EXTINCTION AND POSITIVITY FOR A SYSTEM
OF SEMILINEAR PARABOLIC VARIATIONAL INEQUALITIES

By

Avner Friedman
and

Miguel A. Herrero

IMA Preprint Series # 761
February 1991
EXTINCTION AND POSITIVITY FOR A SYSTEM OF SEMILINEAR PARABOLIC VARIATIONAL INEQUALITIES

AVNER FRIEDMAN† AND MIGUEL A. HERRERO‡

Abstract. A simple model of chemical kinetics with two concentrations \(u \) and \(v \) can be formulated as a system of two parabolic variational inequalities with reaction rates \(v^p \) and \(u^q \) for the diffusion processes of \(u \) and \(v \) respectively. It is shown that if \(p q < 1 \) and the initial values of \(u \) and \(v \) are “comparable” then at least one of the concentrations becomes extinct in finite time. On the other hand for any \(p = q > 0 \) there are initial values for which both concentrations do not become extinct in any finite time.

AMS(MOS) subject classifications. 35K55, 35KJ7, 35K60

Key words and phrases: Semilinear parabolic variational inequality, positivity, extinction.

§1. Introduction. It is well known that nonnegative solutions of various initial and boundary value problems associated to the semilinear heat equation

\[
(1.1) \quad u_t - u_{xx} + u^p = 0 \quad \text{with} \quad 0 < p < 1
\]

vanish identically in finite time; see [7] [2] [3] [1]. This phenomenon is termed extinction, and is clearly illustrated by the explicit solution

\[
(1.2) \quad u = ((1 - p)(T - t)_+)^{1/(p - 1)} , \quad T > 0
\]

where \(s_+ = \max\{s, 0\} \). This particular solution plays an important role in describing the asymptotic behavior of the extinction process; cf. [5] [6].

In this paper we consider a semilinear parabolic system which may be thought of as a toy model in chemical kinetics. Let \(u(x, t) \) and \(v(x, t) \) denote the concentrations of two species which diffuse and react in a one-dimensional domain \(L = \{-1 < x < 1\} \) according to

\[
(1.3) \quad u_t - u_{xx} + v^p = 0 \quad , \quad v_t - v_{xx} + u^q = 0 \quad (p > 0, q > 0).
\]

Since the concentrations must be nonnegative, we are led to the following variational inequality formulation:

\[
(1.4) \quad u \geq 0 , \quad v \geq 0 \quad \text{in} \quad Q = (-1,1) \times (0,\infty),
\]

\[
(1.5) \quad u(u_t - u_{xx} + v^p) = 0 , \quad v(v_t - v_{xx} + u^q) = 0 \quad \text{a.e. in} \ Q.
\]

*The first author is partially supported by National Science Foundation Grant DMS–86–12880; the second author is partially supported by CICYT Grant PB86–00112–0202 (PB86–00112–C0282).

†University of Minnesota, Institute for Mathematics and its Applications, Minneapolis, Minnesota 55455

‡Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense, 28040 Madrid, Spain
We also impose initial conditions

\[(1.6) \quad u(x, 0) = u_0(x), \ v(x, 0) = v_0(x) \quad \text{in} \quad [-1, 1]\]

where \(u_0 \geq 0, \ v_0 \geq 0,\) and boundary conditions which are either Dirichlet

\[(1.7) \quad u(\pm 1, t) = v(\pm 1, t) = 0 \quad \text{for} \quad t > 0,\]

or Neumann

\[(1.8) \quad \frac{\partial u}{\partial x}(\pm 1, t) = \frac{\partial v}{\partial x}(\pm 1, t) = 0 \quad \text{for} \quad t > 0.\]

We shall briefly refer to the problem (1.3)--(1.7) as \((DP)\) and to (1.3)--(1.6),(1.8) as \((NP)\).

For simplicity we assume that

\[(1.9) \quad u''_0(x), \ v''_0(x) \quad \text{belong to} \quad L^\infty[-1, 1],\]

where \(u_0, v_0\) are just continuous in \([-1, 1]\).

We define a solution of \((DP)\) to a pair of functions \((u, v)\) be such that (1.3)--(1.7) hold and

\[(1.10) \quad \iint_{Q_T} (|w_x|^r + |w_{xx}|^r + |w_t|^r) < \infty \quad \text{for} \ w = u, v \ \text{and for all} \ r > 1, T > 0.\]

For \((NP)\) we replace (1.7) by (1.8) and require, in addition to (1.10), that

\[(1.11) \quad u_x, v_x \quad \text{are continuous in} \ \bar{Q}.\]

We observe that, if \(pq < 1,\) then for any \(T > 0\) \((NP)\) has a solution

\[(1.12) \quad u = c_1(T - t)^{\frac{p+1}{1-pq}}, \ v = c_2(T - t)^{\frac{q+1}{1-pq}}\]

with

\[(1.13) \quad c_1 = \left(\frac{(1 - pq)^{1+p}}{(p+1)(q+1)^p}\right)^{\frac{1}{1-pq}},\ c_2 = \left(\frac{(1 - pq)^{1+q}}{(p+1)^q(q+1)}\right)^{\frac{1}{1-pq}}.\]

This example and the extinction results for the single equation (1.1) suggest that one may expect the extinction phenomenon to hold for the system (1.3)--(1.5) whenever \(pq < 1.\) As
it will turn out, however, this is not always the case. But before going any further we need to define the concept of extinction more carefully. If
\[u(x, 0) \equiv 0 , \quad v(x, 0) \not\equiv 0 \]
then there exists a solution \((u, v)\) such that \(u(x, t) \equiv 0\) if \(t > 0\), whereas \(v(x, t) > 0\) for all \(-1 < x < 1, \ t > 0\). Also, if
\[u(x, 0) = \text{const} = c_1 , \quad v(x, 0) = \text{const} = c_2 , \quad pq < 1 , \]
then, for \((NP)\), there exists a solution \((u, v)\) which is a function of \(t\) only and, for general \(c_1, c_2\), only one component becomes zero in finite time (the case (1.13) in exceptional).

These examples show that in order to capture the phenomenon of extinction one should define:

A solution \((u, n)\) has finite extinction time \(T\) if \(T\) is the smallest positive number such that either \(u(x, t) \equiv 0\) for all \(t > T\), or \(v(x, t) \equiv 0\) for all \(t > T\).

In §3 we give a sufficient condition on the data \(u_0, v_0\) which ensures extinction, and in §4 we give an example (with \(p = q\)) where there is no extinction. (The same initial data as in that example also leads to a positivity result of one component in case \(p \geq q\).) In §2 we briefly establish existence of solutions to \((DP)\) and \((NP)\).

§2. Existence.

Theorem 2.1. Let \(u_0, v_0\) be nonnegative functions satisfying (1.9). Then there exists a solution \((u, v)\) to \((DP)\) (respectively \((NP)\)).

Proof. We consider only \((DP)\); the case \((NP)\) is similar. For any \(0 < \varepsilon < 1\) let \(\beta_\varepsilon(s)\) be a \(C^\infty\) function such that
\[\beta_\varepsilon'(s) \geq 0 , \quad \beta_\varepsilon(s) = 0 \quad \text{if} \ s \geq 0 , \quad \lim_{\varepsilon \to 0} \beta_\varepsilon(s) = -\infty \quad \text{if} \ s < 0 . \]

Let \(f_{\varepsilon, p}, f_{\varepsilon, q}\) be smooth, nonnegative, monotone nondecreasing and bounded functions satisfying:
\[\lim_{\varepsilon \to 0} f_{\varepsilon, p}(s) = s_+^p , \lim_{\varepsilon \to 0} f_{\varepsilon, q}(s) = s_+^q . \]

Consider the system of penalized equations:

\[u_t - u_{xx} + \beta_\varepsilon(u) + f_{\varepsilon, p}(v) = 0 \quad \text{in} \quad Q , \]

(2.1)
\[v_t - v_{xx} + \beta_\varepsilon(v) + f_{\varepsilon, q}(v) = 0 \quad \text{in} \quad Q \]
with the same data as for \((DP)\). One can easily prove (as in \([4: \text{Chap. 1}]\)) that this problem has a solution \((u_\varepsilon, v_\varepsilon)\) and

\[
 u_\varepsilon \leq \|u_0\|_{L^\infty}, \quad v_\varepsilon \leq \|v_0\|_{L^\infty};
\]

a standard energy inequality can be used to establish uniqueness. It follows that \(f_{\varepsilon,p}(v_\varepsilon)\) and \(f_{\varepsilon,q}(u_\varepsilon)\) are bounded uniformly in \(\varepsilon\) and then (as in \([4; \text{p. 25}]\))

\[
 \beta_\varepsilon(u_\varepsilon) \quad \text{and} \quad \beta_\varepsilon(v_\varepsilon)
\]

are bounded uniformly in \(\varepsilon\). We can then deduce that for any sequence \(\varepsilon \to 0\) there is a subsequence which converges to a solution of \((DP)\).

We note that the question of uniqueness of the solutions is open.

\section{Extinction result.}

\textbf{Theorem 3.1.} Suppose that \(pq < 1\) and

\[
 (3.1) \quad u_0(x) \geq \left(\frac{q + 1}{p + 1} \right)^{\frac{q\beta}{p + 1}} v_0(x)^{\frac{p\beta}{q + 1}}, \quad p \geq q.
\]

Then there exist a solution \((u, v)\) of \((DP)\) (respectively \((NP)\)) such that \(v(x, t) \equiv 0\) for \(t \geq T,\) for some \(T > 0.\)

\textbf{Proof.} Consider the auxiliary functions

\[
 \theta = cv^\beta, \quad \theta_\lambda = c(v + \lambda)^\beta \quad \text{where} \quad c = \left(\frac{q + 1}{p + 1} \right)^{\frac{q\beta}{p + 1}}, \quad \beta = \frac{p + 1}{q + 1}, \quad \lambda > 0.
\]

Notice that \(\theta_\lambda\) satisfies

\[
 \theta_{\lambda,t} - \theta_{\lambda,xx} = -c\beta(v + \lambda)^{\beta-1}(v_t - v_{xx}) - c\beta(\beta - 1)(v + \lambda)^{\beta-2}v_x^2 \quad (\beta \geq 1).
\]

Dropping the last term and letting \(\lambda \to 0\) we get

\[
 (3.2) \quad \theta_t - \theta_{xx} \leq -c\beta v^{\beta-1}u^q
\]

in some weak sense. Recalling \((1.4)\) we deduce that

\[
 (3.3) \quad (u - \theta)_t - (u - \theta)_{xx} \geq c\beta v^{\beta-1}u^q - v^p \quad \text{in} \quad Q.
\]
We now replace \(u_0(x) \) by \(u_0(x) + \tau \) \((\tau > 0)\) and in the case of \((DP)\) replace the conditions \(u(\pm 1, t) = 0 \) by \(u(\pm 1, t) = \tau \). We continue to denote by \((u, v)\) the corresponding solution of (1.3)--(1.5). Observe that

\[
\text{if } u \geq cv^\beta \text{ then } c\beta v^{\beta-1} u^q \geq v^p,
\]

so that the right-hand side of (3.3) is \(\geq 0 \). Using this fact, and the strong maximum principle (which holds for our solution \(u \), in view of the regularity (1.10)) we can deduce that if \(u(x, t) \geq cv(x, t)^\beta \) for \(-1 \leq x \leq 1\), \(0 \leq t \leq s\) then also \(u(x, s) > cv(x, s)^\beta \) for \(-1 \leq x \leq 1\); here we needed the modification of the Dirichlet conditions at \(x = \pm 1 \). Since \(u(x, 0) = u_0(x) + \tau > cv_0(x)^\beta \) for \(-1 \leq x \leq 1\) (by (3.1)), it follows that

\[
 u(x, t) > cv(x, t)^\beta, \quad -1 \leq x \leq 1
\]

for small \(t \) and then also for all \(t > 0 \).

Letting \(\tau \to 0 \) we obtain \(u \geq cv^\beta \) for the solution \((u, v)\) of \((DP)\) or \((NP)\). Substituting this into the differential equation for \(v \) (on the set \(\{v = 0\}, v_t = 0 \) and \(v_{xx} = 0 \) a.e.), we get

\[
v_t - v_{xx} + kv^\alpha \leq 0 \quad \text{with} \quad \alpha = \frac{q(p+1)}{q+1}, \quad k = c^q.
\]

The assumption \(pq < 1 \) implies that \(\alpha < 1 \), and therefore there exists a \(T > 0 \) such that \(v(x, t) \equiv 0 \) for \(t \geq T \).

§4. Non-extinction and positivity.

We begin with a result on non-extinction.

Theorem 4.1. Assume that \(p = q \) and

\[
(4.1) \quad u_0(x) = v_0(-x) \quad \text{for} \quad -1 \leq x \leq 1,
\]

\[
(4.2) \quad u_0(x) \geq u_0(-x), \quad u_0(x) \neq u_0(-x) \quad \text{for} \quad -1 \leq x \leq 0.
\]

Then there exists a solution of \((DP)\) (respectively \((NP)\)) such that

\[
(4.3) \quad u(x, t) > 0 \quad \text{in} \quad Q^- \equiv (-1, 0) \times (0, \infty),
\]

\[
(4.4) \quad v(x, t) > 0 \quad \text{in} \quad Q^+ \equiv (0, 1) \times (0, \infty).
\]

Thus the solution does not have finite extinction time.

Proof. We consider the system

\[
(4.5) \quad u_t(x, t) - u_{xx}(x, t) + \beta_e(u(x, t)) + f_{e,p}(u(-x, t)) = 0,
\]

\[
(4.6) \quad v_t(x, t) - v_{xx}(x, t) + \beta_e(v(x, t)) + f_{e,p}(u(x, t)) = 0.
\]
with the same initial and boundary data as before. It is easy to show that \((4.5)\) has a solution with the required data. If we set \(v(x,t) = u(-x,t)\) then \(v\) satisfies \((4.6)\) and the required data (here we used \((4.1)\)). Finally, since

\[
 f_{\varepsilon,p}(u(-x,t)) = f_{\varepsilon,p}(v(x,t)) ,
\]

the pair \((u,v)\) is a solution of the penalized problem \((2.1)\).

Denoting this solution by \((u_\varepsilon,v_\varepsilon)\) we thus have

\[
(4.7) \quad v_\varepsilon(x,t) = u_\varepsilon(-x,t)
\]

and

\[
 u_\varepsilon \to u , \quad v_\varepsilon \to v \quad \text{as} \quad \varepsilon \to 0 ,
\]

where \((u,v)\) is a solution of \((DP)\) (respectively \((NP)\)).

The function

\[
 z_\varepsilon(x,t) = u_\varepsilon(x,t) - v_\varepsilon(x,t)
\]

satisfies:

\[
 z_t - z_{xx} + c_1 z + c_2 z = 0
\]

where

\[
 c_1 = \frac{\beta_\varepsilon(u_\varepsilon(x,t)) - \beta_\varepsilon(v_\varepsilon(x,t))}{u_\varepsilon(x,t) - v_\varepsilon(x,t)} , \quad c_2 = \frac{f_{\varepsilon,p}(v_\varepsilon(x,t)) - f_{\varepsilon,p}(u_\varepsilon(x,t))}{u_\varepsilon(x,t) - v_\varepsilon(x,t)}
\]

if \(u_\varepsilon(x,t) \neq v_\varepsilon(x,t)\) and \(c_1 = c_2 = 0\) otherwise. Notice that \(c_1, c_2\) are bounded functions for any fixed \(\varepsilon\). Since

\[
 z_\varepsilon(x,0) = u(x) - u_0(-x) \geq 0 , \quad \neq 0 \quad \text{in} \quad (-1,0) ,
\]

and \(z_\varepsilon\) satisfies homogeneous boundary conditions at \(x = -1,0\), the strong maximum principle yields \(z_\varepsilon > 0\) in \(Q^-\). Letting \(\varepsilon \to 0\) we obtain a solution \((u,v)\) satisfying:

\[
(4.8) \quad u(x,t) = v(-x,t) \quad \text{in} \quad Q ,
\]

\[
(4.9) \quad u(x,t) \geq u(-x,t) \quad \text{in} \quad Q^- .
\]

For any \(T > 0\) we consider the function

\[
 z(x,t) = u(x,t) - u(-x,t) \quad \text{in} \quad Q_T^- = (-1,0) \times (0,T) .
\]
In the subset where \(u(x, t) \geq u(-x, t) > 0 \), we have
\[
 z_t - z_{xx} = u(x, t)^p - u(-x, t)^p \geq 0 \quad \text{by (4.9)}.
\]
In the subset where \(u(x, t) > u(-x, t) = 0 \), \(u_t(-x, t) = 0, u_{xx}(-x, t) = 0 \) a.e. so that
\[
 z_t - z_{xx} = u_t - u_{xx} = -u(-x, t)^p = 0 \quad \text{a.e.}
\]
Finally in the subset where \(u(x, t) = u(-x, t) = 0 \) we have a.e.
\[
 z_t = z_{xx} = u_t - u_{xx} = 0, \quad \text{since} \quad u_t = 0, \ u_{xx} = 0 \quad \text{a.e.}
\]
We conclude that
\[
 z_t - z_{xx} \geq 0 \quad \text{in} \quad Q_T^{-}.
\]
Since also
\[
 z(x, 0) \geq 0, \neq 0 \quad \text{in} \quad (-1, 0)
\]
and \(z \) satisfies homogeneous boundary conditions,
\[
 z(x, T) > 0 \quad \text{if} \quad -1 < x < 0.
\]
This implies that \(u(x, T) > 0 \) if \(-1 < x < 0\), and since \(T \) is arbitrary, (4.3) is satisfied. Recalling (4.8), the assertion (4.4) also follows.

Theorem 4.1 can be used to derive a positivity result in case \(p \neq q \):

Theorem 4.2. Assume that \(p \geq q \), (4.1), (4.2) are satisfied, and

\[
(4.10) \quad \max\{\|u_0\|_{L^\infty}, \|v_0\|_{L^\infty}\} \leq 1.
\]

Then there exists a solution of (DP) (respectively (NP)) such that (4.3) holds.

Proof. We choose \(f_{\varepsilon, p}, f_{\varepsilon, q} \) such that
\[
(4.11) \quad f_{\varepsilon, p}(s) \leq f_{\varepsilon, q}(s) \quad \text{if} \quad 0 \leq s \leq 1.
\]

Denote by \(u_\varepsilon, v_\varepsilon \) the solution of the penalized problem as defined in §2 and by \(v_{\varepsilon, 1} \) the solution of
\[
v_t - v_{xx} + \beta_\varepsilon(v) + f_{\varepsilon, p}(u_\varepsilon) = 0 \quad \text{in} \quad Q
\]
with the same data as \(v_\varepsilon \). Since \(\|u_\varepsilon\|_{L^\infty} \leq 1, \|v_\varepsilon\|_{L^\infty} \leq 1 \) (here we use (4.10)), it follows from (4.11) that
\[
(4.12) \quad v_{\varepsilon, 1} \geq v_\varepsilon \quad \text{in} \quad Q.
\]
Next we define $u_{\varepsilon,1}$ to be the solution of

$$u_t - u_{xx} + \beta_\varepsilon(u) + f_{\varepsilon,p}(u_{\varepsilon,1}) = 0 \quad \text{in} \quad Q$$

with the same data as u. Recalling (4.12) and the fact that the $f_{\varepsilon,p}$ are monotone nondecreasing, we deduce that

$$u_{\varepsilon,1} \leq u_{\varepsilon} \quad \text{in} \quad Q.$$

Iterating this procedure we obtain sequences of nonnegative functions, bounded above by 1, $\{u_{\varepsilon,j}\}$ and $\{v_{\varepsilon,j}\}$ such that

$$v_{\varepsilon} \leq v_{\varepsilon,1} \leq v_{\varepsilon,2} \leq \cdots,$$

$$u_{\varepsilon} \geq u_{\varepsilon,1} \geq u_{\varepsilon,2} \geq \cdots,$$

and $u_{\varepsilon,j}$ are uniformly bounded from below by a negative constant independent of ε, j. The limits $U_{\varepsilon} = \lim_{j \to \infty} u_{\varepsilon,j}$, $V_{\varepsilon} = \lim_{j \to \infty} v_{\varepsilon,j}$ satisfy

$$v_{\varepsilon} \leq V_{\varepsilon}, \quad u_{\varepsilon} \geq U_{\varepsilon};$$

(4.13)

further, $(U_{\varepsilon}, V_{\varepsilon})$ form the solution of the penalized problem with $p = q$. By uniqueness for the penalized problem,

$$U_{\varepsilon}(x, t) = V_{\varepsilon}(-x, t).$$

By the proof of Theorem 4.1, for any limits

$$U = \lim_{\varepsilon \to 0} U_{\varepsilon}, \quad V = \lim_{\varepsilon \to 0} V_{\varepsilon}$$

there holds

$$U(x, t) > 0 \quad \text{if} \quad -1 < x < 0, \quad t > 0.$$

Since, by (4.13), the limit $u = \lim u_{\varepsilon}$ satisfies $u \geq U$, the assertion of the theorem follows.

REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>693</td>
<td>A. Eden, A.J. Milani and B. Nicolaenko</td>
<td>Finite dimensional exponential attractors for semilinear wave equations with damping</td>
</tr>
<tr>
<td>694</td>
<td>A. Eden, C. Foias, B. Nicolaenko & R. Temam</td>
<td>Inertial sets for dissipative evolution equations</td>
</tr>
<tr>
<td>695</td>
<td>A. Eden, C. Foias, B. Nicolaenko & R. Temam</td>
<td>Hölder continuity for the inverse of Mañé’s projection</td>
</tr>
<tr>
<td>696</td>
<td>Michel Chipot and Charles Collins</td>
<td>Numerical approximations in variational problems with potential wells</td>
</tr>
<tr>
<td>697</td>
<td>Huanan Yang</td>
<td>Nonlinear wave analysis and convergence of MUSCL schemes</td>
</tr>
<tr>
<td>698</td>
<td>László Gerencsér and Zsuzsanna Vágó</td>
<td>A strong approximation theorem for estimator processes in continuous time</td>
</tr>
<tr>
<td>699</td>
<td>László Gerencsér,</td>
<td>Multiple integrals with respect to L-mixing processes</td>
</tr>
<tr>
<td>700</td>
<td>David Kinderlehrer and Pablo Pedregal</td>
<td>Weak convergence of integrands and the Young measure representation</td>
</tr>
<tr>
<td>701</td>
<td>Bo Deng</td>
<td>Symbolic dynamics for chaotic systems</td>
</tr>
<tr>
<td>703</td>
<td>Charles Collins and Mitchell Luskin</td>
<td>Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem</td>
</tr>
<tr>
<td>704</td>
<td>Peter Gritzmann and Victor Klee</td>
<td>Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces</td>
</tr>
<tr>
<td>705</td>
<td>A. Ronald Gallant and George Tauchen</td>
<td>A nonparametric approach to nonlinear time series analysis: estimation and simulation</td>
</tr>
<tr>
<td>706</td>
<td>H.S. Dumas, J.A. Ellison and A.W. Sáenz</td>
<td>Axial channeling in perfect crystals, the continuum model and the method of averaging</td>
</tr>
<tr>
<td>707</td>
<td>M.A. Kaashoek and S.M. Verduyn Lunel</td>
<td>Characteristic matrices and spectral properties of evolutionary systems</td>
</tr>
<tr>
<td>708</td>
<td>Xinfu Chen</td>
<td>Generation and Propagation of interfaces in reaction diffusion systems</td>
</tr>
<tr>
<td>709</td>
<td>Avner Friedman and Bei Hu</td>
<td>Illposedness approach to light scattering from polymer-dispersed liquid crystal films</td>
</tr>
<tr>
<td>710</td>
<td>Yoshihisa Morita and Shuichi Jimbo</td>
<td>ODEs on inertial manifolds for reaction-diffusion systems in a singularly perturbed domain with several thin channels</td>
</tr>
<tr>
<td>711</td>
<td>Wenxiong Liu</td>
<td>Blow-up behavior for semilinear heat equations: multi-dimensional case</td>
</tr>
<tr>
<td>712</td>
<td>Hi Jun Choe</td>
<td>Hölder continuity for solutions of certain degenerate parabolic systems</td>
</tr>
<tr>
<td>713</td>
<td>Hi Jun Choe</td>
<td>Regularity for certain degenerate elliptic double obstacle problems</td>
</tr>
<tr>
<td>714</td>
<td>Fernando Reitich</td>
<td>On the slow motion of the interface of layered solutions to the scalar Ginzburg–Landau equation</td>
</tr>
<tr>
<td>715</td>
<td>Xinfu Chen and Fernando Reitich</td>
<td>Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling</td>
</tr>
<tr>
<td>716</td>
<td>C.C. Lim, J.M. Pimbley, C. Schmeiser and D.W. Schwendeman</td>
<td>Rotating waves for semiconductor inverter rings</td>
</tr>
<tr>
<td>717</td>
<td>W. Balser, B.L.J. Braaksma, J.-P. Ramis and Y. Sibuya</td>
<td>Multisummability of formal power series solutions of linear ordinary differential equations</td>
</tr>
<tr>
<td>718</td>
<td>Peter J. Olver and Chehrzad Shakiban</td>
<td>Dissipative decomposition of partial differential equations</td>
</tr>
<tr>
<td>719</td>
<td>Clark Robinson</td>
<td>Homoclinic bifurcation to a transitive attractor of Lorenz type, II</td>
</tr>
<tr>
<td>720</td>
<td>Michelle Schatzman</td>
<td>A simple proof of convergence of the QR algorithm for normal matrices without shifts</td>
</tr>
<tr>
<td>721</td>
<td>Ian M. Anderson, Niky Kamran and Peter J. Olver</td>
<td>Internal, external and generalized symmetries</td>
</tr>
<tr>
<td>722</td>
<td>C. Foias and J.C. Saut</td>
<td>Asymptotic integration of Navier–Stokes equations with potential forces. I</td>
</tr>
<tr>
<td>723</td>
<td>Ling Ma</td>
<td>The convergence of semidiscrete methods for a system of reaction-diffusion equations</td>
</tr>
<tr>
<td>724</td>
<td>Adelina Georgescu</td>
<td>Models of asymptotic approximation</td>
</tr>
<tr>
<td>725</td>
<td>A. Makagon and H. Salehi</td>
<td>On bounded and harmonizable solutions on infinite order arma systems</td>
</tr>
<tr>
<td>726</td>
<td>San-Yih Lin and Yan-Shin Chin</td>
<td>An upwind finite-volume scheme with a triangular mesh for conservation laws</td>
</tr>
<tr>
<td>727</td>
<td>J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego & P.J. Swart</td>
<td>On the dynamics of fine structure</td>
</tr>
<tr>
<td>728</td>
<td>KangPing Chen and Daniel D. Joseph</td>
<td>Lubrication theory and long waves</td>
</tr>
<tr>
<td>729</td>
<td>J.L. Ericksen</td>
<td>Local bifurcation theory for thermoelastic Bravais lattices</td>
</tr>
<tr>
<td>730</td>
<td>Mario Taboada and Yuncheng You</td>
<td>Some stability results for perturbed semilinear parabolic equations</td>
</tr>
<tr>
<td>731</td>
<td>A.J. Lawrence</td>
<td>Local and deletion influence</td>
</tr>
<tr>
<td>732</td>
<td>Bogdan Vernescu</td>
<td>Convergence results for the homogenization of flow in fractured porous media</td>
</tr>
<tr>
<td>733</td>
<td>Xinfu Chen and Avner Friedman</td>
<td>Mathematical modeling of semiconductor lasers</td>
</tr>
<tr>
<td>734</td>
<td>Yongzhi Xu</td>
<td>Scattering of acoustic wave by obstacle in stratified medium</td>
</tr>
<tr>
<td>735</td>
<td>Songmu Zheng</td>
<td>Global existence for a thermodynamically consistent model of phase field type</td>
</tr>
<tr>
<td>736</td>
<td>Heinrich Freistühler and E. Bruce Pitman</td>
<td>A numerical study of a rotationally degenerate hyperbolic</td>
</tr>
</tbody>
</table>
Epifanio G. Virga, New variational problems in the statics of liquid crystals
Yoshikazu Giga and Shun'ichi Goto, Geometric evolution of phase-boundaries
Ling Ma, Large time study of finite element methods for 2D Navier–Stokes equations
Mitchell Luskin and Ling Ma, Analysis of the finite element approximation of microstructure in micromagnetics
M. Chipot, Numerical analysis of oscillations in nonconvex problems
J. Carrillo and M. Chipot, The dam problem with leaky boundary conditions
Eduard Harabetian and Robert Pego, Efficient hybrid shock capturing schemes
B.L.J. Braaksma, Multisummability and Stokes multipliers of linear meromorphic differential equations
Tae Il Jeon and Tze-Chien Sun, A central limit theorem for non-linear vector functionals of vector Gaussian processes
Chris Grant, Solutions to evolution equations with near-equilibrium initial values
Mario Taboada and Yuncheng You, Invariant manifolds for retarded semilinear wave equations
Peter Rejto and Mario Taboada, Unique solvability of nonlinear Volterra equations in weighted spaces
Hi Jun Choe, Holder regularity for the gradient of solutions of certain singular parabolic equations
Jack D. Dockery, Existence of standing pulse solutions for an excitable activator-inhibitory system
Jack D. Dockery and Roger Lui, Existence of travelling wave solutions for a bistable evolutionary ecology model
Giovanni Alberti, Luigi Ambrosio and Giuseppe Buttazzo, Singular perturbation problems with a compact support semilinear term
Emad A. Fatemi, Numerical schemes for constrained minimization problems
Y. Kuang and H.L. Smith, Slowly oscillating periodic solutions of autonomous state-dependent delay equations
Emad A. Fatemi, A new splitting method for scaler conservation laws with stiff source terms
Hi Jun Choe, A regularity theory for a more general class of quasilinear parabolic partial differential equations and variational inequalities
Haitao Fan, A vanishing viscosity approach on the dynamics of phase transitions in Van Der Waals fluids
Avner Friedman and Bei Hu, A free boundary problem arising in superconductor modeling
Avner Friedman and Wenxiong Liu, An augmented drift-diffusion model in semiconductor device
Avner Friedman and Miguel A. Herrero, Extinction and positivity for a system of semilinear parabolic variational inequalities
David Dobson and Avner Friedman, The time-harmonic Maxwell equations in a doubly periodic structure
Hi Jun Choe, Interior behaviour of minimizers for certain functionals with nonstandard growth
Vincenzo M. Tortorelli and Epifanio G. Virga, Axisymmetric boundary-value problems for nematic liquid crystals with variable degree of orientation
Nikan B. Firoozye and Robert V. Kohn, Geometric parameters and the relaxation of multiwell energies
Joseph D. Fehribach, Analysis and application of a continuation method for a self-similar coupled Stefan system
C. Foias, M.S. Jolly, I.G. Kevrekidis and E.S. Titi, Dissipativity of numerical schemes
D.D. Joseph, T.Y.J. Liao and J.-C. Saut, Kelvin–Helmholtz mechanism for side branching in the displacement of light with heavy fluid under gravity
Chris Grant, Solutions to evolution equations with near-equilibrium initial values
B. Cockburn, F. Coquel, Ph. LeFloch and C.W. Shu, Convergence of finite volume methods
N.G. Lloyd and J.M. Pearson, Computing centre conditions for certain cubic systems
João Palhoto Matos, Young measures and the absence of fine microstructures in the $\alpha - \beta$ quartz phase transition
L.A. Peletier & W.C. Troy, Self-similar solutions for infiltration of dopant into semiconductors
H. Scott Dumas and James A. Ellison, Nekhoroshev's theorem, ergodicity, and the motion of energetic charged particles in crystals
Stathis Filippas and Robert V. Kohn, Refined asymptotics for the blowup of $u_t - \Delta u = u^p$.
Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity
Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximal smoothness of solutions to certain Euler–Lagrange equations from nonlinear elasticity
Jack Carr and Robert Pego, Self-similarity in a coarsening model in one dimension
J.M. Greenberg, The shock generation problem for a discrete gas with short range repulsive forces
George R. Sell and Mario Taboada, Local dissipativity and attractors for the Kuramoto–Sivashinsky equation in thin 2D domains
T. Subba Rao, Analysis of nonlinear time series (and chaos) by bispectral methods