THE DAM PROBLEM WITH LEAKY BOUNDARY CONDITIONS

By

J. Carrillo

and

M. Chipot

IMA Preprint Series # 742

December 1990
THE DAM PROBLEM WITH LEAKY BOUNDARY CONDITIONS

J. CARRILLO

Universidad Complutense
Departamento de Matemática Aplicada
28 040 Madrid
(SPAIN)

M. CHIPOT

Université de Metz
Département de Mathématiques
Ile de Saulcy, 57 045 Metz-Cedex 01
(FRANCE)
0. Introduction

Let Ω be a bounded locally Lipschitz domain in \mathbb{R}^2. Ω represents the section of a porous medium, the points in \mathbb{R}^2 will be denoted by (x, y).

The boundary Γ of Ω is divided into three parts: an impervious part S_1, a part in contact with air S_2 and finally a part covered by fluid S_3 (see the figure 1).

![Figure 1](image)

For convenience, we will assume that S_1, S_3 are relatively open in Γ and we will denote by $S_{3,i}$, $i = 1, \ldots, N$ the different connected components of S_3.

Assuming that the flow in Ω has reached a steady state we are concerned with finding the pressure p of the fluid and the part of the porous medium where some flow occurs – i.e. the wet subset A of Ω.

Note that this two dimensional model could describe for instance the steady flow in the cross section Ω of a longitudinal porous medium.

The paper is divided as follows. In section 1 we give a strong formulation of the problem explaining the model we would like to consider here and which differs from the classical one where Dirichlet boundary conditions are imposed on S_3: indeed, on this part
of the boundary the flux of fluid will be controled by some nonlinear law. In section 2, using the analysis of Brezis-Kinderlehrer-Stampacchia [B.K.S.] we transform the problem into a weak form. In section 3 we develop a theory of existence. In section 4 we give some preliminary results regarding the solution of the weak problem and we show that uniqueness could only hold modulo "pools" -i.e. particular functions. We show also that \(p \) is not necessarily positive below \(S_3 \) so that unsaturated regions may occur. In section 5 we study different examples, one of which reduces to a variational inequality in the spirit of [Ba.1]. We show in particular that the function \(\chi \) defined in (P) (see below) is not necessarily a characteristic function of a set. This is an important difference with the classical dam problem with Dirichlet boundary conditions (compare to [C.C.]).

1. Strong formulation

The boundary of \(A \), that we will denote by \(\partial A \), is divided into four parts: an impervious part \(\Gamma_1 \), a free boundary \(\Gamma_2 \), a part covered by the fluid \(\Gamma_3 \) and finally a seepage front \(\Gamma_4 \) where the fluid is flowing outside \(\Omega \) but does not remain there in a significant amount to modify the pressure (see figure 1).

The velocity \(v \) of the fluid in \(A \) is given, according to Darcy's law, by

\[
v = -k\nabla(p + y)
\]

(1.0)

where \(p \) is the pressure, \(k \) is the coefficient of permeability of the medium.

We assumed the medium homogeneous and the fluid to be for instance water with a specific weight equal to 1. In fact, from now on, we will assume that everything has been scaled in such a way that \(k = 1 \).

Then, if the fluid is incompressible we have

\[
\text{div } v = 0 \quad \text{in} \quad A
\]

or

\[
\Delta p = 0 \quad \text{in} \quad A.
\]

(1.1)
Next, on $\Gamma_1 \cup \Gamma_2$ there is no flux of fluid through this part of boundary. So, if ν denotes the outward unit normal to ∂A one has

$$v \cdot \nu = 0 \quad \text{on} \quad \Gamma_1 \cup \Gamma_2,$$

or by (1.0)

$$\left. \frac{\partial}{\partial \nu} (p + y) \right| = 0 \quad \text{on} \quad \Gamma_1 \cup \Gamma_2. \tag{1.2}$$

On Γ_4 the fluid is free to exit the porous medium and thus one has

$$v \cdot \nu \geq 0 \quad \text{on} \quad \Gamma_4,$$

which reads again by (1.0)

$$\left. \frac{\partial}{\partial \nu} (p + y) \right| \leq 0 \quad \text{on} \quad \Gamma_4. \tag{1.3}$$

We will denote by φ the outside pressure on $S_2 \cup S_3$. For instance, if we assume that we are in the case of the figure 1, and if the atmospheric pressure has been scaled to 0, then φ is given by

$$\varphi(x, y) = 0 \quad \text{if} \quad (x, y) \in S_2$$

$$= h_i - y \quad \text{if} \quad (x, y) \in S_{3,i}, \quad i = 1, \ldots, N.$$

h_i denotes the level of the reservoir covering $S_{3,i}$. (We assume that the fluid is water and the units chosen in such a way that the hydrostatic pressure at (x, y) of a reservoir of level h is given by $h - y$). Clearly φ is a Lipschitz continuous function. In what follows we could consider the case of a general Lipschitz function φ. However we will restrict our analysis to φ given by the above expression – i.e. to the case where the external pressure is due to reservoirs hanging around.

Besides (1.2) there is a second condition on Γ_2 – i.e. the pressure p coincides with the atmospheric pressure – in such a way that

$$p = 0 \quad \text{on} \quad \Gamma_2. \tag{1.4}$$

In [C.C] or [C] we considered the case of Dirichlet boundary condition – i.e. the case where p is prescribed equal to φ on S_3. Here we would like to prescribe the flux on this
part of boundary. More precisely we would like to consider the case where the flux is
governed by a function of the jump of pressure across S_3. This kind of conditions is called
a “leaky boundary condition” and we refer the reader to [Be] for physical justifications of
such a model.

So, we will assume that

$$\frac{\partial}{\partial \nu} (p + y) = \beta(x, \varphi - p) \quad \text{on} \quad S_3. \quad (1.5)$$

Here x denotes a point in \mathbb{R}^2. We use the same notation for the first entry of such a point
but we do not think that this will create any confusion. On β we can assume for instance

$$\beta(x, 0) \in L^2(S_3) \quad (1.6)$$

where $L^2(S_3)$ denotes the usual space of functions of square integrable on S_3 for the
superficial measure σ (see for instance [N.])

$$x \to \beta(x, u) \quad \text{is measurable for every} \quad u \in \mathbb{R}, \quad (1.7)$$

and also $\exists C > 0$ such that

$$|\beta(x, u_1) - \beta(x, u_2)| \leq C |u_1 - u_2| \quad \sigma\text{-a.e.} \quad x \in S_3, \quad \forall u_1, u_2 \in \mathbb{R}, \quad (1.8)$$

$$u \to \beta(x, u) \quad \text{is nondecreasing for} \quad \sigma\text{-a.e.} \quad x \in S_3, \quad (1.9)$$

$$\beta(x, u) \geq 0 \quad \sigma\text{-a.e.} \quad x \in S_3, \quad \forall u \geq 0. \quad (1.10)$$

A particular case is when

$$\beta(x, u) = \beta_i(u) \quad \text{for} \quad x \in S_{3,i}.$$

One could also think to extend our results to the case where β_i is a maximal monotone
graph. For instance if β_i is for every $i = 1, \ldots, N$ the multivalued graph

$$\beta_i = (0, \mathbb{R})$$
then one recovers the Dirichlet conditions of [C.C.] (see [Br] for this theory and also [R] for results in this direction). However, since our concern is mainly to stress out the differences between this model and the classical one we will not consider such a generalization here.

So, assuming that everything is smooth the problem is to find a pair \((p, A)\) such that (1.1)-(1.5) holds. This is what will be referred as the strong formulation.

2. Weak formulation

First remark that find the pair \((p, A)\) is equivalent to find the pair \((p, \chi_A)\) where \(\chi_A\) denotes the characteristic function of the set \(A\). Then, following [B.K.S.] (see also [A.]), for any smooth function \(\xi\) one has

\[
\int_A \nabla p \cdot \nabla \xi + \xi_y \, dx = \int_A \nabla (p + y) \cdot \nabla \xi \, dx \\
= \int_A -\Delta (p + y) \cdot \xi \, dx + \int_{\partial A} \frac{\partial p + y}{\partial \nu} \cdot \xi \, d\sigma(x).
\]

So, if we assume that \(p\) is a smooth function satisfying (1.1)-(1.5) one gets by (1.1)

\[
\int_A \nabla p \cdot \nabla \xi + \xi_y \, dx = \int_{\partial A} \frac{\partial p + y}{\partial \nu} \cdot \xi \, d\sigma(x).
\]

Using (1.2) and (1.5) this implies:

\[
\int_A \nabla p \cdot \nabla \xi + \xi_y \, dx = \int_{S_3} \beta(x, \varphi - p) \cdot \xi \, d\sigma(x) + \int_{\Gamma_4} \frac{\partial p + y}{\partial \nu} \cdot \xi \, d\sigma(x)
\]

and if we assume that

\[
\xi \geq 0 \quad \text{on} \quad \Gamma_4
\]

we get by (1.3)

\[
\int_A \nabla p \cdot \nabla \xi + \xi_y \, dx - \int_{S_3} \beta(x, \varphi - p) \cdot \xi \, d\sigma(x) \leq 0. \tag{2.2}
\]

Now, see (1.4), assume that we extend \(p\) by 0 outside of \(A\) and that we still denote by \(p\) this extension. Then, clearly, if \(p\) is smooth up to \(\Gamma_2\) one deduces from (2.2) that

\[
\int_{\Omega} \nabla p \cdot \nabla \xi + \chi_A \xi_y \, dx - \int_{S_3} \beta(x, \varphi - p) \cdot \xi \, d\sigma(x) \leq 0 \quad \forall \xi \geq 0 \quad \text{on} \quad \Gamma_2. \tag{2.3}
\]
The part \(\Gamma_4 \) is an unknown of the problem so we have assumed that \(\xi \geq 0 \) on \(S_2 \) and this implies in particular \(\xi \geq 0 \) on \(\Gamma_4 \).

So, we are led to look for a pair \((p, \chi) = (p, \chi_A) \) satisfying (2.3). Recasting this within reasonable spaces the problem becomes:

Find \((p, \chi) \in H^1(\Omega) \times L^\infty(\Omega) \) such that

\[
\begin{align*}
(i) \quad & p \geq 0, \quad 0 \leq \chi \leq 1 \quad \text{a.e. in } \Omega, \quad \chi = 1 \text{ on } [p > 0] = \{(x, y) \in \Omega \mid p(x, y) > 0\}, \\
(ii) \quad & p = 0 \quad \text{on } S_2, \\
(iii) \quad & \int_\Omega \nabla p \cdot \nabla \xi + \chi \xi_y \, dx - \int_\Omega \beta(x, \varphi - p) \cdot \xi \, d\sigma(x) \leq 0 \quad \forall \xi \in H^1(\Omega), \quad \xi \geq 0 \quad \text{on } S_2.
\end{align*}
\]

We will refer to \((P)\) as the weak formulation of our initial problem. Clearly if (1.1)-(1.5) has a solution \((p, A)\) and if \(p \) denotes also the extension of \(p \) by 0 outside \(A \) then we have shown above that \((p, \chi_A)\) is a solution to \((P)\) and thus any strong solutions to our initial problem will be found among those of \((P)\).

We now study the question of the existence of a solution to \((P)\).

3. Existence of solution

We argue as in [B.K.S.] and we first introduce the following approximated problem.

Find \(p_\varepsilon \in H^1(\Omega) \) such that

\[
p_\varepsilon = 0 \quad \text{on } S_2 \quad \text{and}
\]

\[
\int_\Omega \nabla p_\varepsilon \cdot \nabla \xi + H_\varepsilon(p_\varepsilon) \cdot \xi_y \, dx - \int_{S_3} \beta(x, \varphi - p_\varepsilon) \cdot \xi \, d\sigma(x) = 0 \quad \forall \xi \in H^1(\Omega), \quad \xi = 0 \quad \text{on } S_2 \quad (P_\varepsilon)
\]

\(H_\varepsilon \) is the approximation of the Heaviside graph defined by

\[
H_\varepsilon(p) = 0 \lor \frac{1}{\varepsilon} p \land 1 \quad (3.1)
\]

where \(\lor \) denotes the maximum of two functions and \(\land \) the minimum, \(\varepsilon \) is positive.

Then we have:
THEOREM 1: Assume that $\beta(x,u)$ is a function satisfying (1.6)-(1.10). Then, under the above assumptions, for any $\varepsilon > 0$ there exists a unique solution p_ε to (P_ε). Moreover, one has

$$0 \leq p_\varepsilon \quad \text{a.e. in } \Omega. \quad (3.2)$$

Proof: Set

$$V = \{ v \in H^1(\Omega) \mid v = 0 \quad \text{on } S_2 \}.$$

For $p \in V$ let us consider the map from V into \mathbb{R}:

$$\xi \rightarrow \int_{\Omega} \nabla p \cdot \nabla \xi \, dx - \int_{S_3} \beta(x, \gamma_0(\varphi - p)) \cdot \xi \, d\sigma(x) \quad (3.3)$$

where γ_0 denotes the usual trace operator (see [N] or [R.T.]). We will sometimes drop for simplicity the notation γ_0 in the second integral of (3.3).

Since β is Lipschitz continuous and satisfies (1.6), (1.8) one has

$$\left| \int_{S_3} \beta(x, \gamma_0(\varphi - p)) \cdot \xi \, d\sigma(x) \right| \leq C|\gamma_0(\varphi - p)|_{2, S_3} |\xi|_{2, S_3} + |\beta(x, 0)|_{2, S_3} |\xi|_{2, S_3} \leq K|\xi|_{1, 2} \quad (3.4)$$

where $|\cdot|_{2, S_3}$ denotes the usual L^2-norm on $L^2(S_3)$ and $|\cdot|_{1, 2}$ denotes the $H^1(\Omega)$-norm. We assume V equipped with this last norm. We deduce from (3.4) that (3.3) defines a continuous linear form on V that we denote by $A(p)$. Thus if $\langle \cdot, \cdot \rangle$ denotes the pairing between V' and V, we have defined an operator A from V into V' through the formula

$$\langle A(p), \xi \rangle = \int_{\Omega} \nabla p \cdot \nabla \xi \, dx - \int_{S_3} \beta(x, \gamma_0(\varphi - p)) \cdot \xi \, d\sigma(x). \quad (3.5)$$

It is easy to check that A is monotone on V. More precisely one has

$$\langle A(p) - A(p'), p - p' \rangle \geq \int_{\Omega} |\nabla (p - p')|^2 \, dx. \quad (3.6)$$

and A is coercive on V (see [L.]). Moreover, A restricted to finite dimensional spaces is clearly continuous. So, see [L.], A is a one-to-one operator from V into V'. Now, if $v \in L^2(\Omega)$ then
\[\xi \rightarrow - \int_{\Omega} H_\varepsilon(v) \xi_y \, dx \]
defines a continuous linear form on \(V \). Thus, for any \(v \in L^2(\Omega) \) there exists a unique \(u_\varepsilon = \tau_\varepsilon(v) \) such that

\[u_\varepsilon \in V, \quad <A(u_\varepsilon), \xi> = - \int_{\Omega} H_\varepsilon(v) \xi_y \, dx \quad \forall \xi \in V. \tag{3.7} \]

So, to prove that there exists a solution to \((P_\varepsilon)\) we now only need to show that the map \(\tau_\varepsilon \) has a fixed point. For that, if \(\varphi \) denotes a Lipschitz continuous extension of \(\varphi \) to \(\Omega \), we remark that \(u_\varepsilon - \varphi \in V \), thus from (3.7) we obtain

\[<A(u_\varepsilon), u_\varepsilon - \varphi> = - \int_{\Omega} H_\varepsilon(v)(u_\varepsilon - \varphi)_y \, dx \]
hence for some constant \(C \) independent of \(\varepsilon \)

\[<A(u_\varepsilon) - A(\varphi), u_\varepsilon - \varphi> = - <A(\varphi), u_\varepsilon - \varphi> - \int_{\Omega} H_\varepsilon(v) \cdot (u_\varepsilon - \varphi)_y \, dx \]

\[= - \int_{\Omega} \nabla \varphi \cdot \nabla (u_\varepsilon - \varphi) \, dx + \int_{S_3} \beta(x,0)(u_\varepsilon - \varphi) \, d\sigma(x) - \int_{\Omega} H_\varepsilon(v)(u_\varepsilon - \varphi)_y \, dx \]

\[\leq (\|\nabla \varphi\|_2 + |\Omega|^{1/2} + C\|\beta(x,0)\|_{2,S_3})\|\nabla (u_\varepsilon - \varphi)\|_2 \tag{3.8} \]

by Cauchy-Schwarz inequality. \((\| \quad \|_2 \) denote the Euclidean norm in \(\mathbb{R}^n \) or the Lebesgue measure, \(\| \) \(2 \) is the \(L^2 \) norm on \(L^2(\Omega) \), we used the continuity of the trace operator, see [N.]). Recalling (3.6) we obtain

\[\int_{\Omega} |\nabla (u_\varepsilon - \varphi)|^2 \leq (\|\nabla \varphi\|_2 + |\Omega|^{1/2} + C\|\beta(x,0)\|_{2,S_3})^2 \] \tag{3.9}

and thus

\[|u_\varepsilon|_{1,2} \leq C \tag{3.10} \]

where \(C \) is some constant independent of \(\varepsilon \). The existence of a fixed point for \(\tau_\varepsilon \) follows then easily from the Schauder fixed point theorem. Hence the existence of \(p_\varepsilon \).
To prove uniqueness one argues like in [B.K.S.] - see also [C.M.] for more general results.

More precisely, set for \(\delta > 0 \)

\[
f_\delta(x) = (1 - \frac{\delta}{x})^+ \quad \text{if} \quad x \geq 0
\]

\[
0 \quad \text{if} \quad x \leq 0
\]

\((\quad)^+\) denotes the positive part of functions. Then \(f_\delta\) is a Lipschitz continuous function and if \(p_\epsilon, p'_\epsilon\) are solutions to \((P_\epsilon)\) then

\[
f_\delta(p_\epsilon - p'_\epsilon) \in V.
\]

Thus one deduces from \((P_\epsilon)\) written for \(p_\epsilon\) and \(p'_\epsilon\)

\[
\begin{align*}
\int_{\Omega} \nabla(p_\epsilon - p'_\epsilon) \cdot \nabla f_\delta(p_\epsilon - p'_\epsilon) \, dx &= -\int_{\Omega} (H_\epsilon(p_\epsilon) - H_\epsilon(p'_\epsilon)) f_\delta(p_\epsilon - p'_\epsilon) y \, dx \\
&\quad + \int_{S_3} \beta(x, \varphi - p_\epsilon) - \beta(x, \varphi - p'_\epsilon) \cdot f_\delta(p_\epsilon - p'_\epsilon) \, d\sigma(x).
\end{align*}
\]

(3.12)

Hence, by the monotonicity of \(\beta\)

\[
\int_{\Omega} \nabla(p_\epsilon - p'_\epsilon) \cdot \nabla f_\delta(p_\epsilon - p'_\epsilon) \, dx \leq -\int_{\Omega} (H_\epsilon(p_\epsilon) - H_\epsilon(p'_\epsilon)) f_\delta(p_\epsilon - p'_\epsilon) y \, dx
\]

So, if we set \(q_\epsilon = p_\epsilon - p'_\epsilon, [q_\epsilon > \delta] = \{x \in \Omega : q_\epsilon(x) > \delta\}\) we obtain easily using (3.11) and the Lipschitz continuity of \(H_\epsilon\)

\[
\int_{[q_\epsilon > \delta]} \frac{|\nabla q_\epsilon|^2}{q_\epsilon^2} \, dx \leq \frac{1}{\epsilon} \int_{[q_\epsilon > \delta]} \frac{|\nabla q_\epsilon|}{q_\epsilon} \, dx.
\]

Hence, by Cauchy-Schwarz Inequality

\[
\int_{\Omega} \left| \nabla \ln \left(1 + \frac{(q_\epsilon - \delta)^+}{\delta} \right) \right|^2 \, dx = \int_{[q_\epsilon > \delta]} \frac{|\nabla q_\epsilon|^2}{q_\epsilon^2} \, dx \leq \frac{|\Omega|}{\epsilon^2}.
\]

By Poincaré's Inequality we obtain

\[
\int_{\Omega} \left| \ln \left(1 + \frac{(q_\epsilon - \delta)^+}{\delta} \right) \right|^2 \, dx \leq C
\]

- 10 -
where \(C \) is independent of \(\delta \). Letting \(\delta \to 0 \) we deduce

\[
q_\varepsilon \leq 0 \quad \text{a.e. in } \Omega
\]

and the uniqueness of \(p_\varepsilon \) follows by exchanging the roles of \(p_\varepsilon \) and \(p'_\varepsilon \). To prove (3.2) if we set \(\xi = (p_\varepsilon)^- \) in \((P_\varepsilon)\) we obtain:

\[
- \int_\Omega |\nabla p^-_\varepsilon|^2 \, dx - \int_{S_3} \beta(x, \varphi - p_\varepsilon) \cdot p^-_\varepsilon \, d\sigma(x) = 0
\]

hence by (1.10)

\[
\int_\Omega |\nabla p^-_\varepsilon|^2 \, dx \leq 0
\]

and (3.2) follows.

Remark 1: We have in fact that if \(\varphi, \varphi' \) are such that

\[
\varphi \leq \varphi' \quad \text{on } S_2 \cup S_3
\]

then the corresponding solutions \(p_\varepsilon \) and \(p'_\varepsilon \) are such that

\[
p_\varepsilon \leq p'_\varepsilon \quad \text{a.e. in } \Omega.
\]

Indeed \(f_\delta(p_\varepsilon - p'_\varepsilon) \in V \) and the last integral in (3.12) written with \(\varphi \) and \(\varphi' \) is non positive.

In fact one can also prove existence of a non negative solution to \((P_\varepsilon)\) when \(u \to \beta(x, u) \) is not assumed to be nondecreasing. Indeed one has

THEOREM 1': Assume that \(\beta(x, u) \) is a Carathéodory function - i.e. measurable in \(x \) for every \(u \) and continuous in \(u \) for \(\sigma\text{-a.e. } x \) and such that for some constant \(a, b \) one has

\[
|\beta(x, u)| \leq a|u| + b \quad \sigma\text{-a.e. } x \in S_3, \quad \forall \, u \in \mathbb{R}.
\]

Then if \(a \) is small enough there exists a solution to \((P_\varepsilon)\). Moreover if (1.10) holds then one has

\[
p_\varepsilon \geq 0 \quad \text{a.e. in } \Omega.
\]
Proof: For \(v \in L^2(S_3) \) there exists a unique \(u_\epsilon \in V \) such that

\[
\int_\Omega \nabla u_\epsilon \cdot \nabla \xi \, dx = - \int_\Omega H_\epsilon(u_\epsilon) \xi_y \, dx + \int_{S_3} \beta(x, \varphi - v) \cdot \xi \, d\sigma(x). \tag{3.14}
\]

This is an easy consequence of the Schauder fixed point theorem (see the proof above). Set

\[
\tau_\epsilon(v) = \gamma_0(u_\epsilon)
\]

where \(\gamma_0 \) denotes the trace on \(S_3 \). Clearly, \(\tau_\epsilon \) is a continuous map from \(L^2(S_3) \) into itself. Set

\[
K = \{ v \in L^2(S_3) \mid |v - \varphi|_2 \leq R \}.
\]

Then \(K \) is a closed convex of \(L^2(S_3) \). Taking \(\xi = u_\epsilon - \varphi \) in (3.14) we get:

\[
\int_\Omega |\nabla(u_\epsilon - \varphi)|^2 \, dx = - \int_\Omega \nabla \varphi \cdot \nabla(u_\epsilon - \varphi) \, dx
\]

\[
- \int_\Omega H_\epsilon(u_\epsilon) \cdot (u_\epsilon - \varphi)_y \, dx + \int_{S_3} \beta(x, \varphi - v) \cdot (u_\epsilon - \varphi) \, d\sigma(x)
\]

(we assume \(\varphi \) extended to \(\Omega \) into a Lipschitz function -see [E. T.]). Applying Cauchy-Schwarz Inequality and (3.13) we get easily

\[
||\nabla(u_\epsilon - \varphi)||_2^2 \leq (||\nabla\varphi||_2 + |\Omega|^{1/2})||\nabla(u_\epsilon - \varphi)||_2 + (a|v - \varphi|_{2,S_3} + b|S_3|^{1/2})|u_\epsilon - \varphi|_{2,S_3}
\]

with obvious notation. Now clearly for some constant \(C \) one has

\[
|u_\epsilon - \varphi|_{2,S_3} \leq C||\nabla(u_\epsilon - \varphi)||_2
\]

(see for instance [R.T.]) and one deduces

\[
||\nabla(u_\epsilon - \varphi)||_2 \leq ||\nabla\varphi||_2 + |\Omega|^{1/2} + bC|S_3|^{1/2} + aC|v - \varphi|_{2,S_3} \tag{3.15}
\]

and thus

\[
|u_\epsilon - \varphi|_{2,S_3} \leq C||\nabla(u_\epsilon - \varphi)||_2 \leq C||\nabla\varphi||_2 + C|\Omega|^{1/2} + bC^2|S_3|^{1/2} + aC^2|v - \varphi|_{2,S_3}
\]

- 12-
If we choose \(v \in K \) then \(u_\varepsilon = \tau_\varepsilon(v) \in K \) provided

\[
C\|\nabla \varphi\|_2 + C|\Omega|^{1/2} + bC^2|S_3|^{1/2} + aC^2R \leq R
\]

i.e. if \(aC^2 \leq 1 \) provided that

\[
R \geq (1 - aC^2)^{-1} \cdot C\{\|\nabla \varphi\|_2 + |\Omega|^{1/2} + bC|S_3|^{1/2}\}. \tag{3.16}
\]

Thus if we assume that \(aC^2 < 1 \) and (3.16) holds then \(\tau_\varepsilon \) is an operator from \(K \) into \(K \). Moreover, by (3.15) \(u_\varepsilon \) is uniformly bounded in \(H^1(\Omega) \) and \(\tau_\varepsilon \) is compact. The existence of a fixed point for \(\tau_\varepsilon \) is then a consequence of the Schauder fixed point theorem. This proves the existence of \(p_\varepsilon \). To prove that \(p_\varepsilon \geq 0 \) one argues as in the end of the proof of Theorem 1.

Remark 2: Theorem 1' applies for instance when for some constants \(\alpha, \gamma \)

\[
|\beta(x,u)| \leq \alpha|u|^{1-\varepsilon} + \gamma \quad \sigma\text{-a.e. } x \in S_3, \quad \forall u \in \mathbb{R}. \tag{3.17}
\]

Indeed, in this case, it is easy to show that (3.13) holds for \(a \) as small as we wish.

We are now able to show

THEOREM 2: Assume that \(\beta \) is a function satisfying (1.10) and (1.6)-(1.9) or (3.19), then there exists a solution \((p, \chi)\) to the problem \((P)\).

Proof: Let \(p_\varepsilon \) be the solution to \((P_\varepsilon)\). From (3.10), (3.15) one deduces

\[
|p_\varepsilon|_{1,2} \leq C
\]

where \(C \) is some constant independent of \(\varepsilon \). So, using classical compactness arguments (see [N.]) one can extract a subsequence of \(\varepsilon \), still denoted by \(\varepsilon \), such that for some \(p \in V \)

\[
p_\varepsilon \rightarrow p \quad \text{in } H^1(\Omega), \quad p_\varepsilon \rightarrow p \quad \text{in } L^2(\Omega) \quad \text{and a.e. on } \Omega \quad \tag{3.18}
\]

\[
\gamma_0(p_\varepsilon) \rightarrow \gamma_0(p) \quad \text{in } L^2(S_3) \quad \tag{3.19}
\]
Since \(\{ v \in V \mid v(x) \geq 0 \text{ a.e. on } \Omega \} \) is closed and convex it is weakly closed and thus \(p \) is in this set so that

\[
p \geq 0 \text{ a.e. in } \Omega. \tag{3.20}
\]

Since \(H_\epsilon(p_\epsilon) \) is uniformly bounded there exists a function \(\chi \) such that

\[
H_\epsilon(p_\epsilon) \rightharpoonup \chi \text{ in } L^2(\Omega). \tag{3.21}
\]

The set

\[
\{ f \in L^\infty(\Omega) \mid 0 \leq f \leq 1 \text{ a.e. in } \Omega \}
\]

being closed and convex is weakly closed and by (3.21) one has

\[
0 \leq \chi \leq 1 \text{ a.e. in } \Omega. \tag{3.22}
\]

By (3.18) on \([p > 0]\) one has

\[
H_\epsilon(p_\epsilon) \rightarrow 1 \text{ a.e.}
\]

and thus by the Lebesgue theorem

\[
H_\epsilon(p_\epsilon) \rightarrow 1 \text{ in } L^2([p > 0]).
\]

Since by (3.21) one has also

\[
H_\epsilon(p_\epsilon) \rightharpoonup \chi \text{ in } L^2([p > 0])
\]

one deduces

\[
\chi = 1 \text{ on } [p > 0] \tag{3.23}
\]

and thus (P) (i), (iii) follows.

Next, for \(\xi \in H^1(\Omega), \xi \geq 0 \) on \(S_2 \) one has for any \(\delta > 0 \)

\[
\xi, \frac{p_\epsilon}{\delta} \in V.
\]
Thus inserting this function in \((P_\varepsilon)\) we obtain

\[
\int \nabla p_\varepsilon \cdot \nabla (\xi \cdot \frac{p_\varepsilon}{\delta}) \, dx + H_\varepsilon(p_\varepsilon)(\xi \cdot \frac{p_\varepsilon}{\delta})_y \, dx - \int_{S_3} \beta(x, \varphi - p_\varepsilon) \cdot \xi \cdot \frac{p_\varepsilon}{\delta} \, d\sigma(x) = 0.
\]

Thus, we have also

\[
\int_{[\xi \leq \xi_{\varepsilon}]_{\Omega}} \nabla p_\varepsilon \cdot \nabla \xi \, dx + \int_{\Omega} H_\varepsilon(p_\varepsilon)(\xi \cdot \frac{p_\varepsilon}{\delta})_y \, dx - \int_{S_3} \beta(x, \varphi - p_\varepsilon) \cdot (\xi \cdot \frac{p_\varepsilon}{\delta}) \, d\sigma(x)
= - \int_{[\xi_{\varepsilon} < \xi]_{\Omega}} |\nabla p_\varepsilon|^2 \, dx \leq 0. \tag{3.24}
\]

(If \(f, g\) are two functions we denote by \([f < g], [f \leq g]\) the sets defined by \([f < g] = \{(x, y) \in \Omega \mid f(x, y) < g(x, y)\}\), \([f \leq g] = \{(x, y) \in \Omega \mid f(x, y) \leq g(x, y)\}\). We will use this notation subsequently without further notice). Now, using the divergence theorem, remark that

\[
\int_{\Omega} H_\varepsilon(p_\varepsilon)(\xi \cdot \frac{p_\varepsilon}{\delta})_y \, dx = - \int_{\Omega} (H_\varepsilon(p_\varepsilon))_y \cdot \xi \cdot \frac{p_\varepsilon}{\delta} \, dx + \int_{\partial \Omega} H_\varepsilon(p_\varepsilon) \cdot \nu_y \cdot \xi \cdot \frac{p_\varepsilon}{\delta} \, d\sigma(x) \tag{3.25}
\]

where \(\nu_y\) denote the second entry of the outward normal to \(\Omega\). Note that in this formula as well as in (3.24) we use the fact that

\[
\gamma_0 \left(\xi \cdot \frac{p_\varepsilon}{\delta}\right) = \gamma_0(\xi) \cdot \gamma_0 \left(\frac{p_\varepsilon}{\delta}\right).
\]

Letting \(\delta \to 0\) in (3.25) and since

\[
\xi \cdot \frac{p_\varepsilon}{\delta} \to \xi \quad \text{a.e. on } \ p_\varepsilon > 0
\]

we obtain by the Lebesgue theorem

\[
\lim_{\delta \to 0} \int_{\Omega} H_\varepsilon(p_\varepsilon)(\xi \cdot \frac{p_\varepsilon}{\delta})_y \, dx = - \int_{\Omega} H_\varepsilon(p_\varepsilon)_y \cdot \xi \, dx + \int_{\partial \Omega} H_\varepsilon(p_\varepsilon) \cdot \nu_y \cdot \xi \, d\sigma(x)
= \int_{\Omega} H_\varepsilon(p_\varepsilon) \cdot \xi_y \, dx.
\]

Next, passing in the limit in (3.24) we get easily for any \(\xi \in H^1(\Omega), \xi \geq 0\) on \(S_2\)

\[
\int_{\Omega} \nabla p_\varepsilon \cdot \nabla \xi \, dx + \int_{\Omega} H_\varepsilon(p_\varepsilon)\xi_y \, dx - \int_{S_3} \beta(x, \varphi - p_\varepsilon) \cdot \xi \, d\sigma(x) \leq 0. \tag{3.26}
\]

- 15-
The only difficulty is maybe to pass to the limit in the last integral of the left hand side of (3.24). For that note that

\[- \int_{S_3} \beta(x, \varphi - p_{\varepsilon}) \cdot \left(\xi \wedge \frac{p_{\varepsilon}}{\delta}\right) d\sigma(x) = \]

\[- \int_{S_3 \cap [p_{\varepsilon} > 0]} \beta(x, \varphi - p_{\varepsilon}) \cdot \left(\xi \wedge \frac{p_{\varepsilon}}{\delta}\right) d\sigma(x) - \int_{S_3 \cap [p_{\varepsilon} = 0]} \beta(x, \varphi) \cdot \left(\xi \wedge 0\right) d\sigma(x) \]

\[\geq - \int_{S_3 \cap [p_{\varepsilon} > 0]} \beta(x, \varphi - p_{\varepsilon}) \cdot \left(\xi \wedge \frac{p_{\varepsilon}}{\delta}\right) d\sigma(x) - \int_{S_3 \cap [p_{\varepsilon} = 0]} \beta(x, \varphi) \cdot \xi d\sigma(x) \]

since \(\beta(x, \varphi) \geq 0 \). Letting \(\delta \to 0 \), by the Lebesgue theorem, we deduce

\[\lim_{\delta \to 0} - \int_{S_3} \beta(x, \varphi - p_{\varepsilon}) \cdot \left(\xi \wedge \frac{p_{\varepsilon}}{\delta}\right) d\sigma(x) \geq - \int_{S_3} \beta(x, \varphi - p_{\varepsilon}) \cdot \xi d\sigma(x) \]

and (3.26) follows.

Then letting \(\varepsilon \to 0 \) in (3.26) and using (3.18), (3.19), (3.21) we obtain for any \(\xi \in H^1(\Omega), \xi \geq 0 \) on \(S_2 \)

\[\int_{\Omega} \nabla p \cdot \xi \, dx + \int_{\Omega} \chi \xi_y \, dx - \int_{S_3} \beta(x, \varphi - p) \cdot \xi \, d\sigma(x) \leq 0 \]

and (P) (iii) follows.

4. Some properties of the solutions

In this section we describe some useful properties of any solution \((p, \chi)\) to (P). Some of these results are similar to the ones in [C.C.] but proved with new methods.

First we have

PROPOSITION 1: Let \((p, \chi)\) be a pair solution to (P). Then one has in the distributional sense

\[
\Delta p + \chi_y = 0 \quad \text{in} \quad \Omega \\
\Delta p \geq 0 \quad , \quad \chi_y \leq 0 \quad \text{in} \quad \Omega.
\]
Proof: If $\xi \in D(\Omega)$, $D(\Omega)$ is the space of C^∞ functions with compact support in Ω, then $\pm \xi$ is a test function for (P) (iii) and one gets since ξ vanishes on $\partial \Omega$

$$\int_\Omega \nabla p \cdot \nabla \xi + \chi \xi_y \, dx = 0 \quad \forall \ \xi \in D(\Omega)$$

which is (4.1).

Next, if $\xi \in D(\Omega)$, $\xi \geq 0$ then $\pm H_\varepsilon(p)\xi$ is a test function for (P) (iii). (H_ε is defined by (3.1)).

From (P) (iii) we then deduce

$$\int_\Omega \nabla p \cdot \nabla (H_\varepsilon(p)\xi) + \chi \cdot (H_\varepsilon(p)\xi)_y \, dx = 0.$$

Hence, since on $[p = 0]$, $H_\varepsilon(p) = 0$ and on $[p > 0]$, $\chi = 1$:

$$\int_\Omega H_\varepsilon(p) \nabla p \cdot \nabla \xi + (H_\varepsilon(p)\xi)_y \, dx = - \int_\Omega H'_\varepsilon(p)\xi \cdot |\nabla p|^2 \, dx \leq 0.$$

Since $H_\varepsilon(p)\xi = 0$ on $\partial \Omega$, we get applying the divergence theorem for the second integral

$$\int_\Omega H_\varepsilon(p) \nabla p \cdot \nabla \xi \, dx \leq 0 \quad \forall \ \xi \in D(\Omega), \ \xi \geq 0.$$

Letting $\varepsilon \to 0$, by the Lébesgue convergence theorem we obtain

$$\int_\Omega \nabla p \cdot \nabla \xi \, dx \leq 0 \quad \forall \ \xi \in D(\Omega), \ \xi \geq 0. \quad (4.3)$$

The first inequality of (4.2) follows, the second results from (4.1).

As a consequence we have:

COROLLARY 1: Let (p, χ) a pair of solution to (P) then for any $s > 1$

$$p \in W^{1,s}_{loc}(\Omega).$$

Proof: This is a consequence of (4.1) since $\chi_y \in W^{-1,s}(\Omega)$ for any s and from the usual regularity theory -see for instance [B.L.].
Remark 3: As a consequence of our corollary

\[[p > 0] = \{(x, y) \in \Omega \mid p(x, y) > 0\} \]

is open in \(\Omega\) since \(p\) is continuous in \(\Omega\). (see [G.T.], [K.S.]). In fact \(p\) is continuous at any point of \(\Omega \cup S_2\).

We have also

PROPOSITION 2: Let \((p, \chi)\) be a solution to \((P)\). Let \((x_0, y_0) \in \Omega\). If \(p(x_0, y_0) > 0\) then there exists \(\varepsilon > 0\) such that the cylinder

\[C_\varepsilon = \{(x, y) \in \Omega \mid |x - x_0| < \varepsilon , \ y < y_0 + \varepsilon\} \]

lies in the set \([p > 0]\).

If \(p(x_0, y_0) = 0\) then \(p(x_0, y) = 0\) \(\forall (x_0, y) \in \Omega, \ y > y_0\).

Proof: The proof follows [C.C.] but we reproduce it for the reader’s convenience. If \(p(x_0, y_0) > 0\) then since the set \([p > 0]\) is open there exists some \(\varepsilon > 0\) such that the square

\[Q_\varepsilon = \{(x, y) \in \Omega \mid |x - x_0| < \varepsilon , \ |y - y_0| < \varepsilon\} \]

is included in \([p > 0]\). On \(Q_\varepsilon\) by \((P)\)(i) one has \(\chi = 1\), hence since by (4.2) \(\chi\) is non decreasing in \(y\) one has \(\chi = 1\) on \(C_\varepsilon\). By (4.1) we deduce that \(p\) is harmonic on \(C_\varepsilon\). If \(p\) should vanish on \(C_\varepsilon\) we would then get a contradiction with the maximum principle. This proves the first part of the proposition. The second part follows directly from the first.

In the case of Dirichlet boundary conditions -and in a case like for instance on figure 1- the pressure remains positive below \(S_3\) (see [C.C.]). We would like to show that this is no more the case in the present situation.

First let us show

PROPOSITION 3: Assume that \(\beta \equiv 0\). Then every solution to \((P)\) is given by

\[(p, \chi) = (h - y, 1) \] \hspace{1cm} (4.4)

on every connected component of \([p > 0]\),

- 18 -
(p, \chi) = (0, 0) \quad (4.5)

elsewhere.

Proof: If $\beta \equiv 0$ one has

$$
\int_{\Omega} \nabla p \cdot \nabla \xi + \chi \xi_y \, dx \leq 0, \quad \forall \xi \geq 0 \quad \text{on } S_2.
$$

Taking $\xi = \pm p$ we deduce

$$
\int_{\Omega} |\nabla p|^2 + \chi p_y \, dx = 0. \quad (4.6)
$$

Taking $\xi = k + y$ for k large enough in such a way that $k + y \geq 0$ on S_2 we get

$$
\int_{\Omega} p_y + \chi \, dx \leq 0.
$$

Since $\chi = 1$ on $[p > 0]$ and $0 \leq \chi \leq 1$ this last inequality implies

$$
\int_{\Omega} \chi p_y + \chi^2 \, dx \leq 0. \quad (4.7)
$$

Adding (4.6) and (4.7) we get

$$
\int_{\Omega} |\nabla p|^2 + 2\chi p_y + \chi^2 \, dx \leq 0
$$

hence

$$
\int_{\Omega} p_x^2 + (p_y + \chi)^2 \, dx \leq 0. \quad (4.8)
$$

Thus we obtain

$$
\nabla p = (0, -\chi) \quad \text{a.e. in } \Omega.
$$

In particular on any connected component of $[p > 0]$

$$
\nabla p = (0, -1)
$$
and thus $p = (h - y)$. Outside

$$(0, 0) = \nabla p = (0, -\chi)$$

and the proposition follows.

Remark 4: It is clear that every pair given by (4.4), (4.5) defines a solution to (P) for $\beta = 0$. For instance in the case of figure 1 the pair

$$(p, \chi) = ((k - y)^+, \chi_{[y_k, k]})$$

is a solution to (P) for $\beta = 0$ provided that k is small enough (see figure 1). Clearly different values of k are suitable here so that (P) does not have a unique solution. We are encountering “pool” solutions as in the case of the dam problem with Dirichlet boundary condition — see [C.C]. We will see that again in Theorem 3.

We are now able to prove:

PROPOSITION 4: The region below S_3 is not in general saturated — i.e. one does not have in general $p > 0$ below S_3.

Proof: Consider β satisfying the assumptions of theorem 2. Then for any $0 < \eta < 1$ there exists (p_η, χ_η) solution of (P) corresponding to $\eta \beta$. In particular (P) (iii) reads

$$\int_{\Omega} \nabla p_{\eta} \nabla \xi + \chi_\eta \xi_y \, dx - \int_{S_3} \eta \beta(x, \varphi - p_{\eta}) \cdot \xi \, d\sigma(x) \leq 0 \quad (4.9)$$

for any $\xi \in H^1(\Omega), \xi \geq 0$ on S_2. Taking $\xi = p_\eta - \varphi$ in this inequality one deduces very easily (compare to (3.10), (3.15)) that

$$|p_\eta|_{1, 2} \leq C$$

where C is independent of η. Hence, up to a subsequence,

$$p_\eta \to p \text{ in } H^1(\Omega), \quad p_\eta \to p \text{ in } L^2(\Omega), \quad p_\eta \to p \text{ in } L^2(S_3)$$

$$p_\eta \to p \text{ a.e. in } \Omega, \quad \chi_\eta \to \chi \text{ in } L^2(\Omega).$$
when \(\eta \to 0 \). Passing to the limit in (4.9) we obtain

\[
\int_\Omega \nabla p \cdot \nabla \xi + \chi \xi_y \leq 0 \quad \forall \xi \in H^1(\Omega), \quad \forall \xi \in H^1(\Omega), \quad \xi \geq 0 \quad \text{on} \quad S_2.
\] (4.10)

Moreover, see the proof of theorem 2, one has clearly

\[
0 \leq p \quad , \quad p \in V \quad , \quad 0 \leq \chi \leq 1 \quad , \quad \chi = 1 \quad \text{on} \quad [p > 0]
\]

and thus \((p, \chi)\) is a solution of \((P)\) for \(\beta \equiv 0 \). If for any \(\eta \) one had \(p > 0 \) below \(S_3 \) one would have \(\chi_\eta \equiv 1 \) below \(S_3 \) and thus at the limit \(\chi \equiv 1 \) below \(S_3 \). This is clearly not the case by proposition 3.

Thus, roughly speaking, provided \(\beta \) is small enough an unsaturated region could develop. We will see in section 5 examples where \(p = 0 \) in a neighbourhood below \(S_3 \) and make further comments about this question.

Since the properties of \((p, \chi)\) in the model that we are considering differs significantly from the one of \((p, \chi)\) in the case of Dirichlet boundary conditions, it is worthwhile to check that problem \((P)\) is a free boundary problem.

For that we can prove.

THEOREM 3: Let us assume that \(\beta \) is chosen as in Theorem 2. Moreover let us assume that

\[
\beta(x, u) \cdot u \geq 0 \quad \forall u \in \mathbb{R}, \quad \sigma\text{-a.e.} \quad x \in S_3.
\] (4.11)

Let \((p, \chi)\) be a solution to \((P)\) and let us denote by \(h_1 \) the level of the highest reservoir. Then one has

\[
(p, \chi) = (\kappa - y, 1)
\]

on any connected component of \([p > 0]\) that intersects \([y > h_1]\). Moreover, outside these connected components one has

\[
p \leq (h_1 - y)^+.
\] (4.12)

Proof: Let \((p, \chi)\) be a solution of \((P)\). Taking

\[
\xi = (p - (h_1 - y)^+)^+
\]
in (P) (iii) we obtain
\[\int_\Omega \nabla p \cdot \nabla (p - (h_1 - y)^+) + x(p - (h_1 - y)^+) \right) dx - \int_{S_3} \beta(x, \varphi - p)(p - (h_1 - y)^+) \left. ds(x) \leq 0. \]

One integrates only on \(p > (h_1 - y)^+ > \varphi \), so on this set, by (4.11), one has
\[\beta(x, \varphi - p) \leq 0 \]
and the above inequality becomes
\[\int_\Omega \nabla p \cdot \nabla (p - (h_1 - y)^+) + x(p - (h_1 - y)^+) \right) dx \leq 0. \]

Now, on the set \(p > (h_1 - y)^+ \) we have \(p > 0 \) and thus \(\chi = 1 \) and we obtain
\[\int_\Omega \nabla p \cdot \nabla (p - (h_1 - y)^+) + (p - (h_1 - y)^+) \right) dx \leq 0 \]

which can be written
\[\int_{[y \leq h_1]} |\nabla (p - (h_1 - y))^+|^2 dx + \int_{[y > h_1]} |\nabla p|^2 + p_y dx \leq 0. \] (4.13)

Taking now \(\xi = (y - h_1)^+ \) in (P) (iii) we obtain since this function vanishes on \(S_3 \)
\[\int_{[y > h_1]} p_y + \chi dx \leq 0 \]

Noting that \(\chi^2 \leq \chi \) and \(\chi p_y = p_y \) a.e. we obtain
\[\int_{[y > h_1]} \chi p_y + \chi^2 dx \leq 0. \] (4.14)

Adding (4.13) and (4.14) we get
\[\int_{[y \leq h_1]} |\nabla (p - h_1 - y)^+|^2 dx + \int_{[y > h_1]} \chi^2 + (p_y + \chi)^2 dx \leq 0 \] (4.15)

from which we deduce
\[\nabla p = (0, -\chi) \quad \text{on} \quad [y > h_1]. \] (4.16)
Thus, on any connected component C of $[p > 0]$ that intersects $[y > h_1]$ one has

$$p = k - y.$$

Indeed $p = k - y$ on the part of C intersecting $[y > h_1]$. By analytic continuation since, by (4.1), $\Delta p = 0$ in C and thus p is analytic in C, one has $p = k - y$ on C. Outside of these connected components one has $p = 0$ - and thus (4.12) - or by (4.15)

$$\nabla (p - (h_1 - y)^+) = 0$$

when $y \leq h_1$. Thus, on any connected component of the set $[y < h_1]$ one has

$$(p - (h_1 - y)^+) = C st.$$

But any such a component touches somewhere the line $y = h_1$ where the constant is 0 since $p = 0$ (if p was not equal to 0 we would be on a component C of $[p > 0]$ intersecting $[y > h_1]$). If the constant vanishes then clearly (4.12) holds. This completes the proof.

Remark 5: Consider, for instance the following situation:

![Figure 2](image-url)
Then for $y > k$ one has $p = 0$. If not, one would have $p = h - y$ for $h > k$ and this will lead to a contradiction to $p = 0$ on S_2. For the same reason one has $(p, \chi) = (0, 0)$ in O (see figure 2 and (4.16)).

Taking $\xi = \pm p\chi_C$ (χ_C is the characteristic function of C) in (P) (iii) we get

$$\int_{C} |\nabla p|^2 + \chi p,\chi, dx = 0.$$

Taking $\xi = (y - k)\chi_C$ we get

$$\int_{C} p,\chi,\chi, dx \leq 0$$

and proceeding as above we obtain

$$\nabla p = (0, -\chi) \text{ in } C$$

and thus

$$p = (h - y)^+ \text{ in } C \quad (4.17)$$

for some $h \leq k$. Conversely any function $((h - y)^+, \chi_{[y<k]})$ on C extended by (p, χ) outside of C is a solution to (P). Hence, as in the case of Dirichlet boundary conditions uniqueness results for this problem will only be up to “pools” -i.e. functions $((h - y)^+, \chi_{[y<k]})$- see [C.C.].

We would like now to stress out some other differences of this model compared to the classical one - i.e. the one with Dirichlet boundary conditions. We will do that through some examples.

5. Some particular examples

The first case we will consider is described in figure 3, where we assume that $S_1 = \emptyset$
and \(\beta \) is independent of \(x \).

![Figure 3](image)

Then we would like to show that in this case when

\[
0 \leq \beta(\varphi)/\nu_y \leq 1
\]

the only solution to \((P)\) is given by

\[
(p, \chi) = (0, (\beta(\varphi)/\nu_y) \chi)
\]

where \(\chi \) denotes the characteristic function of the region below \(S_3 \) and denoted by \(I \) on the figure 3, \(\nu_y \) is the \(y \) entry of the unit outward normal to \(\Gamma \) on \(S_3 \) (we have denoted by \(\beta(\varphi)/\nu_y \) the function independent of \(y \) equal to \(\beta(\varphi)/\nu_y \) on \(S_3 \)). Thus this is a particular case where uniqueness holds. However, we see that we cannot expect in general \(\chi \) to be a characteristic function of a set (\(\chi \) is not if \(\beta(\varphi)/\nu_y < 1 \)). Moreover, the porous medium is completely unsaturated. So, the situation is quite different of the one in the classical dam problem (see [C.C.]).

So, let us prove:
PROPOSITION 5: Assume that (5.1) holds and that β is nondecreasing with $\beta(0) = 0$. Then the problem (P) corresponding to the figure 3 has a unique solution given by

$$(p, \chi) = (0, (\beta(\varphi)/\nu_y)\chi).$$ \hspace{1cm} (5.2)

Proof: First let us check that (p, χ) given by (5.2) satisfies (P). We only have to check (P) (iii). For that note that since $\beta(\varphi)/\nu_y$ is a function of x only

$$\int_{\Omega} \nabla p \cdot \nabla \xi + \chi \xi_y \, dx - \int_{S_3} \beta(\varphi - p) \cdot \xi \, d\sigma(x) = \int_{I} \frac{\beta(\varphi)}{\nu_y} \xi_y \, dx - \int_{S_3} \beta(\varphi) \cdot \xi \, d\sigma(x)$$

$$= \int_{I} \left(\frac{\beta(\varphi)}{\nu_y} \right)_y \, dx - \int_{S_3} \beta(\varphi) \cdot \xi \, d\sigma(x)$$ \hspace{1cm} (5.3)

$$= \int_{\partial I \setminus S_3} \frac{\beta(\varphi)}{\nu_y} \cdot n_y \cdot \xi \, d\sigma(x) \leq 0$$

for any $\xi \geq 0$ on S_2, n_y denotes the y entry of the outward unit normal to $\partial I \setminus S_3$ and thus $n_y \leq 0$ (see figure 3). ∂I denotes the boundary of I. So, (p, χ) given by (5.2) is a solution to (P). Note that from (5.3) one deduces easily that

$$\int_{\Omega} \chi \cdot \xi_y \, dx - \int_{S_3} \beta(\varphi) \xi \, d\sigma(x) = 0 \quad \forall \xi \in H^1(\Omega), \xi = 0 \text{ on } \partial I \cap S_2. \hspace{1cm} (5.4)$$

Let us now denote by (p', χ') an other solution to (P). Thus, one has

$$\int_{\Omega} \nabla p' \cdot \nabla \xi + \chi' \xi_y \, dx - \int_{S_3} \beta(\varphi - p') \cdot \xi \, d\sigma(x) \leq 0 \quad \forall \xi \in H^1(\Omega), \xi \geq 0 \text{ on } S_2. \hspace{1cm} (5.5)$$

Taking $\xi = p'$ in (5.5) and $\xi = -p'$ in (5.4) and adding one gets

$$\int_{\Omega} |\nabla p'|^2 + (\chi' - \chi) \cdot p'_y \, dx - \int_{S_3} \beta(\varphi - p') - \beta(\varphi) \cdot p' \, d\sigma(x) \leq 0. \hspace{1cm} (5.6)$$

But

$$\int_{\Omega} (\chi' - \chi)p'_y \, dx = \int_{\Omega} (1 - \chi)p'_y \, dx$$

$$= \int_{I} \left(1 - \frac{\beta(\varphi)}{\nu_y} \right) p'_y \, dx + \int_{II} p'_y \, dx$$

$$= \int_{I} \left(\left(1 - \frac{\beta(\varphi)}{\nu_y} \right)_y \right) \, dx$$

$$= \int_{S_3} \left(1 - \frac{\beta(\varphi)}{\nu_y} \right) \cdot n_y \cdot p' \, d\sigma(x) \geq 0. \hspace{1cm} (5.7)$$

- 26-
Moreover, from the fact that β is nondecreasing one has

$$- \int_{S_3} \beta(\varphi - p') - \beta(\varphi) \cdot p' \, d\sigma(x) \geq 0. \quad (5.8)$$

Combining (5.6), (5.7), (5.8) one deduces

$$\int_{\Omega} |\nabla p'|^2 \, dx \leq 0$$

and thus $p' = p = 0$. But now (5.5) reads

$$\int_{\Omega} \chi' \xi_y \, dx - \int_{S_3} \beta(\varphi) \cdot \xi \, d\sigma(x) \leq 0 \quad \forall \xi \in H^1(\Omega), \xi \geq 0 \quad \text{on} \ S_2. \quad (5.9)$$

Taking $\xi \in D(\Omega)$ - or using (4.1) one deduces

$$\chi'_y = 0 \quad \text{or} \quad \chi' = \chi'(x).$$

Then if we denote by T and B respectively the upper and the bottom part of Γ one deduces from (5.9) for $\xi \in H^1(\Omega), \xi \geq 0$ on S_2

$$0 \geq \int_{\Omega} (\chi' \xi)_y \, dx - \int_{S_3} \beta(\varphi) \cdot \xi \, d\sigma(x)
= \int_{T} \chi' \cdot \xi \cdot \nu_y \, d\sigma(x) + \int_{B} \chi' \cdot \xi \cdot \nu_y \, d\sigma(x) - \int_{S_3} \beta(\varphi) \cdot \xi \, d\sigma(x). \quad (5.10)$$

Taking in (5.10) any ξ that vanishes on S_2 one gets

$$\int_{S_3} (\chi' \nu_y - \beta(\varphi)) \cdot \xi \, d\sigma(x) = 0$$

for such a ξ. Hence $\chi' = \beta(\varphi)/\nu_y$ on S_3. Then (5.10) becomes

$$0 \geq \int_{\Gamma\setminus S_3} \chi' \cdot \xi \cdot \nu_y \, d\sigma(x) \quad \forall \xi \in H^1(\Omega), \xi \geq 0 \quad \text{on} \ S_2.$$

Taking $\xi \geq 0$ on T, $\xi = 0$ on B one deduces

$$0 \geq \int_{T\setminus S_3} \chi' \cdot \xi \cdot \nu_y \, d\sigma(x)$$
hence $\chi' = 0$ on $T \setminus S_3$ and the result follows. (We have assumed $\nu_y > 0$ on T). This completes the proof of the theorem.

Remark 6: We don't know in general if uniqueness of a solution to (P) holds modulo "pools". However, the above example and the one below seem to indicate that this is the case.

Remark 7: If one assumes that some part of B is impervious then $p = 0$ is no more a solution. Indeed, if it was the case then we would have (5.9) and thus (5.2), see the above proof. But then, clearly, one would not have (P) (iii). Thus in this case the solution is saturated i.e. the set $[p > 0]$ has a positive measure. The same happens when $\beta(\varphi)/\nu_y > 1$ on a set of positive measure.

Remark 8: If $p = 0$ on some "rectangle" D below S_3 as in the figure 4.

![Figure 4.](image)

then one has necessarily

$$\chi = \frac{\beta(\varphi)}{\nu_y} \quad \text{on} \quad D. \quad (5.11)$$

In particular, due to (P) (i), this situation is impossible (see also (1.5)) when

$$\beta(\varphi)/\nu_y > 1 \quad \text{on} \quad \partial D \cap S_3.$$
To prove (5.11) note that if ξ is a function vanishing on $\partial D \setminus S_3$ and if we extend this function by 0 outside D we obtain

$$
\int_D \chi \cdot \xi_y - \int_{S_3 \cap \partial D} \beta(\varphi) \cdot \xi \, d\sigma(x) = 0. \tag{5.12}
$$

Thus

$$\chi_y = 0 \text{ on } D \text{ or } \chi = \chi(x) \text{ on } D.$$

Then (5.12) reads

$$
\int_{S_3 \cap \partial D} (\chi \nu_y - \beta(\varphi)) \cdot \xi \, d\sigma(x) = 0
$$

for any ξ vanishing on $\partial D \setminus S_3$ and the result follows.

We would like to show now that the situation described in Remark 8 - i.e. $p = 0$ below S_3 - could happen even if the bottom part of Γ is impervious (see Remark 7), in other words saturation depends strongly on β. In this example we will also show that the solution to (P) is unique and is related via the Baiocchi transform (see [Ba1]) to the solution of some variational inequality. We consider the porous medium Ω described in the figure 5 - i.e. a rectangle

```
figure 5
```

whose bottom is assumed to be impervious, the top covered with water and the lateral sides in contact with the atmosphere. We assume also that β is independent of x and
nondecreasing. \(h \) is the level of water, \(D \) the thickness of the porous medium, \(L \) its horizontal size.

Remark that if \(p = 0 \) on \(S_3 \) then \(\beta(\varphi - p) = \beta(h) \) on \(S_3 \). So, consider \(K \) the closed convex set of \(H^1(\Omega) \) defined by

\[
K = \{ v \in H^1(\Omega) \mid v \geq 0, v = 0 \text{ on } S_2 \cup S_3, v = \frac{\beta(h)}{2} \cdot x(L - x) \text{ on } S_1 \} \tag{5.13}
\]

and \(u \) the solution of the variational inequality

\[
u \in K, \quad \int_\Omega \nabla u \cdot \nabla (v - u) \, dx \geq \int_\Omega (\beta(h) - 1)(v - u) \, dx \quad \forall v \in K. \tag{5.14}\]

It is clear that this variational inequality has a unique solution (see [K.S.]). Moreover, the boundary data of \(u \) admits a \(C^\infty(\overline{\Omega}) \) extension. So, combining the well known techniques of regularity for variational inequalities (see [B.S.]) and for elliptic problems in domains with corners (see [G.]) one can show that for any \(p \geq 1 \) and any \(\alpha \in (0, 1) \) one has

\[
u \in W^{2,p}(\Omega) \cap C^{1,\alpha}(\overline{\Omega}). \tag{5.15}\]

Moreover, one has

LEMMA 1: Let \(u \) be the solution of the variational inequality (5.13), (5.14). Assume that

\[
\beta(h) = \beta < \frac{4D^2}{4D^2 + L^2} \tag{5.16}
\]

then

\[
0 \leq u \leq \frac{1 - \beta}{2} \left(\frac{L}{2} \sqrt{\frac{\beta}{1 - \beta}} - y \right)^+ \quad \text{a.e. in } \Omega. \tag{5.17}
\]

In particular \(u(x, y) \) vanishes when \(y \in \left[\frac{L}{2} \sqrt{\frac{\beta}{1 - \beta}}, D \right] \).

Proof: First note that (5.16) is equivalent to

\[
\frac{L}{2} \sqrt{\frac{\beta}{1 - \beta}} < D.
\]
For \(k \in (\frac{L}{2} \sqrt{\frac{\beta}{1-\beta}}, D) \) consider the function

\[
z = \frac{1-\beta}{2}.(k - y)^2.
\]

One has

\[-\Delta z = \beta - 1\]

and thus \(z \) is the solution of the variational inequality

\[
z \in K' = \{ v \in H^1(\Omega) \mid v \geq 0, \; v = \frac{1-\beta}{2}.(k - y)^2 \text{ on } \Gamma \},
\]

\[
\int_\Omega \nabla z . \nabla (v - z) \, dx \geq \int_\Omega (\beta(h) - 1). (v - z) \, dx \; \forall \; v \in K'.
\]

Moreover on \(S_1 \) one has

\[
z = \frac{1-\beta}{2}.k^2 \geq \frac{\beta}{2}.\frac{L^2}{4} \geq \frac{\beta}{2}.x(x - L) = u.
\]

Since such variational inequality has its solution that varies monotonically with respect to the data (see [Br.], [C.M.]) one has

\[
0 \leq u \leq z = \frac{1-\beta}{2}.(k - y)^2 \; \text{ in } \Omega
\]

and the result follows since the inequality holds for any \(k \in [\frac{L}{2} \sqrt{\frac{\beta}{1-\beta}}, D] \).

Then we can prove

THEOREM 4: Assume that we are in the case of the figure 5 and that (5.16) holds.

Let \((p, \chi) \) be a solution to \((P)\). If one sets

\[
u(x, y) = \int_y^D p(x, t) \, dt
\]

then \(u \) is the solution of the variational inequality (5.13), (5.14).

Proof: Let us denote provisionally by \(u' \) the integral in (5.18) and by \(u \) the solution of the variational inequality (5.13), (5.14). First we have clearly

\[
u' = 0 \; \text{ on } S_2 \cup S_3.
\]
Next taking $\xi = \psi(x)$ where $\psi \in \mathcal{D}(0, L)$ in (P) (iii) one deduces

$$
\int_{\Omega} p_x \psi_x \, dx - \int_{S_3} \beta(h - p(x, D)) \psi \, d\sigma(x) = 0
$$

which can be written also as

$$
\int_0^L \{ (\int_0^D p(x, t) \, dt)_x \psi_x - \beta(h - p(x, D)) \} \psi \, dx = 0 \quad \forall \, \psi \in \mathcal{D}(0, L).
$$

Thus in the distributional sense one has

$$
-u'(x, 0)_{xx} = \beta(h - p(x, D)) \leq \beta(h) = -u(x, 0)_{xx}
$$

and thus by the maximum principle

$$
u'(x, 0) \leq u(x, 0) \quad \text{on } S_1.
$$

(Recall that both $u'(x, 0)$ and $u(x, 0)$ vanish at the end points of $(0, L)$).

It follows from (5.19), (5.21) that

$$
u' \leq u \quad \text{on } \partial \Omega.
$$

Next, when ζ is a smooth function vanishing on S_2,

$$
\xi = \int_0^y \zeta(x, t) \, dt
$$

is a suitable test function for (P) (iii). So, noting that

$$p = -u'_y
$$

we deduce

$$
\int_{\Omega} -\nabla u'_y \cdot \nabla \int_0^y \zeta(x, t) \, dt + \chi \zeta \, dx - \int_{S_3} \beta(h - p(x, D)) \int_0^D \zeta(x, t) \, dt \, d\sigma(x) = 0.
$$

This reads also
\[\int_{\Omega} -\nabla u'_y \cdot \nabla \int_{0}^{y} \zeta(x, t) \, dt + (\chi - \beta(h - p(x, D))) \cdot \zeta \, dx = 0. \quad (5.23) \]

(dx is the Lebesgue measure on \(\mathbb{R}^2 \)). Remark that

\[-\nabla u'_y \cdot \nabla \int_{0}^{y} \zeta(x, t) \, dt = (-\nabla u' \cdot \nabla \int_{0}^{y} \zeta(x, t) \, dt)_y + \nabla u' \cdot \nabla \zeta. \quad (5.24) \]

Then, (5.22) becomes

\[\int_{\Omega} \nabla u' \cdot \nabla \zeta + (\chi - \beta(h - p(x, D))) \cdot \zeta \, dx = \int_{\Omega} (\nabla u' \cdot \nabla \int_{0}^{y} \zeta(x, t) \, dt)_y \, dx \]

\[= -\int_{\Omega} (p \cdot \zeta)_y \, dx + \int_{\Omega} (u'_z \cdot \int_{0}^{y} \zeta(x, t) \, dt)_y \, dx. \]

Remark that the function

\[(u'_z \cdot \int_{0}^{y} \zeta(x, t) \, dt)_y \in L^2(\Omega) \]

and that \(u'_z = 0 \) on \(S_3 \) since \(u' = 0 \) there. Moreover, \(\int_{0}^{y} \zeta(x, t) \, dt = 0 \) on \(S_1 \). So, by the divergence theorem we deduce

\[\int_{\Omega} \nabla u' \cdot \nabla \zeta + (\chi - \beta(h - p(x, D))) \cdot \zeta \, dx = \int_{S_1} p \zeta \, d\sigma(x) - \int_{S_3} p \zeta \, d\sigma(x) \quad (5.25) \]

for every smooth \(\zeta \) vanishing on \(S_2 \). By an easy density argument, (5.25) holds for every \(\zeta \in H^1(\Omega), \zeta = 0 \) on \(S_2 \).

Let us set

\[K' = \{ v \in H^1(\Omega) \mid v \geq 0, \, v = u' \text{ on } \partial \Omega \}. \]

Then, clearly taking \(\zeta = v - u' \) in (5.25) one deduces

\[\int_{\Omega} \nabla u' \cdot \nabla v - u' \, dx = \int_{\Omega} (\beta(h - p(x, D)) - \chi) \cdot v - u' \, dx \quad \forall \, v \in K'. \quad (5.26) \]

Now, one has

\[[u' > 0] = [p > 0]. \quad (5.27) \]

Indeed, if \(u'(x_0, y_0) > 0 \) then \(p(x, y) > 0 \) for some \((x, y) \in \Omega \) such that \(y > y_0 \) and thus, by Proposition 2, \(p(x_0, y_0) > 0 \). Conversely if \(p(x_0, y_0) > 0 \) then \(p(x, y) > 0 \) in a
neighbourhood of \((x_0, y_0)\) and by (5.18) \(u'(x_0, y_0) > 0\). This proves (5.27). Then, from (5.27) one deduces that \(\chi u' = u'\) and thus

\[
\chi(v - u) = \chi v - u' \leq v - u'.
\]

By (5.26) this implies that \(u'\) satisfies

\[
u' \in K', \quad \int_{\Omega} \nabla u'.\nabla v - u' \, dx \geq \int_{\Omega} (\beta(h - p(x, D)) - 1).v - u' \, dx \quad \forall \, v \in K' \quad (5.28).
\]

Since

\[
\beta(h - p(x, D)) \leq \beta(h) = \beta, \quad u' \leq u \quad \text{on} \quad \partial \Omega
\]

one deduces from the monotonicity of the solution of variational inequalities with respect to the data (see [C.M.]) that

\[
\quad u' \leq u \quad \text{on} \quad \Omega.
\]

Then, by Lemma 1, \(u' = 0\) on a neighbourhood of \(S_3\) and so does \(p\). From (5.20) we have now

\[
-u'' = \beta = -u\]

hence \(u' = u\) on \(\partial \Omega\) and \(K' = K\). Moreover, (5.28) becomes equivalent to (5.13), (5.14) and \(u' = u\). The result follows.

We have also

LEMMA 2: There exists a smooth function \(\varphi : (0, L) \to \mathbb{R}^+\) such that

\[
[u > 0] = \{(x, y) \in \Omega \mid 0 < y < \varphi(x)\}.
\]

Proof: Since \(u\) is continuous we know that \(u\) is positive in a neighbourhood of any point of \(S_1\). Moreover, by (5.18) \(u\) is decreasing in \(y\) so that if \(u(x_0, y_0) > 0\) then, \(u(x_0, y) > 0\) for any \(y < y_0\). The result follows then by setting

\[
\varphi(x) = \sup\{y \mid u(x, y) > 0\}.
\]
The smoothness of φ follows from well known results on variational inequalities (see [K.N.S.]).

Then we can show

COROLLARY 2: Assume that we are in the case of the figure 5 and that (5.16) holds.

Then the solution (p, χ) to (P) is unique and given by

\[
p = -u_y \quad (5.29)
\]

\[
\chi = \begin{cases}
\beta & \text{on } [u = 0] \\
1 & \text{on } [u > 0].
\end{cases} \quad (5.30)
\]

where u is the solution of the variational inequality (5.13), (5.14).

Proof: If (p, χ) is a solution to (P), and we know that such a solution exists, then by Theorem 4 one has

\[p = -u_y.\]

Next by Lemma 2 and remark 8 one deduces that (5.30) holds.

ACKNOWLEDGEMENTS: This work was initiated at the Universidad Complutense in Madrid and at the University of Bonn. We would like to thank these institutions.

We also thank the I.M.A. (University of Minnesota) for providing its support and a nice working atmosphere to the second author during the completion of this paper.

REFERENCES

[Ba1.] C. Baiocchi: Su un problema di frontiera libera connesso a questioni di idraulica.

Introduction à l'analyse numérique des équations aux dérivées partielles
<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>662</td>
<td>Geneviève Raugel and George R. Sell, Navier-Stokes equations in thin 3d domains: Global regularity of solutions I</td>
</tr>
<tr>
<td>663</td>
<td>Emanuel Parzen, Time series, statistics, and information</td>
</tr>
<tr>
<td>664</td>
<td>Andrew Majda and Kevin Lamb, Simplified equations for low Mach number combustion with strong heat release</td>
</tr>
<tr>
<td>665</td>
<td>Ju. S. Il' yashenko, Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation</td>
</tr>
<tr>
<td>666</td>
<td>James F. Reineck, Continuation to gradient flows</td>
</tr>
<tr>
<td>667</td>
<td>Mohamed Sami Elbialy, Simultaneous binary collisions in the collinear N–body problem</td>
</tr>
<tr>
<td>668</td>
<td>John A. Jacquez and Carl P. Simon, Aids: The epidemiological significance of two different mean rates of partner-change</td>
</tr>
<tr>
<td>669</td>
<td>Carl P. Simon and John A. Jacquez, Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations</td>
</tr>
<tr>
<td>670</td>
<td>Matthew Stafford, Markov partitions for expanding maps of the circle</td>
</tr>
<tr>
<td>671</td>
<td>Ciprian Foias and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds</td>
</tr>
<tr>
<td>672</td>
<td>M.W. Smiley, Global attractors and approximate inertial manifolds for abstract dissipative equations</td>
</tr>
<tr>
<td>673</td>
<td>M.W. Smiley, On the existence of smooth breathers for nonlinear wave equations</td>
</tr>
<tr>
<td>674</td>
<td>Hitay Özbay and Janos Turi, Robust stabilization of systems governed by singular integro-differential equations</td>
</tr>
<tr>
<td>675</td>
<td>Mary Silber and Edgar Knobloch, Hopf bifurcation on a square lattice</td>
</tr>
<tr>
<td>676</td>
<td>Christophe Golé, Ghost circles for twist maps</td>
</tr>
<tr>
<td>677</td>
<td>Christophe Golé, Ghost tori for monotone maps</td>
</tr>
<tr>
<td>678</td>
<td>Christophe Golé, Monotone maps of $T^n \times R^n$ and their periodic orbits</td>
</tr>
<tr>
<td>679</td>
<td>E.G. Kalnins and W. Miller, Jr., Hypergeometric expansions of Heun polynomials</td>
</tr>
<tr>
<td>680</td>
<td>Victor A. Pliss and George R. Sell, Perturbations of attractors of differential equations</td>
</tr>
<tr>
<td>681</td>
<td>Avner Friedman and Peter Knabner, A transport model with micro- and macro-structure</td>
</tr>
<tr>
<td>682</td>
<td>E.G. Kalnins and W. Miller, Jr., A note on group contractions and radar ambiguity functions</td>
</tr>
<tr>
<td>683</td>
<td>George R. Sell, References on dynamical systems</td>
</tr>
<tr>
<td>684</td>
<td>Shui-Nee Chow, Kening Lu and George R. Sell, Smoothness of inertial manifolds</td>
</tr>
<tr>
<td>685</td>
<td>Shui-Nee Chow, Xiao-Biao Lin and Kening Lu, Smooth invariant foliations in infinite dimensional spaces</td>
</tr>
<tr>
<td>686</td>
<td>Kening Lu, A Hartman–Grobman theorem for scalar reaction-diffusion equations</td>
</tr>
<tr>
<td>687</td>
<td>Christophe Golé and Glen R. Hall, Poincaré’s proof of Poincaré’s last geometric theorem</td>
</tr>
<tr>
<td>688</td>
<td>Mario Taboada, Approximate inertial manifolds for parabolic evolutionary equations via Yosida approximations</td>
</tr>
<tr>
<td>689</td>
<td>Peter Rejto and Mario Taboada, Weighted resolvent estimates for Volterra operators on unbounded intervals</td>
</tr>
<tr>
<td>690</td>
<td>Joel D. Avrin, Some examples of temperature bounds and concentration decay for a model of solid fuel combustion</td>
</tr>
<tr>
<td>691</td>
<td>Susan Friedlander and Misha M. Vishik, Lax pair formulation for the Euler equation</td>
</tr>
<tr>
<td>692</td>
<td>H. Scott Dumas, Ergodization rates for linear flow on the torus</td>
</tr>
<tr>
<td>693</td>
<td>A. Eden, A.J. Milani and B. Nicolaenko, Finite dimensional exponential attractors for semilinear wave equations with damping</td>
</tr>
<tr>
<td>694</td>
<td>A. Eden, C. Foias, B. Nicolaenko & R. Temam, Inertial sets for dissipative evolution equations</td>
</tr>
<tr>
<td>695</td>
<td>A. Eden, C. Foias, B. Nicolaenko & R. Temam, Hölder continuity for the inverse of Mañé’s projection</td>
</tr>
<tr>
<td>696</td>
<td>Michel Chipot and Charles Collins, Numerical approximations in variational problems with potential wells</td>
</tr>
<tr>
<td>697</td>
<td>Huanan Yang, Nonlinear wave analysis and convergence of MUSCL schemes</td>
</tr>
<tr>
<td>698</td>
<td>László Gerencsér and Zsuzsanna Vágó, A strong approximation theorem for estimator processes in continuous time</td>
</tr>
<tr>
<td>699</td>
<td>László Gerencsér, Multiple integrals with respect to L-mixing processes</td>
</tr>
<tr>
<td>700</td>
<td>David Kinderlehrer and Pablo Pedregal, Weak convergence of integrands and the Young measure representation</td>
</tr>
<tr>
<td>701</td>
<td>Bo Deng, Symbolic dynamics for chaotic systems</td>
</tr>
<tr>
<td>703</td>
<td>Charles Collins and Mitchell Luskin, Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem</td>
</tr>
<tr>
<td>704</td>
<td>Peter Gritzmann and Victor Klee, Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces</td>
</tr>
<tr>
<td>705</td>
<td>A. Ronald Gallant and George Tauchen, A nonparametric approach to nonlinear time series analysis: estimation and simulation</td>
</tr>
</tbody>
</table>
H.S. Dumas, J.A. Ellison and A.W. Sáenz, Axial channeling in perfect crystals, the continuum model and the method of averaging

M.A. Kaashoeck and S.M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems

Xinfu Chen, Generation and Propagation of interfaces in reaction diffusion systems

Avner Friedman and Bei Hu, Homogenization approach to light scattering from polymer-dispersed liquid crystal films

Yoshihisa Morita and Shuichi Jimbo, ODEs on inertial manifolds for reaction-diffusion systems in a singularly perturbed domain with several thin channels

Wenxiong Liu, Blow-up behavior for semilinear heat equations: multi-dimensional case

Hi Jun Choe, Hölder continuity for solutions of certain degenerate parabolic systems

Hi Jun Choe, Regularity for certain degenerate elliptic double obstacle problems

Fernando Reitich, On the slow motion of the interface of layered solutions to the scalar Ginzburg–Landau equation

Xinfu Chen and Fernando Reitich, Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling

C.C. Lim, J.M. Pimbley, C. Schmeiser and D.W. Schwendeman, Rotating waves for semiconductor inverter rings

W. Balser, B.L.J. Braaksma, J.-P. Ramis and Y. Sibuya, Multisummability of formal power series solutions of linear ordinary differential equations

Peter J. Olver and Chehrzad Shakiban, Dissipative decomposition of partial differential equations

Clark Robinson, Homoclinic bifurcation to a transitive attractor of Lorenz type, II

Michelle Schatzman, A simple proof of convergence of the QR algorithm for normal matrices without shifts

Ian M. Anderson, Nick Kamran and Peter J. Olver, Internal, external and generalized symmetries

C. Foias and J.C. Saut, Asymptotic integration of Navier–Stokes equations with potential forces. I

Ling Ma, The convergence of semidiscrete methods for a system of reaction-diffusion equations

Adelina Georgescu, Models of asymptotic approximation

A. Makagon and H.Salehi, On bounded and harmonizable solutions on infinite order arma systems

San-Yih Lin and Yan-Shin Chin, An upwind finite-volume scheme with a triangular mesh for conservation laws

J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego & P.J. Swart, On the dynamics of fine structure

KangPing Chen and Daniel D. Joseph, Lubrication theory and long waves

J.L. Ericksen, Local bifurcation theory for thermoelastic Bravais lattices

Mario Taboada and Yuncheng You, Some stability results for perturbed semilinear parabolic equations

A.J. Lawrence, Local and deletion influence

Bogdan Vernescu, Convergence results for the homogenization of flow in fractured porous media

Xinfu Chen and Avner Friedman, Mathematical modeling of semiconductor lasers

Yongzhi Xu, Scattering of acoustic wave by obstacle in stratified medium

Songmu Zheng, Global existence for a thermodynamically consistent model of phase field type

Heinrich Freistühler and E. Bruce Pitman, A numerical study of a rotationally degenerate hyperbolic system part I: the Riemann problem

Epifanio G. Virga, New variational problems in the statics of liquid crystals

Yoshikazu Giga and Shun'ichi Goto, Geometric evolution of phase-boundaries

Ling Ma, Large time study of finite element methods for 2D Navier–Stokes equations

Mitchell Luskin and Ling Ma, Analysis of the finite element approximation of microstructure in micromagnetics

M. Chipot, Numerical analysis of oscillations in nonconvex problems

J. Carrillo and M. Chipot, The dam problem with leaky boundary conditions

Eduard Harabetian and Robert Pego, Efficient hybrid shock capturing schemes

B.L.J. Braaksma, Multisummability and Stokes multipliers of linear meromorphic differential equations

Tae Il Jeon and Tze-Chien Sun, A central limit theorem for non-linear vector functionals of vector Gaussian processes

Chris Grant, Solutions to evolution equations with near-equilibrium initial values

Mario Taboada and Yuncheng You, Invariant manifolds for retarded semilinear wave equations

Peter Rejto and Mario Taboada, Unique solvability of nonlinear Volterra equations in weighted spaces

Hi Jun Choe, Hölder regularity for the gradient of solutions of certain singular parabolic equations

Jack D. Dockery, Existence of standing pulse solutions for an excitable activator-inhibitory system

Jack D. Dockery and Roger Lui, Existence of travelling wave solutions for a bistable evolutionary ecology model

Giovanni Alberti, Luigi Ambrosio and Giuseppe Buttazzo, Singular perturbation problems with a compact support semilinear term

Emad A. Fatemi, Numerical schemes for constrained minimization problems

Y. Kuang and H.L. Smith, Slowly oscillating periodic solutions of autonomous state-dependent delay equations