SIGNED RANDOM MEASURES: STOCHASTIC ORDER AND KOLMOGOROV CONSISTENCY CONDITIONS

By

Frank W. Elliott, Jr.

IMA Preprint Series # 927
February 1992
Signed Random Measures:
Stochastic Order and
Kolmogorov Consistency Conditions

FRANK W. ELLIOTT, JR.
IMA, UNIVERSITY OF MINNESOTA

Abstract. We consider random measures as maps from the Borel sets A of a Polish space to the lattice V of random variables on a probability space (Ω, \mathcal{F}, P); for fixed ω these maps should be signed, bounded measures. The space of such random measures is a σ-complete vector lattice under the stochastic order. We use this to demonstrate Kolmogorov consistency conditions for bounded, signed random measures, to prove the existence of conditional expectation operator on this lattice, and to prove a Lebesgue-Radon-Nikodym theorem for random measures for which the Radon-Nikodym derivative is a random process.

Key words. Kolmogorov conditions, lattices, random measures, stochastic order

0. Introduction

Rolski and Szelki [R,S] considered partial ordering on the space of non-negative random measures and related this order, the stochastic order, to the theory of point process thinning. The space of bounded, signed measures on a Polish space (a complete, separable, metrizable space) is partially ordered by the same relation

$$\mu \leq \nu \iff (\forall a \in A) \mu(a) \leq \nu(a),$$

where μ and ν are random measures and A is the collection of Borel sets. Moreover, this collection forms a σ-complete vector lattice in this order, as we shall prove. We will use this lattice property to give necessary and sufficient conditions for a system of distributions to determine an essentially unique signed bounded random measure, to prove that the conditional expectation of a signed random measure determines an essentially unique random measure, and to determine general conditions for one random measure to be represented as an indefinite integral with respect to another. According to Daley and Vere-Jones [D,V-J], the first two of these appeared to be open problems. Beyond these results, we hope that the characterization of spaces of random measures by their order properties will produce other interesting results, and that an understanding the properties of signed random measures will be useful in modelling physical problems involving naturally signed quantities such as electrical charge.

The following theorem, the proof of which is mentioned by Dunford and Schwartz [D,S], is useful for dealing with signed set functions which are bounded and countably additive on an algebra. We mention it because it does not seem widely known and because it is key to our proof of the Kolmogorov consistency theorem for signed random measures.

Theorem 0.1. Let A be an algebra, let μ be a countably additive set function with values only in an interval $[a, b]$. Then, μ has an unique extension to $\sigma(A)$ which also assumes values only in $[a, b]$.
1. Vector Lattices

We will briefly summarize the results we need from the theory of vector lattices. A more complete explanation can be found in Yosida's book [Y]. The proof of the representation theorem for semi-simple unital vector lattices can be found there.

An ordered vector space V equipped with a partial order \leq which is additive, for all $x, y, z \in V$, $x \leq y \Rightarrow x + z \leq y + z$, positive homogeneous, for all non-negative real c and all $x, y \in V$ $x \leq y \Rightarrow cx \leq cy$. If such a space is complete with respect to finite infima and suprema, it is a vector lattice. The infimum of two elements u and v is denoted $u \land v$, and the supremum $u \lor v$. The absolute value of u is $|u| = u \lor 0 - u \land 0$, the positive variation $u^+ = u \lor 0$, and the negative variation $u^- = -(u \land 0)$. The collection of elements of V which are non-negative is the positive cone, V^+, of V.

A linear subspace U is an ideal if whenever a v in V satisfies $|v| \leq |u|$ for some u in U, then v is also in U. A vector lattice containing no ideals other than $\{0\}$ and V is called simple. The principal ideal associated with u is subspace $V_u = \{v||v| \leq c|u|, c \in \mathbb{R}, c \geq 0\}$. If for some $e \geq 0 V_e = V$, then e is an unit of V. For any ideal U, the quotient vector space V/U is a vector lattice with the structure determined by $(f + U) \land (g + U) = (f \land g) + U$. The map $u \rightarrow u + V$ which carries an element of U to its equivalence class is a vector lattice homomorphism, a linear map T satisfying $T(|u|) = |T(u)|$.

An ideal is maximal if it is strictly contained in the entire space but in no smaller ideal. If N is a maximal ideal, V/N is a simple vector lattice. The collection of maximal ideals of V is called the maximal ideal space, denoted $\mathcal{M}(V)$. The intersection of all maximal ideals of V is called the radical of V, denoted $\mathcal{R}(V)$; V is semi-simple if the radical is equal to $\{0\}$. If V has the unit e, the collection of nilpotent elements $\{v \mid n|v| \leq e, n = 1, 2, \ldots\}$ is equal to the radical of V (Yosida [Y]).

If every countable set in a vector lattice V with an upperbound in V has a least upper bound in V, then V is σ-complete; moreover, this implies that any countable collection with a lower bound has a greatest lower bound. A vector lattice which is σ-complete is called a K_σ space. A sequence $\{f_n\}$ in V is order convergent to f, $\lim_{n \rightarrow \infty} f_n = f$, if there exists a sequence $\{r_n\}$ which decreases monotonically and has greatest lower bound 0, $r_n \downarrow 0$, and $|f_n - f| \leq r_n$. If V is a K_σ space, then so are all of its ideals and quotient lattices. Since it is easy to show that a K_σ space cannot have a non-zero nilpotent element, every K_σ space is semi-simple.

Theorem 1.1. (Yosida [Y]) Let V be a K_σ space with unit e. Consider the function $\psi : V \times \mathcal{M}(V) \rightarrow \mathbb{R}$ defined by

$$\psi(v)(N) = \inf\{c|v + N \leq ce + N, c \in \mathbb{R}\} = \sup\{c|ce + N \leq v + N, c \in \mathbb{R}\}.$$

Let Q be $\mathcal{M}(V)$ with the coarsest topology which makes $\psi(v)(N)$ continuous in N for every fixed value of v. Q is a (quasi-extremally disconnected) compact Hausdorff space in
this topology, the collection of continuous functions on \(Q, C(Q)\), is a \(K_\sigma\) space, and the partial evaluation \(\psi : V \rightarrow C(Q)\) is the unique lattice isomorphism such that \(\psi(e) = 1\).

Familiar examples of \(K_\sigma\) spaces are the collection of measurable functions and the collection of signed measures of bounded total variation on a given measurable space \((X, \mathcal{X})\). Such set functions are maps from a \(\sigma\)-algebra of sets to a \(K_\sigma\) space. We would like to replace the range of the set function by any other \(K_\sigma\) space, \(V\), (e.g. the collection of real random variables over a probability space) and still be able to prove that the collection of maps is a \(K_\sigma\) space. In general, this will depend on \((X, \mathcal{X})\) because \(V\) is \(\sigma\)-complete rather than complete (i.e. conditionally closed under arbitrary infima and suprema). We will see that it is enough that \((X, \mathcal{X})\) be a countable algebra or a countably-generated \(\sigma\)-algebra.

2. Lattice Valued Measures.

We now consider maps from algebras of sets to lattices. We shall see in the final section on integration that these maps generalize to regular operators from \(U\), the lattice of bounded measurable functions on \((X, \mathcal{X})\), to \(V\), some \(K_\sigma\) space. Regular operators are linear operators between \(U\) and \(V\), two vector lattices, and have bounded variation or, equivalently, are the difference of two non-negative operators. The theory of such operators is usually developed assuming that the range vector lattice is complete under bounded infima and suprema of arbitrary cardinality ([\([Ka]\), [\([V]\)]). This is not the case with random measures, for which the range space is only \(\sigma\)-complete. However, since the domain space is countably generated, we can decompose any bounded signed random measure as a difference of non-negative random measures.

By convention we will identify elements of an algebra with their indicator functions denoted by lower case letters, except for the entire space which we will refer to as \(1\) and the null set which we will refer to as \(0\). We will refer to collections of sets by upper case letters.

For an algebra \(A\) and a \(\sigma\)-space \(L\), the collection of bounded countably additive maps from \(A\) to \(L\) is denoted by \(\Lambda(A, L)\) and defined by \(\mu \in \Lambda(A, L)\) if

Boundedness: \((\exists f \geq 0)(\forall a \in A)|\mu(a)| \leq f\)

Finite Additivity: \(a \cap b = 0 \Rightarrow \mu(a \cup b) = \mu(a) + \mu(b)\)

Continuity: \(a_n \downarrow 0 \Rightarrow \lim_{n \to \infty} \mu(a_n) = 0\)

These maps are lattice-valued measures. The collection of all elements of \(\Lambda(A, L)\) with non-negative range is the denoted \(\Lambda(A, L^+)\). We are particularly interested in the cases that \(A\) is a countable algebra or a countably-generated \(\sigma\)-algebra.
THEOREM 2.1. Let A be a countable algebra or a countably generated σ-algebra, and let L be a K_σ space. The space $\Lambda(A, L)$ is a K_σ space under the order

$$\mu \leq \nu \iff (\forall a \in A)\mu(a) \leq \nu(a).$$

For our purposes, the importance of this theorem is that if A is the collection of Borel sets on a Polish space (X, \mathcal{X}) and L is the collection of random variables on a probability space (Ω, \mathcal{F}, P), then $\Lambda(A, L)$ is a K_σ space. The space $\Lambda(A, L)$ is the space of random measures.

We will prove this by adding the assumption that L has unit e and then dispensing with this assumption. For the next four lemmas, let A be a countable algebra and L_e be a K_σ space with unit e.

LEMMA 2.1. Every element of $\Lambda(A, L_e)$ extends uniquely to $\Lambda(\sigma(A), L_e)$.

Let μ be an element of $\Lambda(A, L_e)$. The range of μ is L_e, which by Theorem 1.1 can be represented as $C(S)$, a lattice of continuous functions. For each fixed $s \in S$, the extension holds by Theorem 0.1. We need only verify that the pointwise extension is continuous. Let A_σ be the completion of A under countable unions; let A_{σ_δ} be the completion of A_σ under countable intersections. Let $\{a_n\} \subseteq A$ and $a = \bigcup_{i=1}^{\infty} a_i$. Since

$$\lim_{n \to \infty} \mu(\bigcup_{i=1}^{n} a_i)(s) = \mu(a)(s)$$

is continuous in s by the σ-completeness of $C(S)$, μ extends continuously to A_σ. Let $\{b_n\} \subseteq A_\sigma$ and $b = \bigcap_{i=1}^{\infty} b_i$. Since

$$\lim_{n \to \infty} \mu(\bigcap_{i=1}^{n} b_i)(s) = \mu(b)(s)$$

is continuous in s, μ extends continuously to A_{σ_δ}. Because A_{σ_δ} is $\sigma(A)$, any element of $\Lambda(A, L_e)$ extends uniquely to $\Lambda(\sigma(A), L_e)$. \square

LEMMA 2.2. Any element $\mu \in \Lambda(\sigma(A), L_e)$ can be represented as the difference of two elements of $\Lambda(\sigma(A), L_e^+)$.

For $\mu \in \Lambda(\sigma(A), L_e)$, define $|\mu|$ such that for all $a \in \sigma(A)$

$$|\mu|(a)(s) = \sup_{b \in A} |\mu(a \cap b)(s)| + |\mu(a \cap b^c)(s)| = \sup_{b \in \sigma(A)} |\mu(a \cap b)(s)| + |\mu(a \cap b^c)(s)|.$$

We obtain the second equality by successively substituting A_σ and A_{σ_δ} for A in the second supremum, noting that the value at each s would be unchanged. Then $\mu = \mu^+ - \mu^-$, where $\mu^+ = 1/2(|\mu| + \mu)$ and $\mu^- = 1/2(|\mu| - \mu)$. The set functions $|\mu|$, μ^+, and μ^- are all non-negative, bounded, countably additive for each s, and continuous. Therefore, they are in $\Lambda(\sigma(A), L_e^+)$. \square

A similar decomposition holds for elements in $\Lambda(A, L_e)$. Furthermore, the spaces $\Lambda(A, L_e)$ and $\Lambda(\sigma(A), L_e)$ are isomorphic as ordered vector spaces.
Lemma 2.3. The spaces $\Lambda(A, L_e)$ and $\Lambda(\sigma(A), L_e)$ are vector isomorphic lattices.

These spaces are lattices under the formulae, $\mu \lor \nu = 1/2((\mu + \nu) + |\mu - \nu|)$ and $\mu \land \nu = 1/2((\mu + \nu) - |\mu - \nu|)$, which describe set functions which are countably additive for each fixed s and continuous in s.

Lemma 2.4. The spaces $\Lambda(A, L_e)$ and $\Lambda(\sigma(A), L_e)$ are K_σ spaces.

We need only show that any non-negative non-decreasing sequence $\{\mu_n\}$ with range bounded above by e has a least upper bound μ. We can represent the range of these measures by a lattice of continuous functions $C(S)$ on a compactum S and e by 1 so that $0 \leq \mu_1(a, s) \leq \mu_2(a, s) \leq \cdots \leq 1$ for any a in A or $\sigma(A)$. We have for any $a \in \sigma(A)$,

$$\mu(a, s) = \lim_{n \to \infty} \mu_n(a, s)$$

which is countably additive at each $s \in S$. \(\square\)

Let A be a countable algebra or a countably generated σ-algebra. Theorem 2.1 is a corollary to this lemma since for any $\mu, \nu \in \Lambda(A, L)$ have their range in the principal ideal L_e, where $e = |\mu|(1) \lor |\nu|(1)$ can serve as a unit. Moreover, any non-negative, non-decreasing sequence $\{\mu_n\}$ which is bounded above has range in L_f, where $f = \lim_{n \to \infty} \mu_n(1)$.

Let us consider the ordered spaces $\Lambda(A, R)$, $\Lambda(A, N)$, and $\Lambda(A, R/N)$, with A a the Borel sets on a Polish space, a complete, separable, metrizable space, R a K_σ space of random variables on a probability space, and N the ideal of almost surely 0 random variables. Because such a topological space has a countable open base, A is countably generated. Therefore, $\Lambda(A, R)$, $\Lambda(A, N)$, and $\Lambda(A, R/N)$ are K_σ spaces. We will call $\Lambda(A, R)$ the (strong) random measures, $\Lambda(A, N)$ the null random measures, and $\Lambda(A, R/N)$ the weak random measures.

Theorem 3.1. Every weak random measure has a strong version; this version is unique modulo $\Lambda(A, N)$. Thus, $\Lambda(A, R/N) \simeq \Lambda(A, R)/\Lambda(A, N)$.

This theorem is an extension of the following theorem of Daley and Vere-Jones [D,V-J].

Theorem 3.2. Let $\{\xi_a(\omega)|a \in A\}$ be a collection of non-negative random variables indexed by the Borel sets of a Polish space (X, \mathcal{X}). Let this collection satisfy the conditions

Finite Additivity: $a \cap b = 0 \Rightarrow \xi_{a \cup b} = \xi_a + \xi_b$

Continuity: $a_n \downarrow 0 \Rightarrow \lim_{n \to \infty} \xi_{a_n} = 0$
almost surely. Then there is another collection of random variables \(\{\xi_a^*(\omega)|a \in A\} \) that satisfy the conditions pointwise and an event \(\Omega^* \subseteq \Omega \) such that \(P(\Omega^*) = 1 \) and for all \(a \in A \), \(\xi_a(\omega) = \xi_a^*(\omega) \).

To prove Theorem 3.1, suppose that we are given \(\mu \in \Lambda(A, R/N) \), and, for now, we will assume that \(A \) is a countably-generated \(\sigma \)-algebra. Decompose this weak random measure as \(\mu = \mu^+ - \mu^- \). Pick two collections of pointwise non-negative random variables indexed by \(A \) such that \(\mu_a^+(\omega) \in \mu^+(a) \) and \(\mu_a^- (\omega) \in \mu^-(a) \). Use Theorem 3.2 to find versions of these collections which satisfy the conditions pointwise in \(\omega \) and are equal to the original collections off of some set of measure 0. The new versions determine elements of \(\Lambda(A, R^+) \) and their difference determines an element \(\mu^* \) of \(\Lambda(A, R) \) such that for all \(a \in A \), \(\mu^*(a) \in \mu(a) \). Of course the difference of any two such strong versions must be a null random measure. \(\square \)

We will now demonstrate Kolmogorov consistency conditions for bounded, signed random measures (i.e. elements of \(\Lambda(A, R) \)). Daley and Vere-Jones [D,V-J] give such conditions for locally bounded, non-negative random measures, and claim that determining the conditions for signed random measures appeared to be an open problem.

Definition Consistent System. Let \(A \) be the Borel sets of a Polish space. A collection, \(\{F(s; \cdot)|s \in A^n, n = 1, 2, \ldots, \} \), of cumulative distribution functions indexed by measurable sets is consistent. For all \(n \) and all \((a_1, \ldots, a_n) \) in \(A^n \), for all permutations \(\{i_1, \ldots, i_n\} \), for all disjoint \(a, b \in A \), and for all sequences \(\{a_n\} \subseteq A \), let the distribution functions have the following properties:

\[
F(a_1, \ldots, a_n; x_1, \ldots, x_n) = F(a_{i_1}, \ldots, a_{i_n}; x_{i_1}, \ldots, x_{i_n}) \quad (1)
\]
\[
F(a_1, \ldots, a_{n-1}, a_n; x_1, \ldots, x_{n-1}; \infty) = F(a_1, \ldots, a_{n-1}); x_1, \ldots, x_{n-1}) \quad (2)
\]
\[
F(a, b, a \cup b; x, y, z) = 1_{\{x+y \leq z\}} F(a, b; x, y) \quad (3)
\]
\[
a_n \downarrow 0 \Rightarrow (\forall \epsilon, c > 0)(\exists n) \epsilon > 1 - F(a_n; c) + F(a_n; -c) \quad (4)
\]
\[
(\forall \epsilon > 0)(\exists c > 0)(\forall a \in A) \epsilon > 1 - F(a; c) + F(a; -c) \quad (5)
\]

Conditions 1 and 2 guarantee the existence of a probability measure \(P \) on \((\Omega, \mathcal{F}) \) and a family of random variables indexed by \(A \), \(\{\xi_a|a \in A\} \), satisfying the joint cumulative distributions given by \(F \). This is just an application of a well-known extension theorem due to Kolmogorov [Ko].

Conditions 3 and 4 were given by Daley and Vere-Jones [D,V-J] along with the requirements that the distribution function for the measure of each Borel set be supported on a finite interval non-negative real line, which we have modified to produce condition 5.
Theorem 4.1. Let \(\{F(s; \cdot)|s \in A^n, n = 1, 2, \ldots\} \) be a consistent system of cumulative distribution functions as defined above. Let \(\Omega = \mathbb{R}^A \), and let \(\mathcal{F} \) be the Borel sets of the Tychonoff topology associated with this space. There is a probability measure \(P \) on \((\Omega, \mathcal{F})\) and a random measure \(\xi : A \times \Omega \to \mathbb{R} \) satisfying

\[
P(\cap_{i=1}^n \{\xi(a_i) \leq x_i\}) = F(a_1, \ldots, a_n; x_1, \ldots, x_n).
\]

Moreover, every random measure is described by such a consistent system, and any two random measures described by such a system differ by a null random measure.

Condition 3 translates to finite additivity, \(P(\{|\xi_{a \cup b} - \xi_a + \xi_b| > 0\}) = 0 \), or \(\xi_{a \cup b} = \xi_a + \xi_b \) almost surely. Condition 4 translates to \(a_n \downarrow 0 \Rightarrow \xi_{a_n} \to 0 \) in probability, which is equivalent to \(a_n \downarrow 0 \Rightarrow \xi_{a_n} \to 0 \) almost surely.

Condition 5 translates to \((\forall \varepsilon > 0)(\exists c > 0)(\forall a \in A)P(\{|\xi_a| > c\}) < \varepsilon\). Therefore,

\[
(\forall \varepsilon > 0)(\exists c > 0)(\forall a \in A)P(\{|\xi_a| > c\} \cup \{|\xi_a^c| > c\}) < \varepsilon.
\]

Therefore,

\[
(\forall \varepsilon > 0)(\exists c > 0)(\forall a \in A)P(\{|\xi_a| + |\xi_a^c| > c\}) < \varepsilon.
\]

Let \(A_\infty \) be a countable algebra generating \(A \). \(A_\infty = \bigcup_{n=1}^{\infty} A_n \), where \(\{A_1, A_2, \ldots\} \) is an refining sequence of finite algebras. Let

\[
g_n = \vee_{a \in A_n} (|\xi_{a_n}| + |\xi_{a_n}^c|).
\]

The sequence \(\{g_n\} \) is non-decreasing and bounded on an event of probability 1,

\[
\Omega' = \bigcup_{p=1}^{\infty} \bigcap_{n=1}^{\infty} g_n^{-1}[0, p].
\]

Let \(g_\infty(\omega) = \vee_{n=1}^{\infty} g_n(\omega) \) for \(\omega \in \Omega' \), and let \(g_\infty(\omega) = 0 \) for \(\omega \in \Omega \). Therefore, for all \(a \in A_\infty \), almost surely \(|\xi_a| \leq g_\infty \).

Define \(\xi_a^* = \xi_a + N \) and \(g_\infty^* = g_\infty + N \); the same cumulative distributions apply to \(\{\xi_a^*|a \in A\} \), which is bounded in absolute value by \(g_\infty^* \). Consider the distributions on \(\{\xi_a^*|a \in A_\infty\} \); boundedness, finite additivity, and continuity imply that this collection represents an unique \(\xi^* \in \Lambda(A_\infty, R/N) \), which extends uniquely to a \(\xi^* \in \Lambda(A, R/N) \).

Suppose that there is an \(a \in A \) such that \(\xi_a^* \neq \xi^*(a) \); let \(B_\infty \) be the algebra generated by \(a \cup A_\infty \). Using the above procedure, we construct \(\xi' \in \Lambda(B_\infty, R/N) \) and extend it to \(\xi' \in \Lambda(A, R/N) \). Since \(\xi^* \) agrees with \(\xi' \) on \(A_\infty \) and, therefore, on all of \(A \). This directly contradicts our supposition. Therefore, the distributions specify an unique element of \(\Lambda(A, R/N) \) and, so, an unique element of \(\Lambda(A, R)\Lambda(A, N) \).
5. Regular Conditional Expectation of Random Measures.

Daley and Vere-Jones [D,V-J] prove that the conditional expectation with respect to a
\(\sigma \)-algebra \(\mathcal{F}_0 \) of a (strong) non-negative random measure \(\mu \) is defined by

\[E[\mu|\mathcal{F}_0](a) = E[\mu(a)|\mathcal{F}_0] \]

and is a weak random measure (in our terminology) which has a strong version. As
they observe, this result is similar to the existence and essential uniqueness of regular
conditional probability [P]. They also caution that this may not be the case for signed
random measures, but, indeed, the situation is the same.

Consider the subspace \(\Lambda^1(A, R/N) \) of \(\Lambda(A, R/N) \) defined by \(\mu \in \Lambda^1(A, R/N) \) if and
only if \(E[|\mu|(X)] < \infty \). This is a vector lattice with a norm defined by

\[\|\mu\|_1 = E[|\mu|(1)] = \int_\Omega |\mu|(\omega)dP(\omega). \]

Since \(|\mu|(\omega) = |\mu|(1, \omega) \) is the total variation norm at \(\omega \), the norm on \(\Lambda^1(A, R/N) \) is a
vector \(L^1 \) norm, and \(\Lambda^1(A, R/N) \) is, as we shall see, a generalization of \(L^1(\Omega, P) \).

Of course, a norm on a lattice \(V \) is consistent with the lattice structure if for any
\(f, g \in V \)

\[|f| \leq |g| \Rightarrow \|f\| \leq \|g\|; \]
a vector lattice with a consistent norm is called a normed vector lattice. If the \(V \) is \(\sigma \)-
complete, the norm is order continuous if and only if \(f_n \to f \) implies \(\|f_n\| \to \|f\| \) A norm
has property \(L \) if and only if for \(f, g \in V \),

\[\| |f| + |g| \| = \|f\| + \|g\|, \]

and property \(N \) if and only if for any non-decreasing, non-negative sequence \(\{f_n\} \),

\[(\exists c)\|f_n\| \leq c \Rightarrow (\exists f \in V)f_n \uparrow f \]

The norm defined for \(\Lambda^1(A, R/N) \) is consistent; therefore, \(\Lambda^1(A, R/N) \) is \(\sigma \)-complete.
Furthermore, the norm is continuous and has property \(L \). The norm also has property
\(N \) as we shall show; all of these facts together with the following theorem imply that
\(\Lambda^1(A, R/N) \) is a Banach lattice, a normed vector space which is also norm complete.

Theorem 5.1 (Schaefer [S]). A \(\sigma \)-complete continuously-normed vector lattice \(V \)
with properties \(L \) and \(N \) is norm-complete.

Let \(\{f_n\} \) be a Cauchy sequence in \(V \). Since we wish only to prove that this sequence has
a limit, we can select any subsequence to construct this limit. Let \(\{f_{n_k}\} \) be a subsequence
satisfying \(\| f_{i_{n+1}} - f_{i_n} \| \leq 2^{-n} \); let \(g_1 = f_{i_1} \) and \(g_{n+1} = f_{i_{n+1}} - f_{i_n} \) for \(n = 1, 2, \ldots \). Let \(s_n = \sum_{i=1}^{n} g_n^+ \) and \(t_n = \sum_{i=1}^{n} g_n^- \). Then \(f_{i_n} = s_n - t_n \), and

\[
\| s_n \| = \| \sum_{i=1}^{n} g_n^+ \| \leq \| \sum_{i=1}^{n} g_n^- \| \leq \sum_{i=1}^{\infty} \| g_n \| \leq \| f_{i_1} \| + 1.
\]

The sequence \(\{ t_n \} \) is bounded in the same way. If \(s_n \uparrow s \) and \(t_n \uparrow t \), then \(f_{i_n} \to s - t \) in order limit; since the norm is continuous, this convergence also occurs in norm. Since the subsequence is convergent, the whole sequence is convergent. \(\Box \)

Theorem 5.2. (Monotone convergence [Beppo Levi].) Let \(f_n \) be a non-decreasing, non-negative sequence of random variables such that \(\sup_n E[f_n] < \infty \). There exists a random variable \(f \) such that \(f_n \uparrow f \) almost surely, and \(\sup_n E[f_n] = E[f] \). Obviously, a similar fact applies to equivalence classes of random variables.

Consider a non-decreasing, non-negative sequence \(\{ \mu_n \} \) in \(\Lambda(A, R/N) \) such that

\[
\sup_n E[\mu_n(X)] < \infty.
\]

There is an \(f \) in \(R/N \) such that \(\mu_n(X) \uparrow f \). The ranges of these measures are contained in the principal ideal associated with \(f \); therefore, we can use the same argument as in Lemma 2.4 to show that \(\{ \mu_n \} \) has the least upper bound \(\mu \) defined by

\[
\mu(a) = \sup_n \mu_n(a),
\]

for all \(a \in A \). Therefore, \(\Lambda^1(A, R) \) is a Banach lattice.

Let \(\Lambda^1(A, R/N) \) be the corresponding sublattice in \(\Lambda(A, R/N) \). Of course, \(\Lambda^1(A, R/N) \) is isomorphic as a Banach lattice to \(\Lambda^1(A, R) \). The following theorem is self evident.

Theorem 5.3. Given \(\mathcal{F}_0 \), a sub-\(\sigma \)-algebra of \(\mathcal{F} \), the conditional expectation of \(\mu \in \Lambda^1(A, R/N) \) defined by

\[
E[\mu|\mathcal{F}_0](a) = E[\mu(a)|\mathcal{F}_0]
\]

is a well-defined order preserving operator on \(\Lambda^1(A, R/N) \). Because \(\Lambda^1(A, R/N) \) is lattice isomorphic to \(\Lambda^1(A, R) \), the conditional expectation is a well-defined order preserving operator on this space, also.
6. Indefinite Integrals, Hahn Decomposition and Radon-Nikodym Derivatives

For the final result, we consider random measures defined pointwise in ω (i.e. $\Lambda(A, R)$). We consider a probability space (Ω, \mathcal{F}, P) and a measurable space (X, \mathcal{X}) generated by the a Polish topology on X. Now that we have random measures in this scheme, we wish to define indefinite integrals with respect to random measures and to prove necessary and sufficient conditions so that one random measure ν is the integral of another random measure μ with respect to some process F.

We begin by considering some of the collections of functions, actually processes, we wish to integrate. A step process is an indicator function of a set in the σ-algebra $\sigma(\{a \times b|a \in \mathcal{X}, b \in \mathcal{F}\})$. A simple process is an finite linear combination of step processes. A process is a function of x and ω which has as it’s level sets elements of the above σ-algebra. A bounded process is a process which is less than some constant in absolute value.

If if ν is a non-negative random measure and H is a step process, $H(x, \omega) = h_1(x)h_2(\omega)$, where h_1 and h_2 are indicator functions and, by definition,

$$(H : \nu)(a) = \int_a H(x, \omega)d\nu(x; \omega) = h_2(\omega)\nu(a \cap h_1).$$

We extend the integral to non-negative simple functions by linearity. We extend the integral to non-negative bounded processes by taking the supremum

$$(H : \nu) = \vee_{n=1}^\infty(\vee_{q \in Q_n} q1_{H^{-1}[q, +\infty)} : \nu),$$

where Q_n is the first n non-negative rational numbers under some enumeration scheme. (Of course, the sequence of simple processes occurring above converges up to H.) We extend the integral to any bounded process by decomposing the process into positive and negative parts.

$$(H : \nu) = (H^+ : \nu) - (H^- : \nu).$$

Finally, we extend the integral to any signed random measure by decomposing the random measure into positive and negative parts,

$$(H : \nu) = (H : \nu^+) - (H : \nu^-).$$

We note that since ν is a bounded random measure, the integrals defined here are also bounded, signed measures.

Theorem 6.1 (Hahn Decomposition). For any signed random measure ν, there is a step process $1_{\{\nu > 0\}}(x, \omega)$ such that

$$(1_{\{\nu > 0\}}(x, \omega) : \nu) = \nu^+.$$
Let \(\{c_n\} \) be a countable open base for the topology of \(X \), for \(n = 1, 2, \ldots \) let \(A_n \) and \(B_n \) be the algebra and the partition generated by \(\{c_1, \ldots, c_n\} \). Let

\[
H_n(x, \omega) = \sum_{a \in B_n} 1_a(x)1_{\{\nu(a, \omega) > 0\}}(\omega).
\]

It is easily shown that

\[
(H_n : \nu)(1, \omega) = \vee_{a \in A_n} \nu(a, \omega).
\]

From which it follows that

\[
(H_n : \nu) \leq (H_{n+1} : \nu),
\]

and

\[
\vee_{n=1}^{\infty} (H_n : \nu)(1, \omega) = \nu^+(1, \omega).
\]

Suppose that \(E(x, \omega) \) is an \(A_k \)-measurable step process in the sense that it can be written as

\[
E(x, \omega) = \sum_{a \in B_k} 1_a(x)1_{e_a}(\omega),
\]

where \(e_a \) is a collection of events indexed by \(a \in B_k \), and that \(0 \leq (E : \nu)(1, \omega) \). Then

\[
E \land H_k = \sum_{a \in B_k} 1_a(x)(1_{e_a}(\omega) \land 1_{\{\nu(a, \omega) > 0\}}(\omega)),
\]

and

\[
0 \leq (E : \nu)(1, \omega) \leq (E \land H_k : \nu)(1, \omega) \leq (H_k : \nu)(1, \omega)
\]

Since \(E \lor H_k = E + H_k - E \land H_k \),

\[
0 \leq (E : \nu)(1, \omega) \leq (E \lor H_k : \nu)(1, \omega).
\]

By application of the above principle we see that

\[
(H_n \lor \cdots \lor H_{n+p} : \nu)(1, \omega) \leq ((H_n \lor \cdots \lor H_{n+p}) \lor H_{n+p+1} : \nu)(1, \omega);
\]

therefore,

\[
(H_n : \nu)(1, \omega) \leq (H_n \lor H_{n+1} : \nu)(1, \omega) \leq (H_n \lor H_{n+1} \lor H_{n+2} : \nu)(1, \omega) \leq \ldots.
\]

All of these terms are less than or equal to the limit

\[
\lim_{p \to \infty} (\lor_{k=n}^{p} H_k : \nu)(1, \omega) = (\lor_{p=n}^{\infty} H_p : \nu)(1, \omega),
\]
which we calculate using the monotone convergence theorem at each omega and which is bounded above by \(\nu^+(1, \omega) \).

\[
(\limsup_{n \to \infty} H_n : \nu)(1, \omega) = \nu^+(1, \omega).
\]

We can conditionally extend the notion of the indefinite integral of a random measure with respect to a possibly unbounded process by a limiting procedure. Let us assume that \(F \) and \(\nu \) are non-negative and that there is a non-negative random variable \(f \) such that for \(n = 1, 2, \ldots \)

\[
(n \wedge F : \nu)(1, \omega) \leq f(\omega).
\]

Then

\[
(F : \nu)(a, \omega) = \lim_{n \to \infty} (n \wedge F : \nu)(a, \omega)
\]

for all \(a \in A \) defines a random measure. We can extend this result to signed measures and processes by applying it to the positive and negative parts of the measures and processes.

For two non-negative random measures \(\mu \) and \(\nu \), the band projection ([Ka],[V],[S]) of \(\nu \) by \(\mu \) is defined by

\[
[\mu] \nu = \bigvee_{n=1}^{\infty} n \mu \wedge \nu.
\]

Of course, \([\mu] \nu \leq \nu\); when \([\mu] \nu = \nu\), \(\nu \) is said to be absolutely continuous with respect to \(\mu \), written \(\nu \ll \mu \). When \([\mu] \nu = 0\), \(\nu \) is said to be singular with respect to \(\mu \), written \(\nu \perp \mu \); this relation is symmetric. Given any two non-negative random measures \(\mu \) and \(\nu \), there is a Lebesgue decomposition [Y],

\[
\nu = [\mu] \nu + (\nu - [\mu] \nu),
\]

of \(\nu \) with respect to \(\mu \) into non-negative absolutely continuous and singular components.

The band projection for the case that \(\nu \) and \(\mu \) are signed is given by the extension

\[
[|\mu|] \nu = [|\mu|] \nu^+ - [|\mu|] \nu^-.
\]

By the definition of \((F : \nu)\)

\[
[\nu](F : \nu) = (F : \nu).
\]

Theorem 6.2 (Radon-Nikodym). Let \(\nu \) and \(\mu \) be non-negative random measures such that \(\nu \ll \mu \). There is a process \(F \) such that \(\nu = (F : \mu) \).

Let

\[
F(x, \omega) = \bigvee_{q \in \mathcal{Q}} 1\{x-q \mu\},
\]

12
where \mathcal{Q} is the non-negative rational numbers. Since

$$(\forall q \in \mathcal{Q} \cap \mathbb{Q}^+ \{ \nu - q\mu \} : \mu) \leq \nu,$$

where $\mathcal{Q} \cap \mathbb{Q}$ represents the first n terms in some enumeration of \mathcal{Q}, the limit of this sequence of random measures is bounded in the same way and equal to $(F; \mu)$. For any rational $\epsilon > 0$, let

$$F_\epsilon = \bigvee_{n=1}^\infty n \epsilon 1_{\{\nu - n\epsilon \mu\}};$$

$$0 \leq \nu - (F_\epsilon : \mu) \leq \epsilon \mu,$$

so that $(F_\epsilon : \mu) \uparrow \nu$ as $\epsilon \downarrow 0$. Moreover, since

$$(F_\epsilon : \mu) \leq (F : \mu) \leq \nu,$$

we have $(F : \mu) = \nu$. []

REFERENCES

Recent IMA Preprints

Author/s Title
839 Oscar P. Bruno and Fernando Reitich, Numerical solution of diffraction problems: a method of variation of boundaries
840 Oscar P. Bruno and Fernando Reitich, Solution of a boundary value problem for Helmholtz equation via variation of the boundary into the complex domain
841 Victor A. Galaktionov and Juan L. Vazquez, Asymptotic behaviour for an equation of superslow diffusion. The Cauchy problem
842 Josephus Hulshof and Juan Luis Vazquez, The Dipole solution for the porous medium equation in several space dimensions
843 Shoshana Kamin and Juan Luis Vazquez, The propagation of turbulent bursts
844 Miguel Escobedo, Juan Luis Vazquez and Enrike Zuazua, Source-type solutions and asymptotic behaviour for a diffusion-convection equation
845 Marco Biroli and Umberto Mosco, Discontinuous media and Dirichlet forms of diffusion type
846 Stathis Filippas and Jong-Shenq Guo, Quenching profiles for one-dimensional semilinear heat equations
847 H. Scott Dumas, A Nekhoroshev-like theory of classical particle channeling in perfect crystals
848 R. Natalini and A. Tesei, On a class of perturbed conservation laws
849 Paul K. Newton and Shinya Watanabe, The geometry of nonlinear Schrödinger standing waves
850 S.S. Sritharan, On the nonsmooth verification technique for the dynamic programming of viscous flow
851 Mario Taboada and Yuncheng You, Global attractor, inertial manifolds and stabilization of nonlinear damped beam equations
852 Shigeru Sakaguchi, Critical points of solutions to the obstacle problem in the plane
853 F. Abergel, D. Hilhorst and F. Issard-Roch, On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution
854 Erasmus Langer, Numerical simulation of MOS transistors
855 Haim Brezis and Shoshana Kamin, Sublinear elliptic equations in \mathbb{R}^n
856 Johannes C.C. Nitsche, Boundary value problems for variational integrals involving surface curvatures
857 Chao-Nien Chen, Multiple solutions for a semilinear elliptic equation on \mathbb{R}^N with nonlinear dependence on the gradient
858 D. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential attractor for the phase field model
859 Joseph D. Fehribach, Mullins-Sekerka stability analysis for melting-freezing waves in helium-4
860 Walter Schempp, Quantum holography and neurocomputer architectures
861 D.V. Anosov, An introduction to Hilbert's 21st problem
862 Herbert E Huppert and M Grae Worster, Vigorous motions in magma chambers and lava lakes
863 Robert L. Pego and Michael I. Weinstein, A class of eigenvalue problems, with applications to instability of solitary waves
864 Mahmoud Affouf, Numerical study of a singular system of conservation laws arising in enhanced oil reservoirs
865 Darin Beigie, Anthony Leonard and Stephen Wiggins, The dynamics associated with the chaotic tangles of two dimensional quasiperiodic vector fields: theory and applications
866 Gui-Qiang Chen and Tai-Ping Liu, Zero relaxation and dissipation limits for hyperbolic conservation laws
867 Gui-Qiang Chen and Jian-Guo Liu, Convergence of second-order schemes for isentropic gas dynamics
868 Aleksander M. Simon and Zbigniew J. Grzywna, On the Larché–Cahn theory for stress-induced diffusion
869 Jerzy Łuczka, Adam Gadomski and Zbigniew J. Grzywna, Growth driven by diffusion
870 Mitchell Luskin and Tsoring-Whay Pan, Nonplanar shear flows for nonaligning nematic liquid crystals
871 Mahmoud Affouf, Unique global solutions of initial-boundary value problems for thermodynamic phase transitions
872 Richard A. Brualdi and Keith L. Chavey, Rectangular L-matrices
873 Xinfu Chen, Avner Friedman and Bei Hu, The thermistor problem with zero-one conductivity II
874 Raoul LePage, Controlling a diffusion toward a large goal and the Kelly principle
875 Raoul LePage, Controlling for optimum growth with time dependent returns
876 Marc Hallin and Madan L. Puri, Rank tests for time series analysis a survey
877 V.A. Solonnikov, Solvability of an evolution problem of thermocapillary convection in an infinite time interval
878 Horia I. Ene and Bogdan Vernescu, Viscosity dependent behaviour of viscoelastic porous media
879 Kaushik Bhattacharya, Self-accommodation in martensite
880 D. Lewis, T. Ratiu, J.C. Simo and J.E. Marsden, The heavy top: a geometric treatment
881 Leonid V. Kalachev, Some applications of asymptotic methods in semiconductor device modeling
882 David C. Dobson, Phase reconstruction via nonlinear least-squares
883 Patricio Aviles and Yoshikazu Giga, Minimal currents, geodesics and relaxation of variational integrals on mappings of bounded variation
884 Patricio Aviles and Yoshikazu Giga, Partial regularity of least gradient mappings
Charles R. Johnson and Michael Lundquist, Operator matrices with chordal inverse patterns
B.J. Bayly, Infinitely conducting dynamos and other horrible eigenproblems
Charles M. Elliott and Stefan Luckhaus, ‘A generalised diffusion equation for phase separation of a multi-compon
mixture with interfacial free energy’
Christian Schmeiser and Andreas Unterreiter, The derivation of analytic device models by asymptotic methods
LeRoy B. Beasley and Norman J. Pullman, Linear operators that strongly preserve the index of imprimitivity
Jerry Donato, The Boltzmann equation with lie and cartan
Thomas R. Hoffend Jr., Peter Smereka and Roger J. Anderson, A method for resolving the laser induced
local heating of moving magneto-optical recording media
E.G. Kalnins, Willard Miller, Jr. and Sanchita Mukherjee, Models of q-algebra representations:
the group of plane motions
T.R. Hoffend Jr. and R.K. Kaul, Relativistic theory of superpotentials for a nonhomogeneous, spatially
isotropic medium
Reinhold von Schwerin, Two metal deposition on a microdisk electrode
Vladimir I. Olier and Nina N. Uraltseva, Evolution of nonparametric surfaces with speed depending on
curvature, III. Some remarks on mean curvature and anisotropic flows
Wayne Barrett, Charles R. Johnson, Raphael Loewy and Tamir Shalom, Rank incrementation via
diagonal perturbations
Mingxiang Chen, Xu-Yan Chen and Jack K. Hale, Structural stability for time-periodic one-dimensional
parabolic equations
Hong-Ming Yin, Global solutions of Maxwell’s equations in an electromagnetic field with the temperature-
dependent electrical conductivity
Robert Grone, Russell Merris and William Watkins, Laplacian unimodular equivalence of graphs
Miroslav Fiedler, Structure-ranks of matrices
Miroslav Fiedler, An estimate for the nonstochastic eigenvalues of doubly stochastic matrices
Miroslav Fiedler, Remarks on eigenvalues of Hankel matrices
Charles R. Johnson, D.D. Olesky, Michael Tsatsomeros and P. van den Driessche, Spectra with positive
elementary symmetric functions
Pierre-Alain Gremaud, Thermal contraction as a free boundary problem
K.L. Cooke, Janos Turi and Gregg Turner, Stabilization of hybrid systems in the presence of feedback delays
Robert P. Gilbert and Yongzhi Xu, A numerical transmutation approach for underwater sound propagation
LeRoy B. Beasley, Richard A. Brualdi and Bryan L. Shader, Combinatorial orthogonality
Richard A. Brualdi and Bryan L. Shader, Strong hall matrices
Håkan Wennerström and David M. Anderson, Difference versus Gaussian curvature energies; monolayer versus
bilayer curvature energies applications to vesicle stability
Shmuel Friedland, Eigenvalues of almost skew symmetric matrices and tournament matrices
Avner Friedman, Bei Hu and J.L. Velazquez, A Free Boundary Problem Modeling Loop Dislocations in
Crystals
Ezio Venturino, The Influence of Diseases on Lotka-Volterra Systems
Steve Kirkland and Bryan L. Shader, On Multiparticle Tournament Matrices with Constant Team Size
Richard A. Brualdi and Jennifer J.Q. Massey, More on Structure-Ranks of Matrices
Douglas B. Meade, Qualitative Analysis of an Epidemic Model with Directed Dispersion
Kazuo Murota, Mixed Matrices Irreducibility and Decomposition
Richard A. Brualdi and Jennifer J.Q. Massey, Some Applications of Elementary Linear Algebra in
Combinations
Carl D. Meyer, Sensitivity of Markov Chains
Hong-Ming Yin, Weak and Classical Solutions of Some Nonlinear Volterra Integrodifferential Equations
B. Leinkuhler and A. Ruehli, Exploiting Symmetry and Regularity in Waveform Relaxation Convergence
Estimation
Xinfu Chen and Charles M. Elliott, Asymptotics for a Parabolic Double Obstacle Problem
Yongzhi Xu and Yi Yan, An Approximate Boundary Integral Method for Acoustic Scattering in Shallow Oceans
Yongzhi Xu and Yi Yan, Source Localization Processing in Perturbed Waveguides
Kenneth L. Cooke and Janos Turi, Stability, Instability in Delay Equations Modeling Human Respiration
F. Bethuel, H. Brezis, B.D. Coleman and F. Hélein, Bifurcation Analysis of Minimizing Harmonic
Maps Describing the Equilibrium of Nematic Phases Between Cylinders
Frank W. Elliott, Jr., Signed Random Measures: Stochastic Order and Kolmogorov Consistency Conditions
D.A. Gregory, S.J. Kirkland and B.L. Shader, Pick’s Inequality and Tournaments
J.W. Demmel, N.J. Higham and R.S. Schreiber, Block LU Factorization
Victor A. Galaktionov and Juan L. Vazquez, Regional Blow-Up in a Semilinear Heat Equation with
Convergence to a Hamilton-Jacobi Equation
Bryan L. Shader, Convertible, Nearly Decomposable and Nearly Reducible Matrices
Dianne P. O’Leary, Iterative Methods for Finding the Stationary Vector for Markov Chains