WAVE PROPAGATION IN
A QUALITATIVE MODEL OF COMBUSTION
UNDER EQUILIBRIUM CONDITIONS

By

J. David Logan

IMA Preprint Series # 621
February 1990
WAVE PROPAGATION IN
A QUALITATIVE MODEL OF COMBUSTION
UNDER EQUILIBRIUM CONDITIONS

J. David Logan

Department of Mathematics
University of Nebraska–Lincoln
Lincoln, Nebraska 68588–0323 USA

Abstract. We study various aspects of wave motion within the context of the
Fickett–Majda qualitative model of combustion, under the assumption that the waves
are propagating into an equilibrium state of a material governed by a two–way,
model chemical reaction. In particular, we examine the hydrodynamic stability of an
equilibrium state and the properties of a wavefront propagating into the state. We
also investigate the signalling problem and use asymptotic methods and steepest
descent to determine the long time behavior of the solution. Comparisons are made
to the real physical model.
1. Introduction.

In this paper we examine some mathematical problems of wave propagation originating in the Fickett–Majda qualitative model of detonation. Here we focus on waves propagating into a state of dynamic chemical equilibrium where the chemistry is governed by a model two–way or reversible reaction. In particular we analyze, within the constraints of the model, the stability of an equilibrium state and we compare the results for the model to the recent results of Logan and Kapila [10] for the physical system. Second, we examine how a signal propagates into an equilibrium state along a wavefront and again make comparisons to the real physical model. Finally, we consider the signalling problem and obtain, using Laplace transforms and applying the saddle point method, the asymptotic behavior of solutions of the model equations for long times.

The detonation analog of Fickett and Majda is a simplified qualitative model for studying shock–wave chemistry interactions in combustion theory where the strongly nonlinear waves of gas dynamics and the chemical kinetics interact substantially. The model bears the analogous relationship to reacting flows as Burgers' equation does to ordinary compressible fluid flow. It was developed independently by Fickett [3] and Majda [11], and several works by both authors on various aspects of the model have followed. See, for example, Fickett [4,5,6,7,8] and Majda [12]. In this work we shall follow the formulation of Fickett and refer the reader to Fickett [3] or Majda [11] for the motivation. The interest in this paper is the acoustic–chemical interaction rather than shockwave–chemistry interaction.

The simplified detonation model is defined by the system of equations

\[\rho_t + p_x = 0 \quad (1.1) \]
\[\lambda_t = r(\rho, \lambda) \quad (1.2) \]
\[p = f(\rho, \lambda) \quad (1.3) \]

for \(\lambda = \lambda(x,t), \rho = \rho(x,t) \). The independent variables \(x \) and \(t \) represent space and time, and \(\rho \) and \(p \) represent two state variables that are characteristic of the flow, and \(\lambda \) represents a dimensionless chemical reaction progress variable which measures the mass fraction of the product species B in a reversible chemical reaction

\[A \rightleftharpoons B \]

Equation (1.1) is a kinematic wave equation (see, e.g., Whitham [14] or Logan [9]) relating \(\rho \) and \(p \), and (1.3) is a given constitutive relation, or equation of state, relating \(p, \rho, \) and \(\lambda \). Throughout we assume well-behaved equations of state (1.3) satisfying \(f \in C^2 \) with

\[f_\rho > 0, \quad f_{\rho \rho} > 0, \quad f_\lambda > 0 \quad (1.4) \]

Equation (1.2) is interpreted as a species equation governing the evolution of the chemical reaction, and the function of state \(r \) is the chemical reaction rate.

2. Reversible Kinetics and Sound Speeds

We consider a model fluid in one dimension undergoing a two-way chemical reaction

\[\frac{k_f}{k_b} \]

\[A \rightleftharpoons B \]

where \(k_f = k_f(\rho) \) and \(k_b = k_b(\rho) \) are the forward and backward going rate factors, given as functions of the state variable \(\rho \). We assume \(k_f \) and \(k_b \) are positive, differentiable functions. By the law of mass action, the reaction rate is given by

\[r(\rho, \lambda) = (1-\lambda)k_f(\rho) - \lambda k_b(\rho) \quad (2.1) \]

Equilibrium states \((\bar{\rho}, \bar{\lambda}) \) are defined by the relation \(r(\bar{\rho}, \bar{\lambda}) = 0 \) or, from (2.1),
\[
\frac{\bar{\lambda}}{1-\bar{\lambda}} = \frac{k_f(\bar{\rho})}{k_b(\bar{\rho})} \tag{2.2}
\]

We define the equilibrium factor ("constant") by

\[
K(\bar{\rho}) = \frac{k_f(\bar{\rho})}{k_b(\bar{\rho})} \tag{2.3}
\]

In the same manner as in physical chemical kinetics (e.g., see Vincenti and Kruger [13], p.84), we postulate an analog of van't Hoff's equation, viz.,

\[
\frac{d}{d\rho} \ln K(\rho) = -\frac{\alpha}{\rho} \quad \text{at} \quad \rho = \bar{\rho} \tag{2.4}
\]

We assume \(\alpha > 0 \) so that the forward reaction is exothermic. Then it is straightforward to show, using (2.1) through (2.4), that

\[
r_{\lambda}(\bar{\rho}, \bar{\lambda}) < 0 \quad , \quad r_{\rho}(\bar{\rho}, \bar{\lambda}) < 0 \tag{2.5}
\]

and

\[
g_{\rho}'(\bar{\rho}) = -\frac{r_{\rho}(\bar{\rho}, \bar{\lambda})}{r_{\lambda}(\bar{\rho}, \bar{\lambda})} \tag{2.6}
\]

where \(r(\bar{\rho}, g(\bar{\rho})) = 0 \).

There are two sound speeds that play an important role in the sequel, the frozen sound speed \(c_f \) and the equilibrium sound speed \(c_e \). In general, we define the sound speed \(c = c(\rho, \lambda) \) by \(c \equiv f_\rho(\rho, \lambda) > 0 \), where \(f_\rho \) defines the equation of state (1.3). The frozen sound speed in the equilibrium state is then defined by

\[
c_f = f_\rho(\bar{\rho}, \bar{\lambda}) \tag{2.7}
\]

On the other hand, the equilibrium state defines \(\bar{\lambda} \) as a function of \(\bar{\rho} \) through \(\bar{\lambda} = g(\bar{\rho}) \). Then \(f(\bar{\rho}, g(\bar{\rho})) \) is a function of \(\bar{\rho} \). We define the equilibrium sound speed \(c_e \) by

\[
c_e = \frac{d}{d\bar{\rho}} f(\bar{\rho}, g(\bar{\rho})). \tag{2.8}
\]

If we define the thermicity \(\sigma = \sigma(\rho, \lambda) \) by
\[\sigma \equiv f_\lambda(\rho, \lambda) \]

then it follows that

\[c_e = c_f - \sigma(\overline{\rho}, \overline{\lambda}) \frac{r(\overline{\rho}, \overline{\lambda})}{r_\lambda(\overline{\rho}, \overline{\lambda})} \]

(2.10)

where \(\overline{\lambda} = g(\overline{\rho}) \) on the right side of (2.10). The proof of (2.10) follows by carrying out the chain rule differentiation on the right side of (2.8) and then using (2.6) and the definitions (2.7) and (2.9).

We remark that \(c_e > 0, c_f > 0 \), and since \(\sigma r / r_\lambda > 0 \), it follows that

\[c_e < c_f \]

(2.11)

3. **Stability of the Equilibrium State**

In this section we examine the hydrodynamic stability of an equilibrium state to small perturbations. We show that such perturbations decay in time, and no neutrally stable modes are present, as in the real physical model (see Logan and Kapila [10]).

Upon substitution of (1.3) into (1.1) we obtain the system

\[\rho_t + c \rho_x + \sigma \lambda_x = 0 \]

(3.1)

\[\lambda_t = r(\rho, \lambda) \]

(3.2)

where \(c \) and \(\sigma \) are the sound speed and thermicity, respectively. At time \(t = 0 \) we assume the fluid is in a state \((\overline{\rho}, \overline{\lambda})\) of chemical equilibrium, and we impose at that instant a small spatial perturbation. We inquire into the temporal and spatial evolution of that perturbation for \(t > 0 \). To this end, let

\[\rho = \overline{\rho} + \tilde{\rho}(x,t), \quad \lambda = \overline{\lambda} + \tilde{\lambda}(x,t) \]

(3.3)

Substituting (3.3) into (3.1) and (3.2), discarding the small nonlinear terms, while
noting that
\[r(\rho, \lambda) = r_\rho(\bar{\rho}, \bar{\lambda}) \bar{\rho} + r_\lambda(\bar{\rho}, \bar{\lambda}) \bar{\lambda} + \cdots \]
(and similarly for \(\sigma(\rho, \lambda) \) and \(c(\rho, \lambda) \)), we obtain the linearized equations for the perturbations:
\[\begin{align*}
\dot{\tilde{\rho}}_t + c_\rho \tilde{\rho}_x + \sigma \tilde{\lambda}_x &= 0 \\
\dot{\tilde{\lambda}}_t - r_\rho \tilde{\rho}_t - r_\lambda \tilde{\lambda}_t &= 0
\end{align*} \quad (3.4) \]
where \(\sigma, r_\rho, \) and \(r_\lambda \) are evaluated at \((\bar{\rho}, \bar{\lambda})\). Proceeding with a normal mode analysis, we assume
\[\tilde{\rho} = R(t)e^{ikx}, \quad \tilde{\lambda} = \Lambda(t)e^{ikx} \]
where \(k \) is a wave number. Substituting into (3.4) gives
\[\frac{d}{dt} \begin{bmatrix} R \\ \Lambda \end{bmatrix} = \begin{bmatrix} -ic_\rho k & -ic_\lambda k \\ r_\rho & r_\lambda \end{bmatrix} \begin{bmatrix} R \\ \Lambda \end{bmatrix} \]
The eigenvalues of the coefficient matrix are determined from the characteristic equation, which in this case is
\[\xi^2 + (i c_\rho k - r_\lambda) \xi - i c_e c_\lambda = 0 \quad (3.5) \]
where \(c_e \) is the equilibrium sound speed.

It is easier to study the roots of (3.5) using some elementary asymptotics rather than a direct approach. First, it is straightforward to see that (3.5) has no purely imaginary root for any wave number \(k \).

For \(k \ll 1 \) we assume a regular expansion of the form
\[\xi = a_0 + a_1 k + a_2 k^2 + \cdots \]
Substituting into (3.5) and collecting the \(O(1), O(k), \) etc. terms gives the roots
\[\begin{align*}
\xi &\sim r_\lambda + i(c_e - c_f)k + O(k^2) \\
\xi &\sim -ic_e k + \frac{c_e(c_f - c_e)}{r_\lambda} k^2 + O(k^3)
\end{align*} \quad (3.6) \]
Thus, to leading order, both roots have negative real part (see (2.5) and (2.11)) for small \(k\).

For \(k \gg 1\), equation (3.5) is singular. One dominant balance is clearly
\[
ic_f k \xi \sim ike r_\lambda, \]
which gives the root
\[
\xi \sim \frac{c e r_\lambda}{c_f} + O(k^{-1}) \tag{3.7}
\]
The other dominant balance is \(\xi^2 \sim -ic_f k \xi\) or \(\xi \sim -ic_f k\). Therefore, assuming the expansion
\[
\xi \sim -ic_f k + a_0 + a_1 k^{-1} + \cdots
\]
we substitute into (3.5) to obtain
\[
\xi \sim -ic_f k + r_\lambda + O(k^{-1}) \tag{3.8}
\]
Therefore, both roots (3.7) and (3.8) for large \(k\) have negative real part.

In summary, for large and small values of \(k\) the roots of (3.5) lie in the left half of the complex plane, and since by our earlier remark \(k\) cannot have a purely imaginary root, the roots cannot pass into the right half plane as \(k\) increases from zero to infinity. Consequently, the eigenvalues of the coefficient matrix have negative real part and so both modes decay. We have proved:

Theorem 1 An equilibrium state in the qualitative model of detonation governed by (3.1) and (3.2) is asymptotically stable.

Qualitatively, the theorem states that if an equilibrium is disturbed, then the system returns to that state in long time.

4. **Wavefront Expansion for the Analog**

It is easy to see that the system (3.1)–(3.2) is hyperbolic and so information is
carried into the region of interest from boundary and/or initial data. Generally, any abrupt changes in the data along a boundary will be propagated along the characteristics that pass through those boundary points. Here we consider the problem of a signal at \(t = 0 \) that is propagating into an equilibrium state \(\bar{\rho}, \bar{\lambda} \) (constant) for \(x > 0 \) such that the derivatives in \(\rho_x \) and \(\lambda_x \) suffer discontinuities at \(x = 0 \), but \(\rho \) and \(\lambda \) are continuous. A schematic spacetime diagram is shown in Figure 1.

![Figure 1](image)

The signal (jump discontinuities \(\rho_x \) and \(\lambda_x \) at \(t = 0, x = 0 \)) is propagated into \(x > 0, t > 0 \) along a wavefront \(x = X(t) \). We determine the wavefront and how those discontinuities propagate along it.

The argument given is analogous to that presented in Whitham [14, pages 127–134], where the method is applied to flood waves. We let \(\xi = x - X(t) \) and expand \(\rho \) and \(\lambda \) as functions of \(\xi \) and \(t \) near the wavefront. Thus we assume

\[
\rho = \bar{\rho} \quad \text{and} \quad \lambda = \bar{\lambda} \quad \text{for} \quad \xi > 0
\]

and
\[\rho = \bar{\rho} + \rho_1 \xi + \frac{1}{2} \rho_2 \xi^2 + \cdots \]
\[\lambda = \bar{\lambda} + \lambda_1 \xi + \frac{1}{2} \lambda_2 \xi^2 + \cdots, \quad \xi < 0 \]

where the \(\rho_1 \) and \(\lambda_1 \) are functions of \(t \) and \(\xi = \xi(x,t) = x - X(t) \). Then for \(\xi < 0 \),
\[\rho_t = -\rho_1 \dot{X} + (\dot{\rho}_1 - \rho_2 \dot{X}) \xi + \cdots \]
\[\rho_X = \rho_1 + \rho_2 \xi + \cdots \]
and similarly for \(\lambda_t \) and \(\lambda_X \), where the overdot denotes \(d/dt \). Substituting these expansions into the partial differential equations (3.1) and (3.2) and collecting \(O(1) \) terms gives:
\[O(1): \quad \begin{bmatrix} c_f \bar{X} \\ 0 \end{bmatrix} = \begin{bmatrix} \sigma \\ \dot{X} \end{bmatrix} \begin{bmatrix} \rho_1 \\ \lambda_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

(4.2)

This system has a nontrivial solution \(\rho_1, \lambda_1 \) provided the determinant of the coefficient matrix vanishes, i.e.
\[\dot{X} = c_f \quad \text{or} \quad \dot{X} = 0. \]

(4.3)

We take \(\dot{X} = c_f \) or \(X(t) = c_f t \), which determines the wavefront. The \(O(\xi) \) equations are:
\[O(\xi): \quad \dot{\rho}_1 + c_\rho \rho_1^2 + c_\lambda \lambda_1 \rho_1 + \sigma \lambda_2 + \sigma_\rho \rho_1 \lambda_1 + \sigma_\lambda \lambda_1^2 = 0 \]
\[\dot{\lambda}_1 - c_\lambda \lambda_2 - r_{\rho_1} \rho_1 - r_{\lambda} \lambda_1 = 0 \]
where \(c_\rho, c_\lambda, \sigma, \sigma_\rho, \sigma_\lambda, r_\rho, \) and \(r_\lambda \) are all evaluated at \((\bar{\rho}, \bar{\lambda}) \). Adding \(c_f \) times the first equation to \(\sigma \) times the second gives
\[c_f \dot{\rho}_1 + \sigma_\lambda \lambda_1 + c_\rho \rho_1^2 + c_\lambda \lambda_1^2 + c_f (c_\lambda + \sigma_\rho) \rho_1 \lambda_1 - \sigma (r_{\rho_1} + r_\lambda \lambda_1) = 0 \]

(4.4)

Now, a nontrivial solution to the \(O(1) \) equations (4.2) is \(\rho_1 = 1, \lambda_1 = 0 \). Therefore all solutions to (4.2) can be represented by \(\eta(t)[1,0]^T \) for some function \(\eta \).

Substituting into (4.4) gives
\[\dot{\eta} + \frac{\sigma_\rho}{c_f} \eta^2 - \frac{\sigma_\rho}{c_f} \eta = 0 \]

(4.5)

which is a Ricatti equation for \(\eta \). By (1.4) we have \(c_\rho > 0 \), and also \(\sigma_\rho/c_f < 0 \).
Multiplying by η^{-2} transforms (4.5) into a linear equation whose solution is found to be

$$\eta = \frac{\eta_0 b}{(b - \eta_0)e^{at} + \eta_0}$$

(4.5)

where $a = -\frac{\sigma \rho}{c_f^2} > 0$, $b = \frac{\sigma \rho}{c_f^2 \rho} < 0$, and $\eta_0 = \eta(0)$.

We may interpret this solution as follows. Since $\eta = \rho_1$, it follows from (4.1) that η represents the negative jump in the derivative in ρ_x, namely

$$[\rho_x] = \rho_x^+ - \rho_x^- = -\eta$$

Thus $\eta > 0$ is a rarefaction wave and $\eta < 0$ is a compression wave (see figure 2). Equation (4.5) describes the evolution of the jump discontinuity in ρ_x along the wave front $x = c_f t$.

![Figure 2](image)

If $\eta_0 > 0$ then (4.5) shows that η decays as $t \rightarrow \infty$. For an initial compression wave, where $\eta_0 < 0$, there are two possibilities. If $b < \eta_0 < 0$, it follows from (4.5) that η will decay to zero as $t \rightarrow \infty$. However, if $\eta_0 < b$, then η will blow-up at a finite time given by
\[t_B = a^{-1} \ln \left(\frac{\eta_0}{\eta_0 - b} \right) \]

Therefore, compression waves, if they are strong enough initially, will strengthen into shocks; weak compressions will die out, as will rarefactions.

We remark again that the results of this section have been obtained in a different manner by Fickett [4].

5. **Wavefront Expansion – Physical System**

It is interesting to compare the results of the previous section to the results of a wavefront expansion done on the real physical model. In Eulerian coordinates, the one-dimensional governing equations for the inviscid, adiabatic flow of an ideal, reacting gas are (see, for example, Logan and Kapila [10]):

\[
\begin{align*}
\frac{Dv}{Dt} - vu_x &= 0 \\
v \frac{Du}{Dt} - Rtv_x + rvT_x &= 0 \\
\frac{DT}{Dt} + (\gamma - 1)Tu_x - \frac{q}{c_v} r(\lambda, T) &= 0 \\
\frac{D\lambda}{Dt} &= r(\lambda, T)
\end{align*}
\]

(5.1) \hspace{1cm} (5.2) \hspace{1cm} (5.3) \hspace{1cm} (5.4)

where \(u, v, T, \) and \(\lambda \) are the state variables (particle velocity, specific volume, temperature, and reaction progress variable), \(R, \gamma, q, \) and \(c_v \) are constants (gas constant, ratio of specific heats, heat of reaction, and specific heat at constant volume), and the function \(r \) is the reaction rate. Equations (5.1) through (5.3) are balance of mass, momentum, and energy, respectively, and (5.4) is the chemical species equations. The operator \(D/Dt \) denotes the material derivative \(\partial/\partial t + u \partial/\partial x \).

As in Section 4 we consider initial jump discontinuities in \(u_x, v_x, T_x \) and \(\lambda_x \) propagating into \(x > 0 \) along a yet unspecified wavefront \(\xi(x,t) \equiv x - X(t) = 0 \). Ahead of the wave we assume \(u = \bar{u}, v = \bar{v}, T = \bar{T}, \lambda = \bar{\lambda} \), a constant equilibrium
state. Near the wavefront \((\xi < 0)\) we assume

\[
v = \overline{v} + v_1(t)\xi + \frac{1}{2} v_2(t)\xi^2 + \cdots
\]

and similarly for \(u, T,\) and \(\lambda\). Substituting the expansions into (5.1) through (5.4) we obtain at \(O(1)\) the equations

\[
\begin{bmatrix}
\dot{v} & \overline{v} & 0 & 0 \\
R\overline{T} & \overline{v} & -R\overline{v} & 0 \\
0 & (\gamma-1)\overline{T} & -\dot{\overline{v}} & 0 \\
0 & 0 & 0 & -\dot{\lambda}
\end{bmatrix}
\begin{bmatrix}
v_1 \\
u_1 \\
T_1 \\
\lambda_1
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

(5.5)

A nontrivial solution exists only if the determinant of the coefficient matrix vanishes, or

\[
\dot{X}^2 = \gamma R\overline{T} = c_f^2
\]

(5.6)

where \(c_f\) is the sound speed in the equilibrium state. Equation (5.6) is the eikonal equation which determines the wavefront

\[
x = c_f t
\]

(5.7)

propagating into \(x > 0\). Thus a signal (jump discontinuity at \(x = 0, t = 0\)) propagates into the equilibrium mixture at the speed sound waves propagate in an ideal gas at temperature \(\overline{T}\).

Since the coefficient matrix in (5.5) has rank 3, all solutions of (5.5) can be represented as some multiple \(\eta(t)\) of any solution. In the present case, a solution of (5.5) is given by \(v_1 = \overline{v}, u_1 = c_f, T_1 = (\gamma-1)\overline{T}, \lambda_1 = 0,\) so

\[
\begin{bmatrix}
v_1 \\
u_1 \\
T_1 \\
\lambda_1
\end{bmatrix}
=
\begin{bmatrix}
\overline{v} \\
c_f \\
(\gamma-1)\overline{T} \\
0
\end{bmatrix}
\eta(t)
\]

(5.8)

where \(\eta(t)\) is to be determined.
Now, the $O(\xi)$ equations are

$$-\dot{v}_1 + \dot{X}v_2 + \ddot{v}u_2 = 0$$ \hspace{1cm} (5.9)

$$\ddot{v}u_1 - \ddot{v}u_2 \dot{X} - R\dot{T}v_2 + R\ddot{v}T_2 - v_1 u_1 \dot{X} + \ddot{v}u_1^2 = 0$$ \hspace{1cm} (5.10)

$$T_1 - \dot{X}T_2 + \gamma T_1 u_1 + (\gamma - 1)\ddot{T}u_2 - \frac{\alpha}{c_v} r_T T_1 - \frac{\alpha}{c_v} r_\lambda \lambda_1 = 0$$ \hspace{1cm} (5.11)

$$-\dot{X} \lambda_2 + u_1 \lambda_1 - r_\lambda \lambda_1 - r_T T_1 = 0$$ \hspace{1cm} (5.12)

where r_T and r_λ are evaluated at \bar{X} and \bar{T}.

The second order perturbations v_2, u_2, T_2, λ_2 can be eliminated from these equations (generally) by multiplying by a left eigenvector of the coefficient matrix in (5.5). In the present case we may carry this out directly by multiplying (5.9) by $R\ddot{v}$ and (5.10) by \dot{X} and adding. The result is then added to $R\ddot{v}$ times (5.11) to obtain

$$R\ddot{v}T_1 + R\ddot{v}\gamma T_1 u_1 - R\ddot{v} \frac{\alpha}{c_v} r_T T_1 - \frac{\alpha}{c_v} R\ddot{v} r_\lambda \lambda_1$$ \hspace{1cm} (5.13)

$$-R\ddot{v} \dot{v}_1 + \dot{X} \ddot{v} u_1 - \gamma R\ddot{v} T_1 u_1 + \ddot{v}Xu_1^2 = 0$$

Substituting (5.8) and using (5.6) gives a single Ricatti equation for $\eta(t)$:

$$\dot{\eta} + \frac{\gamma + 1}{2} \eta^2 - \frac{qr_T(\gamma - 1)}{2\gamma c_v} \eta = 0$$ \hspace{1cm} (5.14)

where $r_T < 0$ (see Logan and Kapila [10] for a demonstration that $r_T < 0$).

Qualitatively, (5.14) has the same form as the analog (see (4.5)), and so the same conclusions can be drawn regarding the propagation of compression and rarefaction waves along the wavefront. The solution of (5.14) is

$$\eta(t) = \frac{2Q\eta_0}{\gamma + 1} \frac{1}{(\eta_0 + \frac{2Q}{\gamma + 1})e^{Qt} - \eta_0}$$ \hspace{1cm} (5.15)

where $\eta_0 = \eta(0)$ and $Q \equiv -qr_T(\gamma - 1)/2\gamma c_v > 0$. As in Section 4, η is proportional to the derivative jumps along the wavefront.
It is interesting to note that (5.14) does not depend on \(r_\lambda \), the variation of the reaction rate with \(\lambda \). Therefore, if \(r = r(\lambda) \) (for example, \(r(\lambda) = (1-\lambda)k_f - \lambda k_b \), \(k_f \), \(k_b \) constant), then \(r_T = 0 \) and (5.14) becomes

\[
\dot{\eta} + \frac{\gamma+1}{2} \eta^2 = 0
\]

In this case

\[
\eta = \frac{1}{\frac{\gamma+1}{2} t + \eta_0}
\]

and blow-up always occurs if \(\eta_0 < 0 \) (compression). If \(\eta_0 > 0 \) there is algebraic decay (rarefaction).

Finally, we note that blow-up occurs in (5.15) whenever \(\eta_0 < 0 \) and \(\eta_0 < 2Q/(\gamma+1) \), i.e. if the compression wave is string enough. In conclusion, we note that the Fickett–Majda qualitative model closely mirrors the behavior of the physical system in the present problem.

6. The Signalling Problem

The equations for near-equilibrium flow are given by (3.4). We may obtain a single equation for \(\tilde{\rho} \) by taking \(\partial/\partial t \) of the first equation in (3.4) while taking \(\partial/\partial x \) of the second, and then eliminating \(\tilde{\lambda} \). The result is (dropping the tilde)

\[
\frac{\partial}{\partial t} (\rho_t + c_F \rho_x) - r_\lambda (\rho_t + c_e \rho_x) = 0
\] (6.1)

Equation (6.1) is a linear wave equation with operators \(\partial/\partial t \), \(\partial/\partial t + c_f \partial/\partial x \), and \(\partial/\partial t + c_e \partial/\partial x \). We may expect waves of speeds zero, \(c_f \), and \(c_e \) to play an important role in the analysis. General equations of this type are discussed in detail in Whitham [14, Chapter 10]. A heuristic argument is given in Fickett [4, p.63] for the behavior of solutions of (6.1). It is our intent in this section to present a
careful mathematical analysis of (6.1) by studying the boundary value problem consisting of (6.1) on the domain \(x > 0, \ t > 0 \), and the following initial and boundary data:

\[
\begin{align*}
\rho(x,0) &= 0 \quad \rho_t(x,0) = 0 \quad , \quad x > 0 \\
\rho(0,t) &= f(t) \quad , \quad t > 0
\end{align*}
\]

(6.2) (6.3)

We shall assume that \(f(t) \) is integrable on \([0,\infty)\). Since the problem is linear, without loss of generality we may take \(\rho(x,0) = \bar{\rho} = 0 \). Physically, we are thinking of a system \(x > 0 \) in chemical equilibrium \(\rho = \bar{\rho} \) for times \(t \leq 0 \). At \(t = 0 \) a piston at \(x = 0 \) is given a small impulse causing \(\rho \) to take the value \(f(t) \) for \(t > 0 \) at \(x = 0 \). (For an analysis of the signalling problem for the real physical system, see Chu [2] or Williams [15, pages 121–127].)

The above boundary value problem can be solved by the Laplace transform method and the solution can be analyzed by the method of steepest descent. Let \(R(x,s) \) denote the Laplace transform (on \(t \)) of \(\rho(x,t) \). That is,

\[
L(\rho) \equiv R(x,s) \equiv \int_0^\infty \rho(x,t)e^{-st}dt
\]

(6.4)

Using (6.2) and the properties of the Laplace transform, it easily follows that

\[
L(\rho_t) = sR \quad , \quad L(\rho_{tt}) = s^2R \quad , \quad L(\rho_{xt}) = sR_x \quad , \quad L(\rho_x) = R_x.
\]

Therefore, upon taking the Laplace transform of (6.1) we obtain

\[
(c_1s + ac_\mu)R_x + (s^2 + as)R = 0
\]

(6.5)

where

\[
a \equiv -\lambda > 0
\]

Solving (6.5) and using (6.3) gives

\[
R(x,s) = F(s)\exp\left\{ \frac{-x}{c_f} \left[\frac{s^2 + as}{s + a\mu} \right] \right\}
\]

(6.6)

where \(F(s) = L(f) \) and \(\mu \equiv c_\mu/c_f < 1 \). By the inversion theorem
\[
\rho(x,t) = \frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} t \left\{ z - \frac{x}{c_ft} \frac{z^2 + az}{z + a\mu} \right\} F(z)e^{z} \, dz
\]

(6.7)

where the path of integration \(\text{Re } z = \gamma \) lies to the right of any singularities of \(F(z) \) and the essential singularity \(z = -a\mu < 0 \). Since \(f(t) \) is integrable on \(0 \leq t < \infty \), there are no singularities of \(F \) in the half-plane \(\text{Re } z \geq 0 \). Thus we may take \(\gamma > 0 \).

We can now prove the following theorem.

Theorem 2 If \(f \) is integrable on \([0, \infty)\) and if \(x > c_ft \), then \(\rho(x,t) \equiv 0 \).

The conclusion of this theorem confirms the results of Section 4, namely that the leading signal into the medium travels with the frozen sound speed \(c_f \). Exactly the same result will hold for any type of applied source \(f(t) \) since the exponential function in (6.7) depends only on the properties of the fluid and not on the properties of the input signal.

The proof of Theorem 2 is carried out by direct calculation. We close the contour \([\gamma-i\delta, \gamma+i\delta]\) to the right with a contour \(\Gamma_\delta \) which may be taken to be an arc of a circle \(z = \text{Re}(i\theta), R^2 = \gamma^2 + \delta^2, -\theta_0 \leq \theta \leq \theta_0 \), with \(\theta_0 = \arctan(\delta/\gamma) \). By the residue theorem the integral over the closed path is zero. It remains to show that

\[
\lim_{\delta \to \infty} \int_{\Gamma_\delta} t \left\{ z - \frac{x}{c_ft} \frac{z^2 + az}{z + a\mu} \right\} F(z)e^{z} \, dz = 0
\]

(6.8)

The integral may be written

\[
I = i \int_{-\theta_0}^{\theta_0} \text{Re} \, F(\text{Re} \, i\theta) \exp\{t \text{Re} \, h(\text{Re} \, i\theta)\} \exp\{it \text{Im} \, h(\text{Re} \, i\theta)\} d\theta
\]
where \(h(z) \equiv z - \frac{x}{c_f t} \frac{z^2 + az}{z + a\mu} \). Then

\[
|I| \leq \int_{-\pi/2}^{\pi/2} \left| R \right| F(R e^{i\theta}) \left| e^{t \Re h(R e^{i\theta})} \right| d\theta
\]

(6.9)

But

\[
\Re h(\xi + i\eta) = \xi \left[1 - \frac{x}{c_f t} \right] - \frac{ax}{c_f t} (1 - \mu) \frac{\xi^2 + \eta^2 + a\mu \xi}{(\xi + a\mu)^2 + \eta^2}
\]

and therefore

\[
e^{t \Re h(R e^{i\theta})} = \exp \left\{ t \Re \left[1 - \frac{x}{c_f t} \right] \cos \theta \right\} \exp \left\{ - \frac{ax}{c_f t} (1 - \mu) \frac{R^2 + a\mu \cos \theta}{R^2 + \frac{a^2 \mu^2}{2} + 2a\mu \cos \theta} \right\}
\]

For large \(R \) the second exponential on the right side is bounded by unity. The first exponential has a negative argument since \(x > c_f t \). Since \(F(R e^{i\theta}) \to 0 \) as \(R \to \infty \) we may apply Jordan's Lemma (see Carrier, Krook and Pearson [1, p.81]) to show that the right side of (6.9) tends to zero as \(R \to \infty \), and so (6.8) holds. This completes the proof of Theorem 2.

When \(x < c_f t \), then the contour \([\gamma - i\delta, \gamma + i\delta]\) may be closed to the left with a path \(\Gamma_\delta \) which encloses the singularities of \(F \) and essential singular point at \(-a\mu\). In this case the residues at the singular points will give a nonzero contribution to the integral in (6.7). The method of steepest descent, or saddle point method, can be applied to find the asymptotic behavior of (6.7) for large \(t \), provided \(x/t \) is constant. Thus we have the integral

\[
\rho(x, t) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} F(z) e^{izh(z)} dz, \quad t >> 1, \quad \gamma > 0
\]

(6.10)

where \(h(z) = z - \frac{x}{c_f t} \frac{z^2 + az}{z + a\mu} \), \(a = -\tau \lambda \), \(\mu = c_e/c_f \). The saddle points are at \(h'(z) = 0 \) or, after some algebra,
\[z_\pm = -a\mu \pm \frac{a}{1-m} \sqrt{m(1-m)\mu(1-\mu)} \]

where we have denoted \(m \equiv x/c_f^2 \). We note that the saddle points \(z_\pm \) are both real.

The path of steepest descent passing through \(z_+ \), the saddle point with the largest real part, is \(\text{Im } h(z) = \text{Im } h(z_+) \). If \(z = \xi + i\eta \), then

\[
\text{Im } h(z) = \eta \left\{ 1 - m \left[1 + \frac{a^2 \mu(1-\mu)}{(\xi + a\mu)^2 + \eta^2} \right] \right\}
\]

Setting \(\xi = z_+ \), \(\eta = 0 \), we obtain

\[
\eta \left\{ 1 - m \left[1 + \frac{a^2 \mu(1-\mu)}{(\xi + a\mu)^2 + \eta^2} \right] \right\} = 0
\]

Thus \(\eta = 0 \) or

\[
(\xi + a\mu)^2 + \eta^2 = \frac{a^2 \mu(1-\mu)m}{1-m}
\]

In the \(\xi\eta \)-plane this is a circle centered at \((-a\mu,0)\) of radius

\[
r_m \equiv \frac{a}{1-m} \sqrt{m(1-m)\mu(1-\mu)}
\]

Therefore the path of steepest descent is a circle that passes through both saddle points (compare (6.11)). We summarize the conclusions in the following remark:

Remark Let \(m \equiv x/c_f^2 \). Then \(0 < m < 1 \) and

(i) \(z_+ \to +\infty \) as \(m \to 1^- \)

(ii) For \(\frac{c_e}{c_f} < m < 1 \) we have \(r_m > a\mu \) and so \(z^+ > 0 \).

(iii) For \(m = c_e/c_f \) we have \(z^- = -2a\mu \), \(z^+ = 0 \).

(iv) For \(0 < m < c_e/c_f \) we have \(r_m < a\mu \) so that \(z^+ < 0 \).

Figure 3 shows the paths of steepest descent for various values of \(m \). Clearly \(r_m \to 0 \) as \(m \to 0 \).
For m close to unity, i.e. near the wavefront, the dominant contribution to (6.10) comes from a neighborhood of z_+, where z_+ is large. Therefore we can determine the asymptotic behavior for $t >> 1$ of $\rho(x,t)$ near the wavefront by expanding the integrand in (6.10) for large z. We have

$$t \rho(z) = tz \left(1 - \frac{x}{c_f t} \right) - \frac{ax}{c_f} (1 - \mu) + tO \left(\frac{1}{z} \right) \quad (|z| \text{ large})$$

Therefore from (6.10)

$$\rho(x,t) \sim \frac{1}{2\pi i} e^{-ax(1-\mu)/c_f} \int_{\gamma-i\infty}^{\gamma+i\infty} t(1 - \frac{x}{c_f t}) z F(z) e dz$$

where $\gamma >> 1$. But by the shift theorem for Laplace transforms,

$$\frac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} F(z) e^{(t-x/c_f)z} dz = f(t-x/c_f)$$

Therefore we have shown the following result.
Theorem 3 Let \(f \) be integrable on \([0, \infty)\). Then near the wavefront \(x = c_f t \) the solution \(\rho \) is given by

\[
\rho(x,t) \sim f(t-x/c_f)\exp\{-ax(1-\mu)/c_f\} \quad \text{as} \quad t \to \infty
\]

This result shows that near the wavefront the first disturbance is a travelling wave propagating with the frozen sound speed \(c_f \). However, this disturbance is damped out exponentially and is negligible at distances on the order \(c_f/a \), where \(a \equiv -r_\lambda > 0 \). As \(r_\lambda \) gets large, i.e. as the sensitivity of the reaction rate with the chemical progress variable increases, the disturbance near the wavefront becomes negligible for all \(x > 0 \).

Now we determine the behavior of \(\rho(x,t) \) on the rays \(x/c_f t = m < 1 \). By the method of steepest descents the dominant contribution to (6.10) comes from a neighborhood of the saddle \(z_+ \), where now \(z_+ \) is finite. Expanding \(h(z) \) in a neighborhood of \(z_+ \) gives

\[
h(z) = h(z_+) + \frac{1}{2} h''(z_+)(z-z_+)^2 + \cdots
\]

Then (6.10) gives

\[
\rho(x,t) \sim \frac{1}{2\pi i} \int_{C_m} e^{th(z_+)} \frac{t}{2} h''(z_+)(z-z_+)^2 dz \quad \text{as} \quad t \to \infty
\]

where \(C_m \) is the path of steepest descent, the circle centered at \((-\mu a, 0) \) of radius \(r_m \). The asymptotic expression above is dominated by the \(\exp(th(z_+)) \) factor in front of the integral; the integral itself will contribute only an algebraic factor \(t^{-1/2} \) (see, for example, Carrier, Krook, and Pearson [1, pages 257ff]). Therefore we examine the exponential term and determine where the exponent is maximum. To this end we write

\[
h = h(z_+, x, t) \equiv z_+ - \frac{x}{c_f t} \frac{z_+^2 + az_+}{z_+ + a\mu}.
\]

Then regarding \(z_+ = z_+(x, t) \) through the relation \(h(z_+, x, t) = 0 \) which defines \(z_+ \), we set
\[
\frac{\partial h}{\partial x} (z_+, x, t) = \frac{\partial h}{\partial z_+} \frac{\partial z_+}{\partial x} + \frac{\partial h}{\partial x} = 0
\]
or
\[
\frac{\partial h}{\partial x} = -\frac{1}{c_f t} \frac{z_+^2 + a z_+}{z_+ + a \mu} = 0
\]
Hence \(z_+ = 0\) or \(z_+ = -a\). Clearly \(z_+ = 0\) makes \(h(z_+)\) maximum (zero) and so the exponential \(\exp(th(z_+))\) has a maximum value of unity when \(z_+(x, t) = 0\) or, from (6.11), when \(m = \mu\) or \(x = c_e t\). Therefore, the main disturbance travels with the equilibrium sound speed \(c_e\); for \(t\) large, the disturbance is exponentially small except near the ray \(x = c_e t\). To obtain more quantitative information we can expand \(h(z)\) in the integral in (6.10) about \(z_+ = 0\). The expansion is
\[
\text{th}(z) = z \left[t - \frac{x}{c_e} \right] + \frac{x}{c_f} \frac{1 - \mu}{a \mu^2} z^2 + O(z^3)
\]
Then, to first order, again using the shift theorem for Laplace transforms,
\[
\frac{1}{2\pi i} \int_{c_m} \mathcal{F}(z) e^{-z(t - x/c_e)} \, dz \sim f(t - x/c_e) \quad \text{as} \quad t \to \infty
\]
where \(c_m\) is the circle of radius \(\mu a\), centered at \((-\mu a, 0)\). We formally record the result.

Theorem 4 Let \(f\) be integrable on \([0, t)\). Then near the ray \(x = c_e t\) the solution \(\rho\) is given by
\[
\rho(x, t) \sim f(t - x/c_e) \quad \text{as} \quad t \to \infty
\]
In summary, acoustic signals governed by (6.1)–(6.3) propagate into the medium \(x > 0\) with the leading signal travelling at the frozen sound speed \(c_f\). Along this precursor the signal strength decays exponentially. Behind the precursor is the main body of the signal travelling at the equilibrium sound speed \(c_e\).
Acknowledgments The author wishes to thank the Institute for Applied Mathematics and Applications at the University of Minnesota for its hospitality and support during November, 1989.

References

Recent IMA Preprints

Title

547 M. Slemrod, Dynamics of Measured Valued Solutions to a Backward-Forward Heat Equation

548 Avner Friedman and Jürgen Sprekels, Steady States of Austenitic-Martensitic-Domains in the Ginzburg-Landau Theory of Shape Memory Alloys

549 Avner Friedman and Bei Hu, Degenerate Hamilton-Jacobi-Bellman Equations in a Bounded Domain

550 E.G. Kalnin, Willard Miller, Jr., and M.V. Tratnik, Families of Orthogonal and Biorthogonal Polynomials on the N-Sphere

551 Heinrich Freistühler, On Compact Linear Degeneracy

552 Matthew Witten, Quantifying the Concepts of Rate and Acceleration/Deceleration of Aging

553 J.P. Albert and J.L. Bona, Total Positivity and the Stability of Internal Waves in Stratified Fluids of Finite Depth

554 Brian Coomes and Victor Zurkowski, Linearization of Polynomial Flows and Spectra of Derivations

555 Yuriko Renardy, A Couette-Poiseuille Flow of Two Fluids in a Channel

556 Michael Renardy, Short wave instabilities resulting from memory slip

557 Daniel D. Joseph and Michael Renardy, Stokes’ first problem for linear viscoelastic fluids with finite memory

558 Xiaxi Ding, Superlinear Conservation Law with Viscosity

559 J.L. Ericksen, Liquid Crystals with Variable Degree of Orientation

560 F. Robert Ore, Jr. and Xinfu Chen, Electro-Optic Modulation in an Arbitrary Cross-Section Waveguide

561 M.V. Tratnik, Multivariable biorthogonal continuous-discrete Wilson and Racah polynomials

562 Yisong Yang, Existence of Solutions for a Generalized Yang-Mills Theory

563 Peter Gritzmann, Laurent Habsieger and Victor Klee, Good and Bad Radii of Convex Polygons

564 Martin Golubitsky, Martin Krupa and Chjan. C. Lim, Time-Reversibility and Particle Sedimentation

565 G. Yin, Recent Progress in Parallel Stochastic Approximations

566 G. Yin, On H-Valued SA: Finite Dimensional Approximations

567 Chien-Cheng Chang, Accurate Evaluation of the Effect of Diffusion and Conductivity in Certain Equations

568 Chien-Cheng Chang and Ruey-Ling Chern, The Effect of Viscous Diffusion in Discrete Vortex Dynamics for Slightly Viscous Flows

569 Li Ta-Tsien (Li Da-qian) and Zhao Yan-Chun, Global Existence of Classical Solutions to the Typical Free Boundary Problem for General Quasilinear Hyperbolic Systems and its Applications

570 Thierry Cazenave and Fred B. Weissler, The Structure of Solutions to the Pseudo-Conformally Invariant Nonlinear Schrödinger Equation

571 Marshall Slemrod and Athanasios E. Tzavaras, A Limiting Viscosity Approach for the Riemann Problem in Isentropic Gas Dynamics

573 P.J. Vassiliou, On the Geometry of Semi-Linear Hyperbolic Partial Differential Equations in the Plane Integrable by the Method of Darboux

574 Jerome V. Moloney and Alan C. Newell, Nonlinear Optics

575 Keti Tenenblat, A Note on Solutions for the Intrinsic Generalized Wave and Sine-Gordon Equations

576 P. Szmolyan, Heteroclinic Orbits in Singularly Perturbed Differential Equations

577 Wenxiong Liu, A Parabolic System Arising In Film Development

578 Daniel B. Dix, Temporal Asymptotic Behavior of Solutions of the Benjamin-Ono-Burgers Equation

579 Michael Renardy and Yuriko Renardy, On the nature of boundary conditions for flows with moving free surfaces

580 Werner A. Stahel, Robust Statistics: From an Intellectual Game to a Consumer Product

581 Avner Friedman and Fernando Reitich, The Stefan Problem with Small Surface Tension

582 E.G. Kalnin and W. Miller, Jr., Separation of Variables Methods for Systems of Differential Equations in Mathematical Physics

583 Mitchell Luskin and George R. Sell, The Construction of Inertial Manifolds for Reaction-Diffusion Equations by Elliptic Regularization

584 Konstantin Mischaikow, Dynamic Phase Transitions: A Connection Matrix Approach

585 Philippe Le Floch and Li Tatsien, A Global Asymptotic Expansion for the Solution to the Generalized Riemann Problem

586 Matthew Witten, Ph.D., Computational Biology: An Overview

587 Matthew Witten, Ph.D., Peering Inside Living Systems: Physiology in a Supercomputer
<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>588</td>
<td>Michael Renardy, An existence theorem for model equations resulting from kinetic theories of polymer solutions</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>Luigi Preziosi, An Invariance Property for the Propagation of Heat and Shear Waves</td>
<td></td>
</tr>
<tr>
<td>591</td>
<td>Gregory M. Constantine and John Bryant, Sequencing of Experiments for Linear and Quadratic Time Effects</td>
<td></td>
</tr>
<tr>
<td>592</td>
<td>Prabir Daripa, On the Computation of the Beltrami Equation in the Complex Plane</td>
<td></td>
</tr>
<tr>
<td>593</td>
<td>Philippe Le Floch, Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative Form</td>
<td></td>
</tr>
<tr>
<td>595</td>
<td>Mark J. Friedman and Eusebius J. Doedel, Numerical computation and continuation of invariant manifolds connecting fixed points</td>
<td></td>
</tr>
<tr>
<td>596</td>
<td>Scott J. Spector, Linear Deformations as Global Minimizers in Nonlinear Elasticity</td>
<td></td>
</tr>
<tr>
<td>597</td>
<td>Denis Serre, Richness and the classification of quasilinear hyperbolic systems</td>
<td></td>
</tr>
<tr>
<td>598</td>
<td>L. Preziosi and F. Rosso, On the stability of the shearing flow between pipes</td>
<td></td>
</tr>
<tr>
<td>599</td>
<td>Avner Friedman and Wenxiong Liu, A system of partial differential equations arising in electrophotography</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>Jonathan Bell, Avner Friedman, and Andrew A. Lacey, On solutions to a quasilinear diffusion problem from the study of soft tissue</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>David G. Schaeffer and Michael Shearer, Loss of hyperbolicity in yield vertex plasticity models under nonproportional loading</td>
<td></td>
</tr>
<tr>
<td>602</td>
<td>Herbert C. Kranzer and Barbara Lee Keyfitz, A strictly hyperbolic system of conservation laws admitting singular shocks</td>
<td></td>
</tr>
<tr>
<td>603</td>
<td>S. Leaderich and M. Levi, Qualitative dynamics of planar chains</td>
<td></td>
</tr>
<tr>
<td>604</td>
<td>Milan Miklavčič, A sharp condition for existence of an inertial manifold</td>
<td></td>
</tr>
<tr>
<td>605</td>
<td>Charles Collins, David Kinderlehrer, and Mitchell Luskin, Numerical approximation of the solution of a variational problem with a double well potential</td>
<td></td>
</tr>
<tr>
<td>606</td>
<td>Todd Arbogast, Two-phase incompressible flow in a porous medium with various nonhomogeneous boundary conditions</td>
<td></td>
</tr>
<tr>
<td>607</td>
<td>Peter Poláčik, Complicated dynamics in scalar semilinear parabolic equations in higher space dimension</td>
<td></td>
</tr>
<tr>
<td>608</td>
<td>Bei Hu, Diffusion of penetrant in a polymer: a free boundary problem</td>
<td></td>
</tr>
<tr>
<td>609</td>
<td>Mohamed Sami ElBialy, On the smoothness of the linearization of vector fields near resonant hyperbolic rest points</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>Max Jodeit, Jr. and Peter J. Olver, On the equation $\nabla \cdot \mathbf{f} = M \nabla \cdot g$</td>
<td></td>
</tr>
<tr>
<td>611</td>
<td>Shui-Nee Chow, Kening Lu, and Yun-Qiu Shen, Normal form and linearization for quasiperiodic systems</td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>Prabir Daripa, Theory of one dimensional adaptive grid generation</td>
<td></td>
</tr>
<tr>
<td>613</td>
<td>Michael C. Mackey and John G. Milton, Feedback, delays and the origin of blood cell dynamics</td>
<td></td>
</tr>
<tr>
<td>614</td>
<td>D.G. Aronson and S. Kamin, Disappearance of phase in the Stefan problem: one space dimension</td>
<td></td>
</tr>
<tr>
<td>615</td>
<td>Martin Krupa, Bifurcations of relative equilibria</td>
<td></td>
</tr>
<tr>
<td>616</td>
<td>D.D. Joseph, P. Singh, and K. Chen, Couette flows, rollers, emulsions, tall Taylor cells, phase separation and inversion, and a chaotic bubble in Taylor-Couette flow of two immiscible liquids</td>
<td></td>
</tr>
<tr>
<td>617</td>
<td>Artemio González-López, Niky Kamran, and Peter J. Olver, Lie algebras of differential operators in two complex variables</td>
<td></td>
</tr>
<tr>
<td>618</td>
<td>L.E. Fraenkel, On a linear, partly hyperbolic model of viscoelastic flow past a plate</td>
<td></td>
</tr>
<tr>
<td>619</td>
<td>Stephen Schecter and Michael Shearer, Undercompressive shocks for nonstrictly hyperbolic conservation laws</td>
<td></td>
</tr>
<tr>
<td>620</td>
<td>Xinfu Chen, Axially symmetric jets of compressible fluid</td>
<td></td>
</tr>
<tr>
<td>621</td>
<td>J. David Logan, Wave propagation in a qualitative model of combustion under equilibrium conditions</td>
<td></td>
</tr>
<tr>
<td>622</td>
<td>M.L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra Systems</td>
<td></td>
</tr>
<tr>
<td>623</td>
<td>Allan P. Fordy, Isospectral flows: their Hamiltonian structures, Miura maps and master symmetries</td>
<td></td>
</tr>
<tr>
<td>624</td>
<td>Daniel D. Joseph, John Nelson, Michael Renardy, and Yuriko Renardy, Two-Dimensional cusped interfaces</td>
<td></td>
</tr>
</tbody>
</table>