ITERATIVE METHODS FOR FINDING THE
STATIONARY VECTOR FOR MARKOV CHAINS

By

Dianne P. O’Leary

IMA Preprint Series # 932
February 1992
ITERATIVE METHODS FOR FINDING THE STATIONARY VECTOR FOR MARKOV CHAINS

DIANNE P. O'LEARY*

Abstract. This overview concerns methods for estimating the steady-state vector of an ergodic Markov chain. The problem can be cast as an ordinary eigenvalue problem, but since the eigenvalue is known, it can equally well be studied as a nullspace problem or as a linear system. We discuss iterative methods for each of these three formulations. Many of the applications, such as queuing modeling, have special structure that can be exploited computationally, and we give special emphasis to three ideas for exploiting this structure: decomposability, separability, and multilevel aggregation. Such ideas result in a large number of diverse algorithms, many of which are poorly understood.

Key words. Markov chains, stationary vectors, nullspace, decomposability, separability, multilevel iterations, multigrid, aggregation, small rank corrections, small norm corrections

AMS(MOS) subject classifications.

1. Introduction. This overview concerns the numerical approximation of stationary vectors of discrete Markov chains. The rest of this introductory section contains a sketch of the problem, a classification of the numerical methods, and examples of exploitable structure in Markov chain problems. The three following sections concern methods for the eigenvector formulation, the nullspace formulation, and the linear system formulation. The fifth section focuses on more specialized techniques that can exploit information about nearby problems.

This paper has been structured as an overview rather than a survey. The goal is to outline major research directions that have proven fruitful, present a sample of successful algorithms and theoretical results, and delineate opportunities for future research. In order to do this within a reasonable amount of space, the completeness of a survey has been sacrificed and many important algorithms, theorems, and references have regretfully been omitted. Related articles in this volume include those of Plemons and Schweitzer.

1.1. Definitions and Notation. Discrete time Markov chains can be represented by a matrix P, whose (i,j)-element p_{ij} is the probability of a transition from state i to state j. The elements of the rows of P necessarily sum to one; i.e.,

\begin{equation}
Pe = e,
\end{equation}

where e is the vector with each component equal to 1. If the n states of the Markov chain initially have a probability distribution z^T, where z_i $(i = 1, \ldots, n)$ is interpreted as the probability that the ith state of the chain is occupied, then at the next time unit the probability distribution is z^TP.

Equation (1) implies that 1 is an eigenvalue of P corresponding to the right eigenvector e. If the matrix P is irreducible and acyclic, or, equivalently, if the Markov chain is ergodic (has no transient states and is aperiodic) (see [43] and [18] for definitions), then this eigenvalue is simple and greater in magnitude than the other eigenvalues. Moreover, Perron-Frobenius theory [43, p.30] tells us that, corresponding

* Computer Science Department and Institute for Advanced Computer Studies; University of Maryland; College Park, Maryland 20742. This work was completed while the author was in residence at the Institute for Mathematics and Its Applications, University of Minnesota, supported by the General Research Board of the University of Maryland College Park and by the IMA.
to the eigenvalue 1, P has a positive left eigenvector π^T that is unique under the normalization

$$\pi^T e = 1.$$

The vector π^T is called the steady state or stationary vector of the chain, since, for almost every vector z of initial probabilities, it is the limit of the transient probabilities of the system:

$$\pi^T = \lim_{k \to \infty} z^T P^k, \quad z^T \geq 0, \quad z^T e = 1.$$

Iterative methods for estimating π^T are the chief concern of this overview.

The problem can be recast in the form

$$\pi^T Q = 0,$$

where $Q = I - P$. Although this form is a simple algebraic rearrangement of (2), it has important theoretical and computational consequences. In particular, the matrix Q is a singular M-matrix; that is, its diagonal elements are positive, its off-diagonal elements are nonpositive, and for any $\epsilon > 0$,

$$(\epsilon I + Q)^{-1} > 0.$$

This means that many of the techniques used for M-matrices can be brought to bear on the solution of Markov chains [43,23].

Two kinds of Markov chain problems have particularly simple solutions. A Markov chain is said to be completely decomposable or uncoupled if, after a suitable reordering of its states, P is a block diagonal matrix with $k \geq 2$ blocks. A problem in this form can be solved as k independent problems of smaller dimensions.

A Markov chain is separable if it can be written in the form

$$P = A \otimes I + I \otimes B,$$

where \otimes denotes the Kronecker tensor product. Many Markov chains arising in queuing networks are separable, or nearly so. Separable chains have a product form solution that can be written in closed form (see [19,42] for details and references).

1.2. Classification of Numerical Methods. The computation of the steady state vector of a Markov chain is in principle a remarkably easy eigenvalue problem. The eigenvalue is known to be 1. It is the eigenvalue of largest magnitude, and its multiplicity is 1. We know the right eigenvector, e, and need only find the left eigenvector.

On the other hand, several factors make the problem quite challenging. There may be many other eigenvalues clustered around the value 1, making iterative methods quite slow. Problems arising in many applications (e.g., queuing theory) produce sparse matrices of enormous size, limiting practical methods to a small number of matrix-vector products. Most intriguing of all, many practical problems are nearly decomposable or nearly separable, and such structure must be exploited in order for algorithms to be practical.

We will discuss the general principle of exploiting information about nearby problems. We consider three meanings of “nearby”:
1. **Nearly decomposable systems.** The matrix P for these problems is equal to a block diagonal matrix plus a correction that is small in norm. Nearly uncoupled Markov chains model systems in which groups of tightly coupled states are loosely coupled to one another. Such chains arise frequently in applications [11].

2. **Nearly separable systems.** The matrix P is equal to a separable matrix plus a small rank correction. Such problems arise in overflow queuing networks [5,6].

3. **Multilevel families of chains.** These models arise from analyzing a system at various levels of granularity. A coarse model may be able to provide approximate information for a more detailed model.

Because we know the eigenvalue, we have three choices for formulating the problem of finding the stationary vector:

1. an eigenproblem $\pi^T P = \pi^T$.
2. a nullspace problem $Q = I - P$, $\pi^T Q = 0$.
3. a linear system $\pi^T Q = 0$ with π_1 fixed to be 1 (or $\pi^T e = 1$, or some other normalization condition).

Various iterations have been proposed for each of these formulations, and we will focus on each in turn. Alternative algorithms that we will not discuss in this overview are direct methods for the second and third formulation (see the paper by G. W. Stewart in this volume) and methods of approximation based on fluid flow approximation and diffusion approximations to queuing networks.

2. **Methods for the Eigenproblem Formulation.** These methods are based on the fact that $\lim_{k \to \infty} P^k = e \pi^T$. There are many variants, all having the nice property that they require only the formation of vector-matrix products.

2.1. **The Power Method and Subspace Iteration.** The method of subspace iteration (also known as simultaneous iteration) extracts approximate solutions from the rows of the matrices $Z^T P^k$. When Z has only one row, the method is called the power method, and the iterates approach the solution by simulating the Markov chain until steady state is reached — often slowly. When Z has more than one row, a nonsymmetric analogue of Rayleigh-Ritz refinement is used to extract an approximation to the steady state vector. The theory and practice of the method are well understood [15,35,36].

Convergence of the power method (or simultaneous iteration) can be accelerated by matrix splitting techniques. A splitting of Q is a decomposition of the form

$$Q = M - N,$$

where M is nonsingular. Since

$$\pi^T M = \pi^T N,$$

a splitting gives rise to an iteration of the form

$$z_{k+1}^T = z_k^T N M^{-1}.$$

Splitting methods include Jacobi's method, successive over-relaxation, and their block variants.

Splittings have been subjected to intense study for solving inhomogeneous systems associated with discretizations of partial differential equations [43,44]. Because Q is
a singular M-matrix, some of the convergence results carry over to the solution of
Markov chains (e.g., see \cite{22,23,17,21}). Although splitting methods can be used alone,
they are most often used in conjunction with aggregation methods, discussed in \S 5.

2.2. Krylov Sequence Methods. In many respects these are some of the most
promising and least well understood methods. They extract approximate solutions
from the Krylov sequence \(\{ z^T, z^T P, z^T P^2, \ldots \} \). The basic algorithm is known as
the method of Arnoldi, and some variants have been surveyed by Saad \cite{28}. The
nonsymmetric Lanczos method works with Krylov sequences in powers of \(P \) and \(P^T \).
The symmetric Lanczos method can be applied to \(P P^T \). There are related variants,
conjugate gradient methods, for solving linear systems. For brevity we will only
discuss the method of Arnoldi here.

Arnoldi's method is based on the observation that if the vectors \(\{ z^T, z^T P, z^T P^2,
\ldots \} \) are orthonormalized, say by the Gram-Schmidt algorithm, to produce a sequence
\(\{ v_0^T, \ldots \} \), then the matrices \(V_k = (v_0, \ldots, v_{k-1}) \) satisfy
\[
V_{k-1}^T P = H_k^TV_k^T,
\]
where \(H_k \) is a \((k+1) \times k\) upper Hessenberg matrix. The eigenvalues of \(H_k \), the leading
\(k \times k \) submatrix of \(H_k \), are approximations to eigenvalues of \(P \), and the approximate
eigenvectors are \(V_k \) times eigenvectors of \(H_k \). Under exact arithmetic, the matrix \(H_n^T \)
is similar to \(P \), and the approximate eigenvalues and eigenvectors are exact.

In practice, for the sake of time and storage, the iteration must be terminated
long before \(k = n \). This leads to the Arnoldi algorithm with restarts, in which the
iteration is restarted every \(k \) steps with a refined \(z_0 \).

Even apart from its use with Markov chains, there are many unanswered questions
about convergence properties of this algorithm.

Much study has been devoted to the symmetric version, the Lanczos algorithm
\cite{25}. The eigenvalues and eigenvectors of the (now tridiagonal) matrices \(H_k \) converge,
the convergence being faster for the extreme eigenvalues. Since 1 is an extreme eigen-
value of the positive definite matrix \(P P^T \) with eigenvector \(\pi \), the Lanczos method
applied to \(P P^T \) is a good candidate for solving large Markov chains. However, some
issues are not well resolved — in particular, those relating to to restarting the iteration
when the reduced system grows too large.

The nonsymmetric iteration has received much less attention. The interlacing
properties and monotone convergence are lost. Convergence is no longer assured; the
restart strategy must be carefully designed. It is thus necessary to study the local
behavior of the iterative Arnoldi algorithm and determine how accurate the initial
approximation must be in order to guarantee convergence to the dominant eigenvalue.
Other issues such as convergence bounds, computable error bounds, computational
variants, the effects of inexact arithmetic, and the need for reorthogonalization of the
basis vectors require serious study.

The question arises of how extra information about Markov chain problems might
be used to guarantee and accelerate convergence of the Arnoldi algorithm.

One approach is to develop preconditioners appropriate to Markov models:
1. We can use similarity transformations to convert the problem \(\pi^T P = \pi^T \)
to \(\tilde{\pi}^T \tilde{P} = \tilde{\pi}^T \), where \(\tilde{\pi} = U^{-T} \pi \) and \(\tilde{P} = UPU^{-1} \) for some matrix \(U \) \cite{27}.
This does not change the distribution of the eigenvalues but can rotate the solution
vector towards a known one.

2. We can choose a polynomial \(P(x) \) such that \(P(1) = 1 \) and solve the problem
\(\pi^T P(x) = \pi^T \). This changes the distribution of the eigenvalues. \cite{29}
3. Matrix splitting techniques can be used to change the distribution of the
eigenvalues. These matrix splittings can be developed from separable queuing
models related to the given problem, by multigrid analogues, and by other
aggregation ideas as in §5 [26].

Such ideas have been studied in the context of the power method, but their effectiveness in combination with Arnoldi’s algorithm or the nonsymmetric Lanczos method is just beginning to be understood.

An alternate approach is to devise an algorithm which forms the Krylov subspace,
as in the Arnoldi iteration, but rather than finding eigenvalues of the reduced operator,
minimizes a function such as $\|z^T A - z^T\|$ over all vectors z^T of length 1 in the Krylov
subspace [26]. Convergence properties and effective preconditioners should be studied.

3. Methods for the Null-Space Formulation. A variety of projection methods have proven effective for solving nonsymmetric systems of linear equations [2], but their behavior for homogeneous systems is less well understood. As an example of this class of methods, we consider the projection method of Kaczmarz [16], which for the solution of $\pi^T Q = 0$ has the following form. Let Q be partitioned by columns:

$$Q = (q_1 \quad q_2 \quad \ldots \quad q_n).$$

Let

$$R_i = I - \frac{q_i q_i^T}{q_i^T q_i}$$

be the projection onto the orthogonal complement of the ith column of Q, and let

$$S = R_1 R_2 \cdots R_n.$$

Starting with some initial vector z_0, iterate according to the scheme

$$z_{k+1}^T = z_k^T S.$$

It can be shown that under mild restrictions on z_0^T, the sequence z_k^T converges to a multiple of π^T.

The appealing fact about Kaczmarz’ method is its simplicity. It requires only one column of Q at a time, and it requires only one n-vector of storage. For this reason it is well suited to queuing models, where the number of states is very large.

Kaczmarz’s method for inhomogeneous systems has been extensively analyzed [14,1,12]. In spite of this, very little is known about the rate of convergence of the method for Markov problems.

Bramley and Sameh [2] have used projection methods as a preconditioner for Krylov subspace methods for nonsymmetric linear systems. A similar idea should be quite effective for Markov chain problems.

4. Methods for the Linear System Formulation. Let P_{n-1} denote a sub-
matrix of P formed by deleting any one column. Then the linear system

$$\pi^T P_{n-1} = 0, \quad \pi^T w = 1,$$

where w is any nonzero vector, is a nonsingular linear system whose solution determines the stationary vector π^T up to a normalization factor. Standard iterative
techniques (Jacobi, successive overrelaxation, Krylov subspace methods) can be applied to this augmented system, and preconditioners can also be used to accelerate convergence.

Although such techniques have been studied, it is perhaps more natural to deal directly with the homogeneous system [17] or with the consistent system of \(n + 1 \) equations in the \(n \) unknowns \(\pi \). Many of the iterative methods discussed above can be used on this overdetermined system.

5. Exploiting Nearby Problems. Since Markov chain problems tend to be quite enormous in dimension, it is important to minimize the amount of work required to compute the stationary vector. One unifying principle has been used quite successfully: exploit information about nearby, more easily analyzed Markov chains. A prime example of this is the development of successful algorithms for solving nearly decomposable systems. There is potential for progress on other classes of problems as well, in particular, for nearly separable systems and for systems that are naturally part of a multilevel family of problems.

5.1. Nearly Decomposable Systems: Aggregation methods. These methods lump states together and solve the resulting reduced chain. The solution along with auxiliary information is then used to approximate the eigenvector. For nearly uncoupled chains, one step often results in a sufficiently accurate approximation. They can be combined with other iterative methods to yield hybrid methods.

When the Markov chain is nearly uncoupled, the Rayleigh-Ritz refinement is usually called aggregation. For these chains aggregation can be done with the single vector coming from the power method. The resulting algorithm is a method proposed and analyzed by McAllister, Stewart, and Stewart [20]. The surprising fact is that there are theoretical reasons for believing that this method is competitive with simultaneous iteration, though it requires less work.

There are many different aggregation methods, but all are based on a partitioning of \(\pi^T \) into subvectors. The states corresponding to each subvector are then aggregated into a single state, and the stationary vector for the aggregate problem is used to improve an approximation to \(\pi^T \).

When one aggregation step is not enough, aggregation can be coupled with an iterative method (power method, [20], splitting methods [37,4], etc.). Xiaobai Sun [38] has developed a unified theory for these methods.

For general Markov chains, aggregation methods seem to have been first proposed by Takahashi [40,39]. There is an extensive literature on the methods (e.g., [7,8,9,13, 31,30]). The performance of aggregation methods in general is spotty; they can be quite slow.

When a chain is nearly uncoupled, one aggregation step often gives a sufficiently accurate approximation. The properties of nearly uncoupled systems were first pointed out by Simon and Ando [32] and have been the subject of many investigations [10,33,34].

5.2. Nearly Separable Systems. Such problems arise in overflow queuing networks, where the matrix \(P \) is equal to a separable matrix plus a small rank correction.

Consider a very simple example involving two queues. Suppose that there are \(n_k - 1 \) spaces and \(s_k \) servers in the \(k \)th queue \((k = 1, 2) \), and that customers arrive at the \(k \)th queue at rate \(\lambda_k \) and are served at rate \(\mu_k \). If we let state \((k, l) \) correspond to having \(k \) customers in queue 1 and \(l \) customers in queue 2, then we can define the matrix \(P \) for the model.
If there is no interaction between the queues, then the matrix is

\[\hat{P} = P_{n_1}(\lambda_1, \mu_1, s_1) \otimes I + I \otimes P_{n_2}(\lambda_2, \mu_2, s_2), \]

where \(P_m(\lambda, \mu, s) \) is the matrix of size \(m \) for a single queue with arrival rate \(\lambda \), \(s \) servers, and service rate \(\mu \).

If overflow is allowed, e.g., if customers overflow into queue 2 whenever queue 1 is full, then the resulting matrix is

\[P = \hat{P} + E, \]

where \(E \) is a matrix with \(\lambda_1 \) in diagonal positions corresponding to queue 1 being full, and \(-\lambda_1\) in the off-diagonal position of these rows corresponding to queue 1 being full and queue 2 having one more customer.

The relation between the matrices \(P \) and \(\hat{P} \) can be exploited. The most obvious way is to use a splitting of \(P \) as \(M = \hat{P} \) and \(N = -E \). This splitting can be used to accelerate the iterative methods discussed above [5,6].

A less expensive way to use the relation between the separable and nonseparable problems is to initialize the iteration for the nonseparable one using the stationary vector for a related separable model. For our example, we model queue 2 as an independent queue with arrival rate \(\lambda_2 = \lambda_2 + \lambda_1 p_1^{full} \), where \(p_1^{full} \) is the probability that queue 1 is full. The resulting matrix is

\[\hat{P} = P_{n_1}(\lambda_1, \mu_1, s_1) \otimes I + I \otimes P_{n_2}(\lambda_2, \mu_2, s_2), \]

The stationary vector for \(\hat{P} \) is the outer product of the stationary vectors for \(P_{n_1} \) and \(P_{n_2} \). Since the state of queue 1 is independent of the state of queue 2, the probability that queue 1 is full can be computed directly by finding the stationary vector for \(P_{n_1}(\lambda_1, \mu_1, s_1) \), and then we need only find the stationary vector for \(P_{n_2}(\lambda_2 + \lambda_1 p_1^{full}, \mu_2, s_2) \).

For more complicated problems, the probabilities that queues are full in the separable model are found by solving a system of nonlinear equations with one equation per queue:

\[p_k^{full} = f(p_k^{full}), \]

where \(f_k \) is the probability that queue \(k \) is full given the probabilities that the other queues are full.

Given an arrival rate for a queue of size \(m \), it is an \(O(m) \) process to compute the stationary vector, so the process of solving the nonlinear system of equations costs only a fraction of the time required to compute a single matrix-vector multiplication using the nonseparable model matrix \(P \).

Using the separable problem as an approximation to overflow queuing networks is an old idea, but using it to initialize an iterative algorithm for the overflow network seems to be new.

As a simple example, on a three queue problem with \(n = (8, 8, 4) \), \(s = (5, 2, 1) \), \(\lambda = (9, 7, 5) \), and \(\mu = (1, 4, 5) \), allowing overflow from queue 1 to queue 2, and from queue 2 to queue 3, the solution to the separable problem is a factor of 4 closer to the stationary vector than is \(e^T \), and the power method converges in 57 iterations to a solution that satisfies \(\| e^T P - \bar{e} \| \leq 10^{-4} \), a savings of 33 iterations over the iteration started from \(e^T \).

7
5.3. Multilevel Families of Problems. These models arise from analyzing a system at various levels of granularity. As an example, a coarse model of a queuing system may be able to provide approximate information for a more detailed model.

Much research into such multilevel families has proceeded under the title of algebraic multigrid methods. These were an outgrowth of the geometric multigrid methods for discretizations of partial differential equations, and correspond to semi-automatic aggregation techniques based on the structure of the matrix rather than the connectivity of the variable dependencies in the underlying model. There is some overlap between these investigations and the aggregation research.

It seems that there is progress to be made in a more geometric approach to Markov chain problems and, in particular, to queuing theory problems. The connectivity of the states imposes a mesh structure on the unknown transition probabilities reminiscent of the mesh structure for discretizations of differential equations. The proportions of the dimensions of the problems are quite different, though. Differential equations typically are solved in 2 or 3 dimensions with a large number of mesh points per dimension. This corresponds to 2 or 3 interacting queues with a large number of waiting spaces in each queue. The Markov problems typically correspond to very high dimensional problems with relatively few mesh points per dimension.

A multigrid approach to a partial differential equation takes advantage of the convergence of discrete approximations as the number of mesh points converges to infinity. This leads to a family of nested grids that can be used in concert to accelerate convergence [3]. For queues, we can build a similar family of nested approximations to states. Chan [5,6] cleverly exploited this relation, and Park [24] made some further progress in understanding the relation between the nested models, but more could be done.

6. Conclusions. In this overview we have considered algorithms for computing the stationary vector of a Markov chain using the eigenproblem formulation, the nullspace formulation, and the linear system formulation. Although promising algorithms have been identified for each formulation, we lack data on the comparison of algorithms for different formulations, and much work remains to be done.

Although ideas such as aggregation for nearly decomposable systems have now been rather thoroughly studied, other ideas, such as exploiting the relation to nearly separable problems and to multilevel families, still lack a firm foundation.

These factors, coupled with the importance of Markov models in queuing theory and other applications, ensure that iterative methods for computing the stationary vector of a Markov chain will remain an exciting area for research in the next decade.

7. Acknowledgments. I am grateful to William J. Stewart and other workshop participants for their helpful comments on this overview.

REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>839</td>
<td>Oscar P. Bruno and Fernando Reitich</td>
<td>Numerical solution of diffraction problems: a method of variation of boundaries</td>
</tr>
<tr>
<td>840</td>
<td>Oscar P. Bruno and Fernando Reitich</td>
<td>Solution of a boundary value problem for Helmholtz equation via variation of the boundary into the complex domain</td>
</tr>
<tr>
<td>841</td>
<td>Victor A. Galaktionov and Juan L. Vazquez</td>
<td>Asymptotic behaviour for an equation of superslow diffusion. The Cauchy problem</td>
</tr>
<tr>
<td>842</td>
<td>Josephus Hulshof and Juan Luis Vazquez</td>
<td>The Dipole solution for the porous medium equation in several space dimensions</td>
</tr>
<tr>
<td>843</td>
<td>Shoshana Kamin and Juan Luis Vazquez</td>
<td>The propagation of turbulent bursts</td>
</tr>
<tr>
<td>844</td>
<td>Miguel Escobedo, Juan Luis Vazquez and Enrike Zuazua</td>
<td>Source-type solutions and asymptotic behaviour for a diffusion-convection equation</td>
</tr>
<tr>
<td>845</td>
<td>Marco Biroli and Umberto Mosco</td>
<td>Discontinuous media and Dirichlet forms of diffusion type</td>
</tr>
<tr>
<td>846</td>
<td>Stathis Filippas and Jong-Shenq Guo</td>
<td>Quenching profiles for one-dimensional semilinear heat equations</td>
</tr>
<tr>
<td>847</td>
<td>H. Scott Dumas, A Nekhoroshev-like theory of classical particle channeling in perfect crystals</td>
<td></td>
</tr>
<tr>
<td>848</td>
<td>R. Natalini and A. Tesei</td>
<td>On a class of perturbed conservation laws</td>
</tr>
<tr>
<td>849</td>
<td>Paul K. Newton and Shinya Watanabe</td>
<td>The geometry of nonlinear Schrödinger standing waves</td>
</tr>
<tr>
<td>850</td>
<td>S.S. Sritharan</td>
<td>On the nonsmooth verification technique for the dynamic programming of viscous flow</td>
</tr>
<tr>
<td>851</td>
<td>Mario Taboada and Yuncheng You</td>
<td>Global attractor, inertial manifolds and stabilization of nonlinear damped beam equations</td>
</tr>
<tr>
<td>852</td>
<td>Shigeru Sakaguchi</td>
<td>Critical points of solutions to the obstacle problem in the plane</td>
</tr>
<tr>
<td>853</td>
<td>F. Abergel, D. Hilhorst and F. Issard-Roch</td>
<td>On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution</td>
</tr>
<tr>
<td>854</td>
<td>Erasmus Langer</td>
<td>Numerical simulation of MOS transistors</td>
</tr>
<tr>
<td>855</td>
<td>Haim Brezis and Shoshana Kamin</td>
<td>Sublinear elliptic equations in (\mathbb{R}^n)</td>
</tr>
<tr>
<td>856</td>
<td>Johannes C.C. Nitsche</td>
<td>Boundary value problems for variational integrals involving surface curvatures</td>
</tr>
<tr>
<td>857</td>
<td>Chao-Nien Chen</td>
<td>Multiple solutions for a semilinear elliptic equation on (\mathbb{R}^N) with nonlinear dependence on the gradient</td>
</tr>
<tr>
<td>858</td>
<td>D. Brochet, X. Chen and D. Hilhorst</td>
<td>Finite dimensional exponential attractor for the phase field model</td>
</tr>
<tr>
<td>859</td>
<td>Joseph D. Fehribach</td>
<td>Mullins-Sekerka stability analysis for melting-freezing waves in helium-4</td>
</tr>
<tr>
<td>860</td>
<td>Walter Schempp</td>
<td>Quantum holography and neurocomputer architectures</td>
</tr>
<tr>
<td>861</td>
<td>D.V. Anosov</td>
<td>An introduction to Hilbert's 21st problem</td>
</tr>
<tr>
<td>862</td>
<td>Herbert E Huppert and M Grae Worster</td>
<td>Vigorous motions in magma chambers and lava lakes</td>
</tr>
<tr>
<td>863</td>
<td>Robert L. Pego and Michael I. Weinstein</td>
<td>A class of eigenvalue problems, with applications to instability of solitary waves</td>
</tr>
<tr>
<td>864</td>
<td>Mahmoud Affouf</td>
<td>Numerical study of a singular system of conservation laws arising in enhanced oil reservoirs</td>
</tr>
<tr>
<td>865</td>
<td>Darin Beigie, Anthony Leonard and Stephen Wiggins</td>
<td>The dynamics associated with the chaotic tangles of two dimensional quasi-planar vector fields: theory and applications</td>
</tr>
<tr>
<td>866</td>
<td>Gui-Qiang Chen and Tai-Ping Liu</td>
<td>Zero relaxation and dissipation limits for hyperbolic conservation laws</td>
</tr>
<tr>
<td>867</td>
<td>Gui-Qiang Chen and Jian-Guo Liu</td>
<td>Convergence of second-order schemes for isentropic gas dynamics</td>
</tr>
<tr>
<td>868</td>
<td>Aleksander M. Simon and Zbigniew J. Grzywna</td>
<td>On the Larché–Cahn theory for stress-induced diffusion</td>
</tr>
<tr>
<td>869</td>
<td>Jerzy Łuczka, Adam Gadomski and Zbigniew J. Grzywna</td>
<td>Growth driven by diffusion</td>
</tr>
<tr>
<td>870</td>
<td>Mitchell Luskin and Tsong-Whay Pan</td>
<td>Nonplanar shear flows for nonaligning nematic liquid crystals</td>
</tr>
<tr>
<td>871</td>
<td>Mahmoud Affouf</td>
<td>Unique global solutions of initial-boundary value problems for thermodynamic phase transitions</td>
</tr>
<tr>
<td>872</td>
<td>Richard A. Brualdi and Keith L. Chavey</td>
<td>Rectangular L-matrices</td>
</tr>
<tr>
<td>873</td>
<td>Xinfu Chen, Avner Friedman and Bei Hu</td>
<td>The thermistor problem with zero-one conductivity II</td>
</tr>
<tr>
<td>874</td>
<td>Raoul LePage</td>
<td>Controlling a diffusion toward a large goal and the Kelly principle</td>
</tr>
<tr>
<td>875</td>
<td>Raoul LePage</td>
<td>Controlling for optimum growth with time dependent returns</td>
</tr>
<tr>
<td>876</td>
<td>Marc Hallin and Madan L. Puri</td>
<td>Rank tests for time series analysis a survey</td>
</tr>
<tr>
<td>877</td>
<td>V.A. Solominov</td>
<td>Solvability of an evolution problem of thermocapillary convection in an infinite time interval</td>
</tr>
<tr>
<td>878</td>
<td>Horia I. Ene and Bogdan Vernescu</td>
<td>Viscosity dependent behaviour of viscoelastic porous media</td>
</tr>
<tr>
<td>879</td>
<td>Kaushik Bhattacharya</td>
<td>Self-accommodation in martensite</td>
</tr>
<tr>
<td>880</td>
<td>D. Lewis, T. Ratiu, J.C. Simo and J.E. Marsden</td>
<td>The heavy top: a geometric treatment</td>
</tr>
<tr>
<td>881</td>
<td>Leonid V. Kalachev</td>
<td>Some applications of asymptotic methods in semiconductor device modeling</td>
</tr>
<tr>
<td>882</td>
<td>David C. Dobson</td>
<td>Phase reconstruction via nonlinear least-squares</td>
</tr>
<tr>
<td>883</td>
<td>Patricio Aviles and Yoshihazu Giga</td>
<td>Minimal currents, geodesics and relaxation of variational integrals on mappings of bounded variation</td>
</tr>
<tr>
<td>884</td>
<td>Patricio Aviles and Yoshihazu Giga</td>
<td>Partial regularity of least gradient mappings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Charles R. Johnson and Michael Lundquist, Operator matrices with chordal inverse patterns
B.J. Bayly, Infinitely conducting dynamos and other horrible eigenproblems
Charles M. Elliott and Stefan Luckhaus, 'A generalised diffusion equation for phase separation of a multi-compon mixture with interfacial free energy'
Christian Schmeiser and Andreas Unterreiter, The derivation of analytic device models by asymptotic methods
LeRoy B. Beasley and Norman J. Pullman, Linear operators that strongly preserve the index of imprimitivity
Jerry Donato, The Boltzmann equation with lie and cartan
Thomas R. Hoffend Jr., Peter Smereka and Roger J. Anderson, A method for resolving the laser induced local heating of moving magneto-optical recording media
E.G. Kalins, Willard Miller, Jr. and Sanchita Mukherjee, Models of q-algebra representations: the group of plane motions
T.R. Hoffend Jr. and R.K. Kaul, Relativistic theory of superpotentials for a nonhomogeneous, spatially isotropic medium
Reinhold von Schwerin, Two metal deposition on a microdisk electrode
Vladimir I. Oliker and Nina N. Uraltseva, Evolution of nonparametric surfaces with speed depending on curvature, III. Some remarks on mean curvature and anisotropic flows
Wayne Barrett, Charles R. Johnson, Raphael Loewy and Tamir Shalom, Rank incrementation via diagonal perturbations
Mingxiang Chen, Xu-Yan Chen and Jack K. Hale, Structural stability for time-periodic one-dimensional parabolic equations
Hong-Ming Yin, Global solutions of Maxwell's equations in an electromagnetic field with the temperature-dependent electrical conductivity
Robert Grone, Russell Merris and William Watkins, Laplacian unimodular equivalence of graphs
Miroslav Fiedler, Structure-ranks of matrices
Miroslav Fiedler, An estimate for the nonstochastic eigenvalues of doubly stochastic matrices
Miroslav Fiedler, Remarks on eigenvalues of Hankel matrices
Charles R. Johnson, D.D. Olesky, Michael Tsatsomeros and P. van den Driessche, Spectra with positive elementary symmetric functions
Pierre-Alain Gremaud, Thermal contraction as a free boundary problem
K.L. Cooke, Janos Turi and Gregg Turner, Stabilization of hybrid systems in the presence of feedback delays
Robert P. Gilbert and Yongzhi Xu, A numerical transmutation approach for underwater sound propagation
LeRoy B. Beasley, Richard A. Brualdi and Bryan L. Shader, Combinatorial orthogonality
Richard A. Brualdi and Bryan L. Shader, Strong hall matrices
Håkan Wennström and David M. Anderson, Difference versus Gaussian curvature energies; monolayer versus bilayer curvature energies applications to vesicle stability
Shmuel Friedland, Eigenvalues of almost skew symmetric matrices and tournament matrices
Avner Friedman, Bei Hu and J.L. Velazquez, A Free Boundary Problem Modeling Loop Dislocations in Crystals
Ezio Venturino, The Influence of Diseases on Lotka-Volterra Systems
Steve Kirkland and Bryan L. Shader, On Multipartite Tournament Matrices with Constant Team Size
Richard A. Brualdi and Jennifer J.Q. Massey, More on Structure-Ranks of Matrices
Douglas B. Meade, Qualitative Analysis of an Epidemic Model with Directed Dispersion
Kazuo Murota, Mixed Matrices Irreducibility and Decomposition
Richard A. Brualdi and Jennifer J.Q. Massey, Some Applications of Elementary Linear Algebra in Combinations
Carl D. Meyer, Sensitivity of Markov Chains
Hong-Ming Yin, Weak and Classical Solutions of Some Nonlinear Volterra Integrodifferential Equations
B. Leinkuhler and A. Ruehli, Exploiting Symmetry and Regularity in Waveform Relaxation Convergence Estimation
Xinfu Chen and Charles M. Elliott, Asymptotics for a Parabolic Double Obstacle Problem
Yongzhi Xu and Yi Yan, An Approximate Boundary Integral Method for Acoustic Scattering in Shallow Oceans
Yongzhi Xu and Yi Yan, Source Localization Processing in Perturbed Waveguides
Kenneth L. Cooke and Janos Turi, Stability, Instability in Delay Equations Modeling Human Respiration
F. Bethuel, H. Brezis, B.D. Coleman and F. Hélein, Bifurcation Analysis of Minimizing Harmonic Maps Describing the Equilibrium of Nematic Phases Between Cylinders
Frank W. Elliott, Jr., Signed Random Measures: Stochastic Order and Kolmogorov Consistency Conditions
D.A. Gregory, S.J. Kirkland and B.L. Shader, Pick's Inequality and Tournaments
J.W. Demmel, N.J. Higham and R.S. Schreiber, Block LU Factorization
Victor A. Galaktionov and Juan L. Vazquez, Regional Blow-Up in a Semilinear Heat Equation with Convergence to a Hamilton-Jacobi Equation
Bryan L. Shader, Convertible, Nearly Decomposable and Nearly Reducible Matrices
Dianne P. O'Leary, Iterative Methods for Finding the Stationary Vector for Markov Chains