ_{right}^3.4}_{1,\ldots,n/2+k}
\]

\[
(3.38) \quad Pih_{1,\ldots,(n/2+k)}^{(n+1),\ldots,3n/2} = l_{1,\ldots,(n/2+k)} A_{1,2}^{1,1} Pho_{1}^{n/2+k+1,\ldots,n} \left(\frac{1}{Q_{right}^3.4} \right)^{-1} Q_{right}^3.4 A_{3,4}^3.4
\]

\[
(3.39) \quad Phh_{1,\ldots,k}^{(n+1),\ldots,3n/2} = Pho_{1,\ldots,k}^{1,2} \left(\frac{1}{Q_{right}^3.4} \right)^{-1} Q_{right}^3.4 A_{3,4}^3.4
\]

For \(k = (n/2 - 1) \) the matrix in 3.36 is the basis of the inductive argument and equals

\[
(3.40) \quad L_{1,\ldots,(n-1)} \text{Pho}_1^{1,2} + \begin{bmatrix} dQ_{1right}^3.4 \\ dQ_{right}^3.4 \end{bmatrix}_{i=1,\ldots,(n-1)}^{j=n} \theta^{n-1}_{(n/2-1)\times 1} \rightarrow L_{1,\ldots,(n-1)} \text{Pho}_1^{1,2} \left(\frac{1}{Q_{right}^3.4} \right)^{-1} Q_{right}^3.4 A_{3,4}^3.4
\]

\(n - 2 = 2k \) conditions are required to force a \((3n/2 - 2) \times (n/2 + 1) \) matrix to be rank \(n/2 \). This occurs if for each \(\alpha = 2,3,\ldots,(n-1) \), row \(\alpha \) lies in the space spanned by row one and the last \(n/2 - 1 \) rows of 3.40. In that case, the minor taken from rows \(1, \alpha; (n/2 + 1), \ldots, (n-1) \) of 3.40 is identically zero. This minor can be simplified, resulting in linear conditions upon the \(A_i^{n/2} \)s.
\[
0 = \begin{bmatrix}
 l_{1,\alpha} A_{1,2}^{1,2} \\
 I_{(n/2-1)} & \theta_1^{1,2}_{(n/2-1)}
\end{bmatrix}
\begin{bmatrix}
 \text{Pho}^n_1 : \text{Pho}^{1,2}_1 (Q_{\text{right}}^{1,2})^{-1} Q_{\text{right}}^{3,4} A_{3,4}^{3,4}
\end{bmatrix}
+ \\
\frac{C}{dQ_{\text{right}}^{3,4}}
\begin{bmatrix}
 \left(dQ_{i,\text{right}}^{3,4} \right)_{i=1,\alpha} \\
 \theta_{(n/2-1)\times 1}
\end{bmatrix}
\begin{bmatrix}
l_{1,\alpha} A_{1,2}^{1,2} \\
I_{(n/2-1)} & \theta_1^{1,2}_{(n/2-1)}
\end{bmatrix}
\]

(3.41)

\[
0 \pm \frac{C}{dQ_{\text{right}}^{3,4}}
\begin{bmatrix}
dQ_{i,\text{right}}^{3,4} \\
dQ_{\alpha,\text{right}}^{3,4}
\end{bmatrix}
\begin{bmatrix}
l_{1,\alpha} A_{1,2}^{1,2}
\end{bmatrix}
\]

(3.42)

where \(C = \left| \text{Pho}^{1,2}_1 (Q_{\text{right}}^{1,2})^{-1} Q_{\text{right}}^{3,4} A_{3,4}^{3,4} \right| \neq 0 \), just as in [5]. Equation 3.42 implies that

(3.43)

\[
\left(dQ_{i,\text{right}}^{3,4} \right)_{1,2,\ldots,(n-1)} \parallel (l)_{1,2,\ldots,(n-1)} A^{n/2}_{1,2}
\]

CLAIM 2. Forcing \(Q_{11}^{k}_{tb} \) to be rank \(n/2 \) for each \(k \) implies

\[
(l)_{1,2,\ldots,(n/2+k)} A^{k+1}_{1,2} \in \text{colspan} \left(dQ_{i,\text{right}}^{3,4} \right)_{i=1,2,\ldots,(n/2+k)}
\]

Proof. (by induction) Thanks to 3.43, the claim holds for \(k = n/2 - 1 \). The fact that rank \(Q_{tb}^{n/2-1} = n/2 \) results in 3.43. Similarly, enforcing rank \(Q_{tb}^{k} = n/2 \) implies the statement of the claim. Assuming the claim holds for \(k \), we shall show that it also holds for \(k - 1 \). By assumption,

(3.44) \[n/2 = \text{rank } Q_{11}^{k}_{tb} \geq \text{rank } \begin{bmatrix}
P_{io}^{(n/2+k+1),\ldots,n}_{1,\ldots,(n/2+k)} & P_{ih}^{(n+1),\ldots,3n/2}_{1,\ldots,(n/2+k)} \\
P_{io}^{(n/2+k+1),\ldots,n}_{1,\ldots,k} & P_{ih}^{(n+1),\ldots,3n/2}_{1,\ldots,k}
\end{bmatrix}
\]

We want to show that

(3.45) \[n/2 = \text{rank } Q_{11}^{(k-1)}_{tb} \geq \text{rank } \begin{bmatrix}
P_{io}^{(n/2+k),\ldots,n}_{1,\ldots,(n/2+k-1)} & P_{ih}^{(n+1),\ldots,3n/2}_{1,\ldots,(n/2+k-1)} \\
P_{io}^{(n/2+k),\ldots,n}_{1,\ldots,(k-1)} & P_{ih}^{(n+1),\ldots,3n/2}_{1,\ldots,(k-1)}
\end{bmatrix}
\]

Generically, rank \(P_{ih}^{(n+1),\ldots,3n/2}_{1,\ldots,(n/2+k-1)} = n/2 \) so it is sufficient to require that the inequality in 3.45 be an equality. This is equivalent to forcing for each \(\alpha = (n/2 - k + 2), \ldots, (n/2 + k - 1) \)

(3.46) \[0 = \begin{bmatrix}
P_{io}^{(n/2+k),\ldots,n}_{1,\ldots,(n/2-k+1)\alpha} & P_{ih}^{(n+1),\ldots,3n/2}_{1,\ldots,(n/2-k+1)\alpha} \\
P_{io}^{(n/2+k),\ldots,n}_{1,\ldots,(k-1)} & P_{ih}^{(n+1),\ldots,3n/2}_{1,\ldots,(k-1)}
\end{bmatrix}
\]
Plugging equations 3.37, 3.38, and 3.39 into 3.46 allows one to rewrite 3.46 as a sum of two minors. (The first column in 3.46 is the sum of two columns.) Both minors can be factored as is done below.

\[
0 = \begin{bmatrix}
 l_{1,\ldots,(n/2-k+1),\alpha}A_{1,2}^{1,2} \\
 I_{(k-1)}
\end{bmatrix}
\begin{bmatrix}
 P\phi_{1}^{(n/2+k)} \\
 \theta_{(k-1)}^{(n/2-k+1)}
\end{bmatrix}
\begin{bmatrix}
 P\phi_{1}^{1,2} Q_{right}^{1,2} & -Q_{right}^{3,4} A_{3,4}^{3,4}
\end{bmatrix}
\]

\[
(3.47) \quad + \quad \frac{C}{dQ_{right}^{3,4}} \begin{bmatrix}
 (dQ_{i,\text{right}}^{i,(n/2+k),3,4})_{i=1,\ldots,(n/2-k+1),\alpha} \\
 \theta_{(k-1)\times 1}
\end{bmatrix}
\begin{bmatrix}
 l_{1,\ldots,(n/2-k+1),\alpha}A_{1,2}^{1,2} \\
 I_{(k-1)}
\end{bmatrix}
\]

\[
(3.48) = 0 \pm \frac{C}{dQ_{right}^{3,4}} \begin{bmatrix}
 (dQ_{i,\text{right}}^{i,(n/2+k),3,4})_{i=1,\ldots,(n/2-k+1),\alpha} \\
 \theta_{(k-1)\times 1}
\end{bmatrix}
\begin{bmatrix}
 l_{1,\ldots,(n/2-k+1),\alpha}A_{1,2}^{k,\ldots,n/2} \\
 I_{(k-1)}
\end{bmatrix}
\]

Since 3.48 holds for all \(\alpha = (n/2 - k + 2), \ldots, (n/2 + k - 1) \),

\[
l_{1,\ldots,(n/2+k-1)}A_{1,2}^{k} \in \text{colspan} \begin{bmatrix}
 dQ_{i,\text{right}}^{i,(n/2+k),3,4} \\
 l_{i}^{(k+1),\ldots,n/2}
\end{bmatrix}_{i=1,\ldots,(n/2+(k-1))}
\]

\[
(3.49) \quad \in \text{colspan} \begin{bmatrix}
 dQ_{i,\text{right}}^{i,(n/2+k),3,4} \\
 j=(n/2+k),\ldots,n
\end{bmatrix}_{i=1,\ldots,(n/2+(k-1))}, \text{ by the inductive hypothesis.}
\]

\[
\square
\]

The above claim implies linear conditions upon the \(A_{i}^{j} \)s:

\[
(3.50) \quad 0 = \begin{bmatrix}
 (dQ_{i,\text{right}}^{i,(n/2+k+1),\ldots,n})_{i=1,\ldots,(n/2-k)\alpha} \\
 l_{1,\ldots,(n/2-k),\alpha}A_{1,2}^{k+1}
\end{bmatrix}
\]

for each \(\alpha = (n/2 - k + 1), \ldots, (n/2 + k) \). (This holds for \(k = (n/2 - 1), (n/2 - 2), \ldots, 1 \).

To avoid cumbersome notation in the next few lines we absorb the cumbersome-ness in the following notation. Define

\[
r \equiv 1, \ldots, (n/2 - k) ; \alpha
\]

\[
r_{m} \equiv 1, \ldots, (m - 1), (m + 1), \ldots, (n/2 - k) ; \alpha \quad \text{for} \quad m = 1, 2, \ldots, (n/2 - k)
\]

\[
r_{(n/2-k+1)} \equiv 1, \ldots, (n/2 - k)
\]

\[
l_{(n/2-k+1)} \equiv \ l_{\alpha}
\]

Note the dependence of \(r, r_{m}, \text{and } l_{(n/2-k+1)} \) upon \(\alpha \). Furthermore,

\[
(3.52) \quad \begin{bmatrix}
 (dQ_{i,\text{right}}^{i,(n/2+k+1),\ldots,n})_{i=1,\ldots,(n/2-k)\alpha} \\
 dQ_{r_{m},\text{right}}^{(n/2+k+1),\ldots,2n}
\end{bmatrix} = dQ_{r_{m},\text{right}}^{3,4} \left(dQ_{right}^{3,4} \right)^{n/2-k-1}
\]
according to identity 3.30. Expanding 3.50 along the last column and dividing by
\((dQ_{right})^{n/2-k-1} \) yields a zero-valued vector-vector multiply.

\[
0 = \left(dQ_{right}^{\mathbf{3,4}} \right)^{-(n/2-k-1)} \sum_{m=1}^{n/2-k+1} (-1)^m \left(dQ_j^{\mathbf{3,4}} \right)_{i=\Gamma_m}^{j=(n/2+k+1),...,n} l_m A^{k+1}_{1,2} \\
(3.53) = \left(\sum_{m=1}^{n/2-k+1} (-1)^m dQ_{i=\Gamma_m}^{(n/2+k+1),...,2n} l_m \right) \cdot A^{k+1}_{1,2}
\]

where the following (painful) notation is used:

Graßmann-Plücker identities can be used to simplify the first vector in this vector-vector multiply

\[
\sum_{m=1}^{n/2-k+1} (-1)^m dQ_{i=\Gamma_m}^{(n/2+k+1),...,2n} l_m
(3.54)
\]

Graßmann identities imply

\[
\sum_{m=1}^{n/2-k+1} (-1)^m dQ_{i=\Gamma_m}^{(n/2+k+1),...,2n} dQ_j^{\mathbf{3,4}} = (-1)^{(k+1)} dQ_{i=\Gamma_m}^{(n/2+k+1),...,2n} dQ_{right}^{\mathbf{3,4}}
(3.55)
\]

Recall the definition of \(l \) and plug 3.55 into 3.54. Substituting the whole thing into 3.53 gives

\[
0 = \left(\sum_{m=1}^{n/2-k+1} (-1)^m dQ_{i=\Gamma_m}^{(n/2+k+1),...,2n} dQ_{right}^{\mathbf{7,8}} + (-1)^k dQ_{i=\Gamma_m}^{(n/2+k+1),...,2n} dQ_{bot}^{\mathbf{7,8}} \right)_{j=1,...,n} \cdot A^{k+1}_{1,2}
(3.56)
\]

This holds for all \(\alpha = (n/2 - k + 1), \ldots, (n/2 + k) \), so we have a homogeneous system of \(2k \) linear conditions upon the \(A^{k+1}_i \). The system is unnecessarily complicated, however.

In claim 3 a simpler system of linear conditions is shown to be equivalent to 3.56.

CLAIM 3. The system of conditions in 3.56 is equivalent to

\[
0 = \left(dQ_j^{\beta;\mathbf{3,4}} \right)_{j=1,...,n} \cdot A^{k+1}_{1,2} \text{ for } \beta = (\frac{7n}{2} - k + 1), \ldots, (\frac{7n}{2} + k)
(3.57)
\]

Proof. The first step in this proof is to show that 3.57 constitutes a system of \(2k \) independent conditions. The second step is to show that for any fixed
\(\alpha \in \{(n/2 - k + 1), \ldots, (n/2 + k)\} \), the condition from 3.56 corresponding to \(\alpha \) is redundant amongst those in 3.57. Note that 3.30 implies

\[
\begin{align*}
&\begin{vmatrix}
\frac{\partial dQ^{j(2n+1), \ldots, (7n/2-k)}}{\partial \beta(7n/2-k+1), \ldots, 4n; 3, 4}
\end{vmatrix}_{\beta=(7n/2-k+1), \ldots, (7n/2+k)} \\
&\beta=(7n/2-k+1), \ldots, (7n/2+k) \\
&\beta=(7n/2-k+1), \ldots, (7n/2+k)
\end{align*}
\]

\[= dQ^{j(2n+1), \ldots, (7n/2-k)}(7n/2-k+1), \ldots, 4n; 3, 4 \left(dQ^{(2n+1), \ldots, (7n/2-k)}(7n/2-k+1), \ldots, 4n; 3, 4 \right)^{2k-1} \]

\[\neq 0\]

in the generic case. Therefore, the Jacobian of 3.57 is generically of full rank, so all of the conditions are independent. It remains to show that the Jacobian of the conditions 3.57 and the condition from 3.56 corresponding to \(\alpha \) is a \((2k + 1) \times n\) matrix of rank \(2k\). We prove here that when \(\text{bot} = (n+1), \ldots, 2n \equiv 3, 4 \) and \(\text{right} = (3n+1), \ldots, 4n \equiv 7, 8 \) the first \(2k + 1\) columns are rank deficient; the same proof holds for other choices of columns. The determinant of the first \(2k + 1\) columns can be written as

\[\begin{vmatrix}
\sum_{m=1}^{n/2-k+1} (-1)^m dQ^{(n/2-k+1), \ldots, 2n; 7, 8} \frac{\partial dQ^{j(2n+1), \ldots, (7n/2-k)}}{\partial \beta(7n/2-k+1), \ldots, 4n; 3, 4} + (-1)^k dQ^{j(2n+1), \ldots, 2n; 7, 8} \frac{\partial dQ}{\partial \beta(7n/2-k+1), \ldots, (7n/2+k)}
\end{vmatrix}_{\beta=(7n/2-k+1), \ldots, (7n/2+k)} \]

(3.59)

To show that 3.59 is identically zero, it is broken into a sum of minors. The summands are minors which are easily expanded along the top row. For instance,

\[\frac{1}{C} \begin{vmatrix}
\frac{\partial dQ^{j, 7, 8}}{\partial \beta(7n/2-k+1), \ldots, 4n; 3, 4}
\end{vmatrix}_{\beta=(7n/2-k+1), \ldots, (7n/2+k)} =
\]

\[=\sum_{j=1}^{2k+1} (-1)^j dQ^{1, \ldots, j-1, j+1, \ldots, (2k+1); (2n+1), \ldots, (7n/2-k); \beta(7n/2-k+1), \ldots, 4n; 3, 4} \frac{\partial dQ^{j, 7, 8}}{\partial \beta(7n/2-k+1), \ldots, (7n/2+k)}
\]

\[=\sum_{j=2n+1}^{(7n/2-k)} (-1)^j dQ^{1, \ldots, j-1, j+1, \ldots, (2k+1); (2n+1), \ldots, (7n/2-k); \beta(7n/2-k+1), \ldots, 4n; (n+1), \ldots, 2n} \frac{\partial dQ^{j, 7, 8}}{\partial \beta(7n/2-k+1), \ldots, (7n/2+k)}
\]

\[=\sum_{j=2n+1}^{2k+1} (-1)^j dQ^{1, \ldots, j-1, j+1, \ldots, (2k+1); (2n+1), \ldots, (7n/2-k); \beta(7n/2-k+1), \ldots, 4n; (n+1), \ldots, 2n} \frac{\partial dQ^{j, 7, 8}}{\partial \beta(7n/2-k+1), \ldots, (7n/2+k)}
\]

\[= (-1)^k dQ^{1, \ldots, (2k+1); (2n+1), \ldots, (7n/2-k); \alpha(7n/2-k+1), \ldots, 4n; (n+1), \ldots, 2n} \frac{\partial dQ^{7, 8}}{\partial \alpha(7n/2-k+1), \ldots, 4n; 3, 4}
\]

(3.60)
where \(C \equiv \left(dQ^{(2n+1), \ldots,(7n/2-k)}_{(7n/2+k+1), \ldots,4n;(n+1), \ldots,2n} \right)^{2k-1} \). The last equality is a direct result of 3.31.

Also,

\[
\frac{1}{C} \sum_{j=1}^{2k+1} (-1)^j \sum_{j=1}^{(7n/2-k)} \sum_{j=1}^{(7n/2-k)} dQ^{j;j'=j-k, \ldots,(7n/2-k)}_{\beta,(7n/2-k+1), \ldots,4n;3,4, \ldots,2n} dQ^{j'=j-k, \ldots,(7n/2-k)}_{\beta,(7n/2-k+1), \ldots,4n;3,4, \ldots,2n} =
\]

\[
= - \sum_{j=1}^{2k+1} (-1)^j dQ^{1, \ldots,(j-1),(j+1), \ldots,(7n/2-k)}_{(7n/2-k+1), \ldots,4n;(n+1), \ldots,2n} dQ^{j'=j-k, \ldots,(7n/2-k)}_{\beta,(7n/2-k+1), \ldots,4n;3,4, \ldots,2n}
\]

\[
= - \sum_{j=1}^{2k+1} (-1)^j dQ^{1, \ldots,(j-1),(j+1), \ldots,(7n/2-k)}_{(7n/2-k+1), \ldots,4n;(n+1), \ldots,2n} dQ^{j'=j-k, \ldots,(7n/2-k)}_{\beta,(7n/2-k+1), \ldots,4n;3,4, \ldots,2n}
\]

\[
= \pm \sum_{m=1}^{(7n/2-k+1)} (-1)^m dQ^{1, \ldots,(7n/2-k)}_{m,(7n/2-k+1), \ldots,4n;(n+1), \ldots,2n} dQ^{(7n/2-k)}_{m,(7n/2-k+1), \ldots,4n;(n+1), \ldots,2n}
\]

\[
= (-1)^{(k+1)} \sum_{m=1}^{(n/2-k+1)} (-1)^m dQ^{1, \ldots,(7n/2-k)}_{m,(7n/2-k+1), \ldots,4n;3,4, \ldots,2n} dQ^{(7n/2-k)}_{m,(7n/2-k+1), \ldots,4n;3,4, \ldots,2n}
\]

Expand 3.59 along its top row and substitute in identities 3.59 and 3.62. The result is a lengthy quadratic polynomial in minors of \(Q \) which turns out to be identically zero. The same argument applies to other column choices, so the Jacobian 3.59 is rank deficient. The conditions from 3.56 is redundant amongst those in 3.57. \(\Box \)

Similar arguments apply to other “incoming-hidden” rank deficient submatrices
and yield the following identities:

<table>
<thead>
<tr>
<th>Identity</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum_{j=1}^{n} dQ_{\beta (7n/2+k+1), \ldots, 3, 4}^{j; (2n+1), \ldots, (7n/2-k)} A_j^{k+1}$</td>
<td>$(\frac{7n}{2} - k + 1), \ldots, (\frac{7n}{2} + k)$</td>
</tr>
<tr>
<td>$\sum_{j=1}^{n} dQ_{\beta (n+1), \ldots, (3n/2-k)}^{j; 7, 8} A_j^{n-k}$</td>
<td>$(\frac{3n}{2} - k + 1), \ldots, (\frac{3n}{2} + k)$</td>
</tr>
<tr>
<td>$\sum_{j=1}^{n} dQ_{\beta (n/2+k+1), \ldots, n}^{j+n; 1, \ldots, (n/2-k)} A_j^{n+k+1}$</td>
<td>$(\frac{n}{2} - k + 1), \ldots, (\frac{n}{2} + k)$</td>
</tr>
<tr>
<td>$\sum_{j=1}^{n} dQ_{\beta (2n+1), \ldots, (5n/2-k)}^{j+n; 1, 2} A_j^{2n-k}$</td>
<td>$(\frac{5n}{2} - k + 1), \ldots, (\frac{5n}{2} + k)$</td>
</tr>
<tr>
<td>$\sum_{j=1}^{n} dQ_{\beta (3n/2+k+1), \ldots, 2n}^{j+2n; 1, \ldots, (3n/2-k)} A_j^{2n+k+1}$</td>
<td>$(\frac{3n}{2} - k + 1), \ldots, (\frac{3n}{2} + k)$</td>
</tr>
<tr>
<td>$\sum_{j=1}^{n} dQ_{\beta (3n/2+k+1), \ldots, 3n}^{j+2n; 1, 2} A_j^{3n-k}$</td>
<td>$(\frac{7n}{2} - k + 1), \ldots, (\frac{7n}{2} + k)$</td>
</tr>
<tr>
<td>$\sum_{j=1}^{n} dQ_{\beta (5n/2-k)}^{j+3n; 1, 2} A_j^{3n+k+1}$</td>
<td>$(\frac{5n}{2} - k + 1), \ldots, (\frac{5n}{2} + k)$</td>
</tr>
<tr>
<td>$\sum_{j=1}^{n} dQ_{\beta 1, \ldots, (n/2-k)}^{j+3n; 2n} A_j^{n-k}$</td>
<td>$(\frac{n}{2} - k + 1), \ldots, (\frac{n}{2} + k)$</td>
</tr>
</tbody>
</table>

(3.63)

The conditions above can be used to eliminate another $2n(n - 2)$ of the A_i^j's from the solutions for $Q11$, $Q12$, $Q21$, and $Q22$. The end result is $8n$ parameter families of solutions for the $n/2 \times n/2$ subsystems’ data.

4. **Conclusion.** A practical and concise method of computing $8n$ parameter families of data sets for $n/2 \times n/2$ subsystems from the data generated by a $n \times n$ system is given by equations like 2.5, 2.6, and 2.7. This gives a p-parameter family of solu-
tions, where p is large. Many of the parameters may be removed by enforcing range conditions upon the subsystems’ data. These conditions are expressed most succinctly in 3.28, 3.29, and 3.63. The conditions presented here are significantly improved over their predecessors. Earlier versions of these conditions were also linear in the A_i^js but their coefficients were prohibitively cumbersome.

Before making even the most preliminary conclusions on the practicality of applying this Markovian model to imaging three major projects must be completed. The problem must be done in three dimensions, the underdetermined system of equations 1.3 must be closed, and stability of the recovery algorithm must be established. Optical imaging requires a three dimensional attack because low energy radiation will diffuse out of an imaging plane. Additional information is required to pick a single solution from the family of solutions found here. The author hopes to combine microscopic reversibility and time-of-flight information into a more practical model, permitting unique solution of the inverse problem. Finally, a careful stability study must be done. It is crucial that the problem be reasonably well-posed. (The isotropic case, for example, is extremely ill-posed [1], [17].) To have any hope of recovering accurate images from boundary value data it must be shown that both the physics of the problem and the inversion scheme choosen are stable.

REFERENCES

Recent IMA Preprints

Author/s Title
1238 Z. Chen, Finite element methods for the black oil model in petroleum reservoirs
1239 G. Bao & A. Friedman, Inverse problems for scattering by periodic structure
1240 G. Bao, Some inverse problems in partial differential equations
1241 G. Bao, Diffractive optics in periodic structures: The TM polarization
1242 C.C. Lim & D.A. Schmidt, On noneven digraphs and symplectic pairs
1243 H.M. Soner, S.E. Shreve & J. Cvitanić, There is no nontrivial hedging portfolio for option pricing with transaction costs
1244 D.L. Russell & B-Yu Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation
1245 B. Morton, D. Enns & B-Yu Zhang, Stability of dynamic inversion control laws applied to nonlinear aircraft pitch-axis models
1246 S. Hansen & G. Weiss, New results on the operator Carleson measure criterion
1247 V.A. Malyshev & F.M. Spieksma, Intrinsic convergence rate of countable Markov chains
1248 G. Bao, D.C. Dobson & J.A. Cox, Mathematical studies in rigorous grating theory
1249 G. Bao & W.W. Symes, On the sensitivity of solutions of hyperbolic equations to the coefficients
1250 D.A. Huntley & S.H. Davis, Oscillatory and cellular mode coupling in rapid directional solidification
1251 M.J. Donahue, L. Gurvits, C. Darken & E. Sontag, Rates of convex approximation in non-Hilbert spaces
1252 A. Friedman & B. Hu, A Stefan problem for multi-dimensional reaction diffusion systems
1253 J.L. Bona & B-Y. Zhang, The initial-value problem for the forced Korteweg-de Vries equation
1254 A. Friedman & R. Gulliver, Organizers, Mathematical modeling for instructors
1255 S. Kichenassamy, The prolongation formula for tensor fields
1256 S. Kichenassamy, Fuchsian equations in Sobolev spaces and blow-up
1257 H.S. Dumas, L. Dumas, & F. Golse, On the mean free path for a periodic array of spherical obstacles
1258 C. Liu, Global estimates for solutions of partial differential equations
1259 C. Liu, Exponentially growing solutions for inverse problems in PDE
1260 Mary Ann Horn & I. Lasiecka, Nonlinear boundary stabilization of parallel elements Kirchhoff plates
1261 B. Cockburn & H. Gau, A posteriori error estimates for general numerical methods for scalar conservation laws
1262 B. Cockburn & P-A. Gremaud, A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach
1263 R. Spigler & M. Vianello, Convergence analysis of the semi-implicit euler method for abstract evolution equations
1264 R. Spigler & M. Vianello, WKB-type approximation for second-order differential equations in \(C^*-\)algebras
1265 M. Menshikov & R.J. Williams, Passage-time moments for continuous non-negative stochastic processes and applications
1266 C. Mazza, On the storage capacity of nonlinear neural networks
1267 Z. Chen, R.E. Ewing & R. Lazarov, Domain decomposition algorithms for mixed methods for second order elliptic problems
1268 Z. Chen, M. Espedal & R.E. Ewing, Finite element analysis of multiphase flow in groundwater hydrology
1269 Z. Chen, R.E. Ewing, Y.A. Kuznetsov, R.D. Lazarov & S. Maliassov, Multilevel preconditioners for mixed methods for second order elliptic problems
1270 S. Kichenassamy & G.K. Srinivasan, The structure of WTC expansions and applications
1271 A. Zinger, Positiveness of Wigner quasi-probability density and characterization of Gaussian distribution
1272 V. Malkin & G. Papanicolaou, On self-focusing of short laser pulses
1273 J.N. Kutz & W.L. Kath, Stability of pulses in nonlinear optical fibers using phase-sensitive amplifiers
1274 S.K. Patch, Recursive recovery of a family of Markov transition probabilities from boundary value data
1275 C. Liu, The completeness of plane waves
1276 Z. Chen & R.E. Ewing, Stability and convergence of a finite element method for reactive transport in ground water
1277 Z. Chen & Do Y. Kwak, The analysis of multigrid methods for nonconforming and mixed methods for second order elliptic problems
1278 Z. Chen, Expanded mixed finite element methods for quasilinear second order elliptic problems II
1279 M.A. Horn & W. Littman, Boundary control of a Schrödinger equation with nonconstant principal part
1281 S. Maliassov, Substructuring preconditioning for finite element approximations of second order elliptic problems. II. Mixed method for an elliptic operator with scalar tensor
1282 V. Jakšić & C.-A. Pillet, On model for quantum friction II. Fermi’s golden rule and dynamics at positive temperatures
1283 V. M. Malkin, Kolmogorov and nonstationary spectra of optical turbulence
1284 E.G. Kalnins, V.B. Kuznetsov & W. Miller, Jr., Separation of variables and the XXZ Gaudin magnet
1285 E.G. Kalnins & W. Miller, Jr., A note on tensor products of q-algebra representations and orthogonal polynomials
1286 E.G. Kalnins & W. Miller, Jr., q-algebra representations of the Euclidean, pseudo-Euclidean and oscillator algebras, and their tensor products
1287 L.A. Pastur, Spectral and probabilistic aspects of matrix models
1288 K. Kastella, Discrimination gain to optimize detection and classification
1289 L.A. Peletier & W.C. Troy, Spatial patterns described by the Extended Fisher-Kolmogorov (EFK) equation: Periodic solutions
1290 A. Friedman & Y. Liu, Propagation of cracks in elastic media
1291 A. Friedman & C. Huang, Averaged motion of charged particles in a curved strip
1292 G. R. Sell, Global attractors for the 3D Navier-Stokes equations
1293 C. Liu, A uniqueness result for a general class of inverse problems
1294 H-O. Kreiss, Numerical solution of problems with different time scales II
1295 B. Cockburn, G. Gripenberg, S-O. Londen, On convergence to entropy solutions of a single conservation law
1296 S-H. Yu, On stability of discrete shock profiles for conservative finite difference scheme
1297 H. Behncke & P. Reji, A limiting absorption principle for separated Dirac operators with Wigner Von Neumann type potentials
1298 R. Lipton B. Vernescu, Composites with imperfect interface
1299 E. Casas, Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations
1300 G.R. Sell, References on dynamical systems
1301 J. Zhang, Swelling and dissolution of polymer: A free boundary problem
1302 J. Zhang, A nonlinear nonlocal multi-dimensional conservation law
1303 M.E. Taylor, Estimates for approximate solutions to acoustic inverse scattering problems
1304 J. Kim & D. Sheen, A priori estimates for elliptic boundary value problems with nonlinear boundary conditions
1305 B. Engquist & E. Luo, New coarse grid operators for highly oscillatory coefficient elliptic problems
1306 A. Boutet de Monvel & I. Egorova, On the almost periodicity of solutions of the nonlinear Schrödinger equation with the cantor type spectrum
1307 A. Boutet de Monvel & V. Georgescu, Boundary values of the resolvent of a self-adjoint operator: Higher order estimates
1308 S.K. Patch, Diffuse tomography modulo Graßmann and Laplace
1309 A. Friedman & J.J.L. Velázquez, Liouville type theorems for fourth order elliptic equations in a half plane
1310 T. Aktosun, M. Klaus & C. van der Mee, Recovery of discontinuities in a nonhomogeneous medium
1311 V. Bondarevsky, On the global regularity problem for 3-dimensional Navier-Stokes equations
1312 M. Cheney & D. Isaacson, Inverse problems for a perturbed dissipative half-space
1313 B. Cockburn, D.A. Jones & E.S. Titi, Determining degrees of freedom for nonlinear dissipative equations
1314 B. Engquist & E. Luo, Convergence of a multigrid method for elliptic equations with highly oscillatory coefficients
1315 L. Pastur & M. Shcherbina, Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles
1316 V. Jakšić, S. Molchanov & L. Pastur, On the propagation properties of surface waves
1317 J. Necas, M. Ružička & V. Šverák, On self-similar solutions of the Navier-Stokes equations
1318 S. Stojarovnic, Remarks on W^{2,p}-solutions of bilateral obstacle problems
1319 E. Luo & H-O. Kreiss, Pseudospectral vs. Finite difference methods for initial value problems with discontinuous coefficients
1320 V.E. Grikurov, Soliton’s rebuilding in one-dimensional Schrödinger model with polynomial nonlinearity
1321 J.M. Harrison & R.J. Williams, A multiclass closed queueing network with unconventional heavy traffic behavior
1322 M.E. Taylor, Microlocal analysis on Morrey spaces
1323 C. Huang, Homogenization of biharmonic equations in domains perforated with tiny holes
1324 C. Liu, An inverse obstacle problem: A uniqueness theorem for spheres
1325 M. Luskin, Approximation of a laminated microstructure for a rotationally invariant, double well energy density
1326 Rakesh & P. Sacks, Impedance inversion from transmission data for the wave equation
1327 O. Lafitte, Diffraction for a Neumann boundary condition
1328 E. Sobel, K. Lange, J.R. O’Connell & D.E. Weeks, Haplotype algorithms
1329 B. Cockburn, D.A. Jones & E.S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems
1330 T. Aktosun, Inverse Schrödinger scattering on the line with partial knowledge of the potential
1331 T. Aktosun & C. van der Mee, Partition of the potential of the one-dimensional Schrödinger equation
1332 B. Engquist & E. Luo, Partition of the multigrid method with a wavelet coarse grid operator
1333 V. Jakšić & C.-A. Pillet, Ergodic properties of the Spin-Boson system
1334 S.K. Patch, Recursive solution for diffuse tomographic systems of arbitrary size
1335 J.C. Bronski, Semiclassical eigenvalue distribution of the non self-adjoint Zakharov-Shabat eigenvalue problem
1336 J.C. Cockburn, Bitangential structured interpolation theory