SOME QUALITATIVE PROPERTIES
OF 2 × 2 SYSTEMS OF CONSERVATION LAWS
OF MIXED TYPE

By

H. Holden
L. Holden

and

N.H. Risebro

IMA Preprint Series # 546
June 1989
SOME QUALITATIVE PROPERTIES OF 2×2 SYSTEMS OF CONSERVATION LAWS OF MIXED TYPE.

H. HOLDEN* AND L. HOLDEN† AND N. H. RISEBRO‡

Abstract. We study qualitative features of the initial value problem $z_t + F(z)_x = 0$, $z(x, 0) = z_0(x)$, $x \in \mathbb{R}$, where $z(x, t) \in \mathbb{R}^2$, with Riemann initial data, viz. $z_0(x) = z_l$ if $x < 0$ and $z_0(x) = z_r$ if $x > 0$. In particular we are interested in the case when the system changes type when the eigenvalues of the Jacobian dF become complex. It is proved that if z_l and z_r are in the elliptic region, and the elliptic region is convex, then part of the solution has to be outside the elliptic region. If both z_l and z_r are in the hyperbolic region, then the solution will not enter the elliptic region. We show with an explicit example that the latter property is not true for general Cauchy data. This example is investigated numerically.

Key words. conservation laws, mixed type, Riemann problems

AMS(MOS) subject classifications. 35L65,35M05,76T05

1. Introduction. In this note we analyze certain qualitative properties of the 2×2 system of partial differential equations in one dimension on the form

\begin{equation}
\frac{\partial}{\partial t} \begin{pmatrix} u \\ v \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} f(u, v) \\ g(u, v) \end{pmatrix} = 0
\end{equation}

with $u = u(x, t)$, $v = v(x, t)$, $x \in \mathbb{R}$. In particular we are interested in the initial value problem with Riemann initial data, i.e.

\begin{equation}
\begin{pmatrix} u(x, 0) \\ v(x, 0) \end{pmatrix} = \begin{cases} \begin{pmatrix} u_l \\ v_l \end{pmatrix}, & \text{for } x < 0 \\
\begin{pmatrix} u_r \\ v_r \end{pmatrix}, & \text{for } x > 0 \end{cases}
\end{equation}

where u_l, u_r, v_l, v_r are constants.

The system (1.1),(1.2) arises as a model for a diverse range of physical phenomena from traffic flow [2] to three-phase flow in porous media [1]. Common for these applications is that one obtains from very general physical assumptions a system of mixed type, i.e. there is a region $E \subset \mathbb{R}^2$ of phase space where the 2×2 matrix

\begin{equation}
dF = \begin{pmatrix} f_u(u, v) & f_v(u, v) \\ g_u(u, v) & g_v(u, v) \end{pmatrix}
\end{equation}

*Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA. On leave from Institute of Mathematics, University of Trondheim, N-7034 Trondheim–NTH, Norway. Supported in part by Vista, NAVF and NSF grant DMS-8801918.

†H.H. would like to thank Barbara Keyfitz, Michael Shearer and the Institute for Mathematics and its Applications for organizing a very stimulating workshop and for the invitation to present these results.

‡Norwegian Computing Center, P.O. Box 114, Blindern, N–0314 Oslo 3, Norway. Supported in part by Vista and NTNF.

§Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, N–0316 Oslo 3, Norway. Supported by Vista and NTNF.
has no real eigenvalues. The system is then called elliptic in E.

Consider e.g. the case of three–phase flow in porous media where the unknown functions u and v denote saturations, i.e. relative volume fractions, of two of the phases, e.g. oil and water respectively. A recent numerical study [1] gave as a result with realistic physical data that there in fact is a small compact region E in phase space, and quite surprisingly the Riemann problem (1.1),(1.2) turned out to be rather well–behaved numerically in this situation.

Subsequent mathematical analysis [25], [9], [16], [27] showed that one in general has to expect mixed type behavior in this case. Also in applications to elastic bars and van der Waal fluids [14], [28], [22], [23], [24] there is mixed type behavior. See also [20], [10], [11], [12], [13], [15], [17], [18], [19].

Parallel to this development there has been a detailed study of certain model problems with very simple flux functions (f, g) with elliptic behavior in a compact region E which has revealed a very complicated structure of the solution to the Riemann problem [7], [8]. In general one must expect nonuniqueness of the solution for Riemann problems, see [5].

We prove two theorems for general 2×2 conservation laws of mixed type. Specifically the flux function is not assumed to be quadratic. The first theorem states that if z_t is in the elliptic region E, then z_t is the only point on the Hugoniot locus of z_t inside E provided E is convex. In the second theorem we show that one cannot connect a left state outside E via an intermediate state inside E to a right state outside E if we only allow shocks with viscous profiles as defined by (2.21).

This latter theorem has also been proved independently by Azevedo and Marchesin (private communication).

Combining these two theorems we see that if $z_l, z_r \notin \bar{E}$ then also the solution $z(x, t) \notin E$ for all $x \in \mathbb{R}, t > 0$. Finally we explicitly show that this property is not valid for the general Cauchy problem. The consequences of this for the Glimm’s scheme is discussed by Pego and Serre[21] and Gilquin[3]. For the most recent result on conservation laws of mixed type we refer to the other contributions to these proceedings.

2. Qualitative properties. We write (1.1) as

\begin{equation}
(2.1) \quad z_t + F(z)_x = 0
\end{equation}

where $z = \begin{pmatrix} u \\ v \end{pmatrix}$ and $F = \begin{pmatrix} f \\ g \end{pmatrix}$, with Riemann initial data

\begin{equation}
(2.2) \quad z(x, 0) = \begin{cases}
z_l, & \text{for } x < 0 \\
z_r, & \text{for } x > 0.
\end{cases}
\end{equation}

We assume that f and g are real differentiable functions such that the Jacobian dF has real eigenvalues except in components of \mathbb{R}^2, each of which are convex. Let

\begin{equation}
(2.3) \quad E = \left\{ z \in \mathbb{R}^2 : \lambda_j(z) \notin \mathbb{R} \right\}.
\end{equation}
A shock solution is a solution of the form

\begin{equation}
(2.4) \quad z(x, t) = \begin{cases}
z_l, & \text{for } x < st \\
z_r, & \text{for } x > st.
\end{cases}
\end{equation}

where the shock speed s must satisfy the Rankine–Hugoniot relation [29]

\begin{equation}
(2.5) \quad s(z_l - z_r) = F(z_l) - F(z_r).
\end{equation}

The Hugoniot locus of z_l is the set of points satisfying

\begin{equation}
(2.6) \quad H_{z_l} = \left\{ z \in \mathbb{R}^2 : \exists s \in \mathbb{R}, s(z_l - z) = F(z_l) - F(z) \right\}.
\end{equation}

For $z \in E$ we let E_z denote the convex component of E containing z. Then we have

Theorem 2.1. Let $z_l \in E$ and assume that E_{z_l} is convex, then

\begin{equation}
(2.7) \quad H_{z_l} \cap E_{z_l} = \{ z_l \}
\end{equation}

and if $z_r \in E$ and E_{z_r} is convex, then

\begin{equation}
(2.8) \quad H_{z_r} \cap E_{z_r} = \{ z_r \}.
\end{equation}

Proof. We will show (2.7), (2.8) then follows by symmetry. Let $z_r \in H_{z_l}$ and assume that

\begin{equation}
(2.9) \quad z_r \in E_{z_l}.
\end{equation}

Then the straight line connecting z_l and z_r is contained in E_{z_l}, viz.

\begin{equation}
(2.10) \quad \alpha(t) = tz_r + (1 - t)z_l \in E_{z_l}
\end{equation}

for $t \in [0, 1]$ by convexity. Let

\begin{equation}
(2.11) \quad \beta(t) = F(\alpha(t)).
\end{equation}

Then

\begin{equation}
(2.12) \quad \beta'(t) = dF(\alpha(t))(z_r - z_l).
\end{equation}

We want to show the existence of $k \in \mathbb{R}$ and of $\tilde{t} \in [0, 1]$ such that

\begin{equation}
(2.13) \quad \beta'(\tilde{t}) = k(z_r - z_l).
\end{equation}
Assuming (2.13) for the moment we obtain by combining (2.12) and (2.13)

\[(2.14) \quad dF(\alpha(\tilde{t})) - k(z_r - z_l) = 0 \]

which contradicts (2.10).

To prove (2.13) we consider the straight line passing through \(F(z_l) \) in the direction \(z_l - z_r \). By assumption

\[(2.15) \quad s(z_r - z_l) = F(z_r) - F(z_l). \]

Using this we see that this line passes through \(F(z_r) \) and that there is a \(\tilde{t} \in [0, 1] \) such that \(\beta'(\tilde{t}) \mid (z_r - z_l) \) proving (2.13). \[\square \]

This implies that if \(z_l \in E \) and \(\{z_l, z_r\} \) are the initial values of a Riemann problem, then, the state immediately adjacent to \(z_l (z_r) \) in the solution will be outside of \(E_{z_l} (E_{z_r}) \). This is so since this state must either be a point on a rarefaction or a shock. Rarefaction curves do not enter \(E \), and we have just shown that neither does the Hugoniot locus.

The other basic ingredient in the solution of the Riemann problem is rarefaction waves. These are smooth solutions of the form \(z = z(x/t) \) that satisfy (2.1). The value \(z(\xi) \) must be an integral curve of \(r_j, j = 1, 2 \) where \(r_j \) is a right eigenvector of \(dF \) corresponding to \(\lambda_j \). \(\xi \) is the speed of the wave; \(\xi = \lambda_j(z(x/t)) \), therefore \(\lambda_j \) has to increase with \(\xi \) as \(z \) moves from left to right in the solution of the Riemann problem. Note that no rarefaction wave can intersect \(E \) since the eigenvectors are not defined there.

For a system of non–strictly hyperbolic conservation laws, the Riemann problem does not in general possess a unique solution, and by making the entropy condition sufficiently lax in order to obtain existence of a solution, one risks losing uniqueness. It is believed, see however [6], that the correct entropy condition which singles out the right physical solution is that the shock should be the limit as \(\epsilon \to 0 \) of the solution of the associated parabolic equation

\[(2.16) \quad z^\epsilon_t + F(z^\epsilon)_x = \epsilon z^\epsilon_{xx} \quad \epsilon > 0. \]

We then say that the shock has a viscous profile. Let now \(z_l, z_r \) be two states that can be connected with a shock of speed \(s \). We seek solutions of the form

\[(2.17) \quad z^\epsilon = z^\epsilon \left(\frac{x - st}{\epsilon} \right) = z^\epsilon(\xi) \]

and then obtain

\[(2.18) \quad -s \frac{d}{d\xi} z^\epsilon + \frac{d}{d\xi} F(z^\epsilon) = \frac{d^2}{d\xi^2} z^\epsilon \]

4
which can be integrated to give

\[(2.19) \quad \frac{d}{d\xi} z^\epsilon = F(z^\epsilon) - sz^\epsilon + A\]

where \(A\) is a constant of integration. If \(z^\epsilon(\xi)\) converges to the correct solution we must have

\[(2.20) \quad \lim_{\xi \to -\infty} z^\epsilon(\xi) = z_l \quad \lim_{\xi \to \infty} z^\epsilon(\xi) = z_r\]

(provided the derivatives decay sufficiently fast) which implies

\[(2.21) \quad \frac{d}{d\xi} z^\epsilon = (F(z^\epsilon) - F(z_l)) - s(z^\epsilon - z_l).\]

We see that \(z_l\) and \(z_r\) are fixpoints for this field, and if it admits an orbit from \(z_l\) to \(z_r\) we say that the shock is admissible and has a viscous profile. The associated eigenvalues of this field are

\[(2.22) \quad \lambda_j(z) - s \quad j = 1, 2.\]

Theorem 2.2. Assume that we have two admissible shocks, one connecting the left state \(z_l\) with a state \(z_m\) with speed \(s_l\) and one connecting \(z_m\) with \(z_r\) having speed \(s_r\). If \(z_l\) and \(z_r\) are in the hyperbolic region, i.e. \(z_l, z_r \notin \overline{E}\), then

\[(2.23) \quad z_m \notin \overline{E}.\]

Proof. Assume that \(z_m \in \overline{E}\). In \(\overline{E}\) the eigenvalues constitute a pair of complex conjugates. \(z_m\) is a source (sink) if \(\text{Re}(\lambda_j(z_m)) - s_l > 0\) (\(\text{Re}(\lambda_j(z_m)) - s_r < 0\)), hence we obtain

\[(2.24) \quad s_l \geq \text{Re}(\lambda_j(z_m)) \geq s_r\]

which contradicts the fact that \(z_r\) is to the right of \(z_l\) unless \(s_l = s_r\) in which case there is no \(z_m\). \(\square\)

Combining Theorem 2.1 and Theorem 2.2 we obtain

Corollary 2.3. Consider an admissible solution \(z = z(x, t)\) of (2.1) with Riemann initial data (2.2). Assume that \(E\) is convex. Then

1. If \(z_l, z_r \notin \overline{E}\), then also \(z(x, t) \notin E\) for all \(x \in \mathbb{R}, t > 0\).
2. If \(z_l \in E\) or \(z_r \in E\) and \(z(\tilde{x}, \tilde{t}) \in E\) for some \(\tilde{x}, \tilde{t}\), then \(z(\tilde{x}, \tilde{t}) \in \{z_l, z_r\}\).

The corollary states that if the initial values in a Riemann problem are inside the convex elliptic region, then the solution will contain values outside this region if the entropy condition is based on the "vanishing viscosity" approach. Furthermore if the initial values are outside the convex elliptic region, then the solution will not enter this region.
3. The Cauchy problem — a counterexample. Based on the results of the Riemann problem in the previous section it is natural to ask whether the same property is true for the general Cauchy problem: If

\begin{align}
(3.1) & \quad z_t + F(z)_x = 0 \\
& \quad z(x, 0) = z_0(x)
\end{align}

and for all \(x \in \mathbb{R} \)

\begin{equation}
(3.2) \quad z_0(x) \notin E
\end{equation}

is

\begin{equation}
(3.3) \quad z(x, t) \notin E
\end{equation}

for all \(x \in \mathbb{R} \) and \(t > 0 \)?

The following example shows this not always to be the case. Let

\begin{equation}
(3.4) \quad f(u, v) = \frac{1}{2} \left(\frac{u^2}{2} + v^2 \right) + v \quad g(u, v) = uv.
\end{equation}

Then

\begin{equation}
(3.5) \quad E = \left\{ (u, v) \in \mathbb{R}^2 \mid \frac{u^2}{16} + (v + \frac{1}{2})^2 < \frac{1}{4} \right\}.
\end{equation}

Making the ansatz

\begin{equation}
(3.6) \quad u(x, t) = \alpha(x) \beta(t) \quad v(x, t) = \gamma(t)
\end{equation}

we easily find

\begin{equation}
(3.7) \quad u(x, t) = \frac{2c_1 x + c_2}{c_1 t + c_3}, \quad v(x, t) = \frac{c_4}{(c_1 t + c_3)^2},
\end{equation}

for constants \(c_i \in \mathbb{R}, i = 1, \ldots, 4 \). Choosing

\begin{equation}
(3.8) \quad c_1 = c_3 = 1, \quad c_2 = 0, \quad c_4 = -2,
\end{equation}

we find

\begin{equation}
(3.9) \quad u_0(x) = 2x, \quad v_0(x) = -2,
\end{equation}

6
and

\begin{align*}
(3.10) \quad u(x, t) = \frac{2x}{t + 1}, \quad v(x, t) = \frac{-2}{(t + 1)^2}.
\end{align*}

For this choice (3.2) is valid but (3.3) fails for some \(x \in \mathbb{R} \) for \(t > \sqrt{2} - 1 \), see figures 1 and 2. This and other [21] examples of solutions entering the elliptic region do however have the property that the solutions \(u \) and \(v \) are also solutions to the viscous equations since \(u_{xx} = v_{xx} = 0 \), as well as to hyperbolic equations without any elliptic regions since we have that \(v_x = 0 \).

Comparing the general properties of the Riemann problem and the example just presented, it is clear that the Glimm's scheme [4] will be highly unstable when the system is of mixed type since one in this scheme replaces the general Cauchy problem by a series of Riemann problems. This has recently been discussed by Pego and Serre [21], where another counterexample is provided and by Gilquin [3].

It was found that difference schemes also exhibit instabilities in this mixed type problem. The scheme used for the numerical examples was itself a mixed scheme: If both eigenvalues had positive (negative) real part a upwind (downwind) scheme was used, else a Lax–Friedrichs scheme was used. A pure Lax–Friedrichs scheme will have the same kind of oscillations, but they appear at a much small \(\Delta x \).

In figures 3–5 we see the numerical solution to the initial value problem

\begin{align*}
(3.11) \quad u_0(x) = \frac{2x}{10}, \quad v_0(x) = \frac{-11}{10}
\end{align*}

at times \(t = 0.0 \), \(t = 1.5 \) and \(t = 3.0 \) respectively. This is (3.7) with \(c_1 = 1 \), \(c_2 = 0 \), \(c_3 = 10 \) and \(c_4 = -110 \), and the exact solution enters the elliptic region at \(t = \sqrt{110} - 10 \approx 0.4881 \). In all the examples \(\Delta x = 0.01 \) and \(\Delta t = 0.002 \). In figures 6–7 we see numerical solutions to initial value problems with perturbations of these initial values at \(t = 2.0 \).

Figure 6: \(\tilde{u}_0 = v_0 - 0.02x \), \(\bar{u}_0 = u_0 \).

Figure 7: \(\tilde{v}_0 = v_0 + 0.03 \sin \frac{\pi}{10} x \), \(\bar{u}_0 = u_0 \).

These examples indicate that the solutions do enter the elliptic region, but this is difficult to determine due to the oscillations.

REFERENCES

Fig. 1 The solution at $t=0$ and $t>\sqrt{2}-1$ in the z-plane.

Fig. 2. The solution for $t=0$ and for $t>0$.

Figure 3.

Figure 4.
Figure 5.

Figure 6.
Figure 7.
<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>467</td>
<td>Wilhelm I. Fushchich,</td>
<td>Exact Solutions of Multidimensional Nonlinear Dirac's and Schrödinger's Equations</td>
</tr>
<tr>
<td>468</td>
<td>Wilhelm I. Fushchich and Renat Zhadanov,</td>
<td>On Some New Exact Solutions of Nonlinear D'Alambert and Hamilton Equations</td>
</tr>
<tr>
<td>469</td>
<td>Brian A. Coomes,</td>
<td>The Lorenz System Does Not Have a Polynomial Flow</td>
</tr>
<tr>
<td>470</td>
<td>J.W. Helton and N.J. Young,</td>
<td>Approximation of Hankel Operators: Truncation Error in an H^∞ Design Method</td>
</tr>
<tr>
<td>471</td>
<td>Gregory Ammar and Paul Gader,</td>
<td>A Variant of the Gohberg-Semencul Formula Involving Circulant Matrices</td>
</tr>
<tr>
<td>472</td>
<td>R.L. Fosdick and G.P. MacSithigh,</td>
<td>Minimization in Nonlinear Elasticity Theory for Bodies Reinforced with Inextensible Cords</td>
</tr>
<tr>
<td>473</td>
<td>Fernando Reitich,</td>
<td>Rapidly Stretching Plastic Jets: The Linearized Problem</td>
</tr>
<tr>
<td>474</td>
<td>Francisco Bernis and Avner Friedman,</td>
<td>Higher Order Nonlinear Degenerate Parabolic Equations</td>
</tr>
<tr>
<td>475</td>
<td>Xinfu Chen and Avner Friedman,</td>
<td>Maxwell's Equations in a Periodic Structure</td>
</tr>
<tr>
<td>476</td>
<td>Avner Friedman and Michael Vogelius</td>
<td>Determining Cracks by Boundary Measurements</td>
</tr>
<tr>
<td>477</td>
<td>Yuji Kodama and John Gibbons,</td>
<td>A Method for Solving the Dispersionless KP Hierarchy and its Exact Solutions II</td>
</tr>
<tr>
<td>478</td>
<td>Yuji Kodama,</td>
<td>Exact Solutions of Hydrodynamic Type Equations Having Infinitely Many Conserved Densities</td>
</tr>
<tr>
<td>479</td>
<td>Robert Carroll,</td>
<td>Some Forced Nonlinear Equations and the Time Evolution of Spectral Data</td>
</tr>
<tr>
<td>480</td>
<td>Chjan. C. Lim,</td>
<td>Spanning Binary Trees, Symplectic Matrices, and Canonical Transformations for Classical N-body Problems</td>
</tr>
<tr>
<td>481</td>
<td>E.F. Assmus, Jr. and J.D. Key,</td>
<td>Translation Planes and Derivation Sets</td>
</tr>
<tr>
<td>482</td>
<td>Matthew Witten,</td>
<td>Mathematical Modeling and Computer Simulation of the Aging–Cancer Interface</td>
</tr>
<tr>
<td>483</td>
<td>Matthew Witten and Caleb A. Finch,</td>
<td>Re-Examining The Gompertzian Model of Aging</td>
</tr>
<tr>
<td>484</td>
<td>Bei Hu,</td>
<td>A Free Boundary Problem for a Hamilton-Jacobi Equation Arising in Ions Etching</td>
</tr>
<tr>
<td>485</td>
<td>T.C. Hu, Victor Klee and David Larman,</td>
<td>Optimization of Globally Convex Functions</td>
</tr>
<tr>
<td>486</td>
<td>Pierre Goossens,</td>
<td>Shellings of Tilings</td>
</tr>
<tr>
<td>487</td>
<td>D. David, D. D. Holm, and M.V. Tratnik,</td>
<td>Integrable and Chaotic Polarization Dynamics in Nonlinear Optical Beams</td>
</tr>
<tr>
<td>488</td>
<td>D. David, D.D. Holm and M.V. Tratnik,</td>
<td>Horseshoe Chaos in a Periodically Perturbed Polarized Optical Beam</td>
</tr>
<tr>
<td>489</td>
<td>Laurent Habsieger,</td>
<td>Linear Recurrent Sequences and Irrationality Measures</td>
</tr>
<tr>
<td>490</td>
<td>Laurent Habsieger,</td>
<td>MacDonald Conjectures and The Selberg Integral</td>
</tr>
<tr>
<td>491</td>
<td>David Kinderlehrer and Giorgio Vergara–Caffarelli,</td>
<td>The Relaxation of Functionals with Surface Energies</td>
</tr>
<tr>
<td>492</td>
<td>Richard James and David Kinderlehrer,</td>
<td>Theory of Diffusionless Phase Transitions</td>
</tr>
<tr>
<td>493</td>
<td>David Kinderlehrer,</td>
<td>Recent Developments in Liquid Crystal Theory</td>
</tr>
<tr>
<td>494</td>
<td>Niky Kamran and Peter J. Olver,</td>
<td>Equivalence of Higher Order Lagrangians</td>
</tr>
<tr>
<td>495</td>
<td>Lucas Hsu, Niky Kamran and Peter J. Olver,</td>
<td>Equivalence of Higher Order Lagrangians</td>
</tr>
<tr>
<td>496</td>
<td>D.J. Kaup and Peter J. Olver,</td>
<td>Quantization of BiHamiltonian Systems</td>
</tr>
<tr>
<td>497</td>
<td>Metin Arik, Fahrunisa Neyzi, Yavuz Nutku,</td>
<td>Multi-Hamiltonian Structure of the Born-Infeld Equation</td>
</tr>
<tr>
<td>498</td>
<td>David H. Wagner,</td>
<td>Detonation Waves and Deflagration Waves in the One Dimensional ZND Model for High Mach Number Combustion</td>
</tr>
<tr>
<td>499</td>
<td>Jerrold R. Griggs and Daniel J. Kleitman,</td>
<td>Minimum Cutsets for an Element of a Boolean Lattice</td>
</tr>
<tr>
<td>500</td>
<td>Dieter Jungnickel,</td>
<td>On Affine Difference Sets</td>
</tr>
<tr>
<td>501</td>
<td>Pierre Leroux,</td>
<td>Reduced Matrices and q-log Concavity Properties of q-Stirling Numbers</td>
</tr>
<tr>
<td>502</td>
<td>A. Narain and Y. Kizilyalli,</td>
<td>The Flow of Pure Vapor Undergoing Film Condensation Between Parallel Plates</td>
</tr>
<tr>
<td>503</td>
<td>Donald A. French,</td>
<td>On the Convergence of Finite Element Approximations of a Relaxed Variational Problem</td>
</tr>
<tr>
<td>504</td>
<td>Yisong Yang,</td>
<td>Computation, Dimensionality, and Zero Dissipation Limit of the Ginzburg-Landau Wave Equation</td>
</tr>
<tr>
<td>505</td>
<td>Jürgen Sprekels,</td>
<td>One-Dimensional Thermomechanical Phase Transitions with Non-Convex Potentials of Ginzburg-Landau Type</td>
</tr>
<tr>
<td>#</td>
<td>Author(s)</td>
<td>Title</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>506</td>
<td>Yisong Yang</td>
<td>A Note On Nonabelian Vortices</td>
</tr>
<tr>
<td>507</td>
<td>Yisong Yang</td>
<td>On the Abelian Higgs Models with Sources</td>
</tr>
<tr>
<td>508</td>
<td>Chjan. C. Lim</td>
<td>Existence of Kam Tori in the Phase Space of Vortex Systems</td>
</tr>
<tr>
<td>509</td>
<td>John Weiss</td>
<td>Bäcklund Transformations and the Painlevé Property</td>
</tr>
<tr>
<td>510</td>
<td>Pu Fu-cho and D.H. Sattinger</td>
<td>The Yang-Baxter Equation for Integrable Systems</td>
</tr>
<tr>
<td>511</td>
<td>E. Bruce Pitman and David G. Schaeffer</td>
<td>Instability and Ill-Posedness in Granular Flow</td>
</tr>
<tr>
<td>512</td>
<td>Brian A. Coomes</td>
<td>Polynomial Flows on C^n**</td>
</tr>
<tr>
<td>514</td>
<td>Peter J. Olver</td>
<td>Invariant Theory, Equivalence Problems, and the Calculus of Variations</td>
</tr>
<tr>
<td>515</td>
<td>Daniel D. Joseph and Thomas S. Lundgren with an appendix by R. Jackson and D.A. Saville</td>
<td>Ensemble Averaged and Mixture Theory Equations</td>
</tr>
<tr>
<td>516</td>
<td>P. Singh, Ph. Caussignac, A. Fortes, D.D. Joseph and T. Lundgren</td>
<td>Stability of Periodic Arrays of Cylinders Across the Stream by Direct Simulation</td>
</tr>
<tr>
<td>517</td>
<td>Daniel D. Joseph</td>
<td>Generalization of the Foscolo-Gibilaro Analysis of Dynamic Waves</td>
</tr>
<tr>
<td>518</td>
<td>A. Narain and D.D. Joseph</td>
<td>Note on the Balance of Energy at a Phase Change Interface</td>
</tr>
<tr>
<td>519</td>
<td>Daniel D. Joseph</td>
<td>Remarks on inertial radii, persistent normal stresses, secondary motions, and non-elastic extensional viscosities</td>
</tr>
<tr>
<td>520</td>
<td>D. D. Joseph</td>
<td>Mathematical Problems Associated with the Elasticity of Liquids</td>
</tr>
<tr>
<td>521</td>
<td>Henry C. Simpson and Scott J. Spector</td>
<td>Some Necessary Conditions at an Internal Boundary for Minimizers in Finite Elasticity</td>
</tr>
<tr>
<td>522</td>
<td>Peter Gritzmann and Victor Klee</td>
<td>On the 0-1 Maximization of Positive Definite Quadratic Forms</td>
</tr>
<tr>
<td>523</td>
<td>Fu-Chu Pu and D.H. Sattinger</td>
<td>The Yang-Baxter Equations and Differential Identities</td>
</tr>
<tr>
<td>524</td>
<td>Avner Friedman and Fernando Reitich</td>
<td>A Hyperbolic Inverse Problem Arising in the Evolution of Combustion Aerosol</td>
</tr>
<tr>
<td>525</td>
<td>E.G. Kalnins, Raphael D. Levine and Willand Miller, Jr.</td>
<td>Conformal Symmetries and Generalized Recurrences for Heat and Schrödinger Equations in One Spatial Dimension</td>
</tr>
<tr>
<td>526</td>
<td>Wang Jinghua and Gerald Warnecke</td>
<td>On Entropy Consistency of Large Time Step Godunov and Glimm Schemes</td>
</tr>
<tr>
<td>527</td>
<td>C. Guilloupé and J.C. Saut</td>
<td>Existence Results for the Flow of Viscoelastic Fluids with a Differential Constitutive Law</td>
</tr>
<tr>
<td>528</td>
<td>H.L. Bodlaender, P. Gritzmann, V. Klee and J. Van Leeuwen</td>
<td>Computational Complexity of Norm-Maximization</td>
</tr>
<tr>
<td>529</td>
<td>Li Ta-tsien (Li Da-qian) and Yu Xin</td>
<td>Life-Span of Classical Solutions to Fully Nonlinear Wave Equations</td>
</tr>
<tr>
<td>530</td>
<td>Jong-Shenq Guo</td>
<td>A Variational Inequality Associated with a Lubrication Problem</td>
</tr>
<tr>
<td>531</td>
<td>Jong-Shenq Guo</td>
<td>On the Semilinear Elliptic Equation $\Delta w - \frac{1}{2}y \cdot \nabla w + \lambda w - w^{-\beta}$ in R^n</td>
</tr>
<tr>
<td>532</td>
<td>Andrew E. Yagle</td>
<td>Inversion of the Bloch transform in magnetic resonance imaging using asymmetric two-component inverse scattering</td>
</tr>
<tr>
<td>533</td>
<td>Bei Hu</td>
<td>A Fiber Tapering Problem</td>
</tr>
<tr>
<td>534</td>
<td>Peter J. Olver</td>
<td>Canonical Variables for BiHamiltonian Systems</td>
</tr>
<tr>
<td>535</td>
<td>Michael Renardy</td>
<td>A Well-Posed Boundary Value Problem for Supercritical Flow of Viscoelastic Fluids of Maxwell Type</td>
</tr>
<tr>
<td>536</td>
<td>Michael Renardy</td>
<td>Ill-Posedness Resulting from Slip As a Possible Explanation of Melt Fracture</td>
</tr>
<tr>
<td>537</td>
<td>Michael Renardy</td>
<td>Compatibility Conditions at Corners Between Walls and Inflow Boundaries for Fluids of Maxwell Type</td>
</tr>
<tr>
<td>538</td>
<td>Rolf Rees</td>
<td>The Spectrum of Restricted Resolvable Designs with $r = 2$</td>
</tr>
<tr>
<td>539</td>
<td>D. Lewis and J.C. Simo</td>
<td>Nonlinear stability of rotating pseudo-rigid bodies</td>
</tr>
<tr>
<td>540</td>
<td>Robert Hardt and David Kinderlehrer</td>
<td>Variational Principles with Linear Growth</td>
</tr>
<tr>
<td>541</td>
<td>San Yih Lin and Yisong Yang</td>
<td>Computation of Superconductivity in Thin Films</td>
</tr>
<tr>
<td>542</td>
<td>A. Narain</td>
<td>Pressure Driven Flow of Pure Vapor Undergoing Laminar Film Condensation Between Parallel Plates</td>
</tr>
<tr>
<td>543</td>
<td>P.J. Vassiliou</td>
<td>On Local Equivalence for Vector Field Systems</td>
</tr>
<tr>
<td>544</td>
<td>Brian A. Cooms</td>
<td>On Conditions Sufficient for Injectivity of Maps</td>
</tr>
<tr>
<td>545</td>
<td>Yanchun Zhao</td>
<td>A Class of Global Smooth Solutions of the One Dimensional Gas Dynamics System</td>
</tr>
<tr>
<td>546</td>
<td>H. Holden, L. Holden and N.H. Risebro</td>
<td>Some Qualitative Properties of 2×2 Systems of Conservation Laws of Mixed Type</td>
</tr>
</tbody>
</table>