FAMILIES OF ORTHOGONAL
AND BIOORTHOGONAL POLYNOMIALS
ON THE N-SPHERE

By

E.G. Kalnins
Willard Miller, Jr.
and
M.V. Tratnik

IMA Preprint Series # 550
August 1989
FAMILIES OF ORTHOGONAL AND BIORTHOGONAL POLYNOMIALS ON THE N-SPHERE

E.G. KALNINS*, WILLARD MILLER, JR.†**, AND M. V. TRATNIK***

Abstract. We study the Laplace-Beltrami eigenvalue equation $H\Phi = \lambda\Phi$ on the n-sphere, with an added vector potential term motivated by the differential equations for the polynomial Lauricella functions F_A. The operator H is self-adjoint with respect to the natural inner product induced on the sphere and, in certain special coordinates, it admits a spectral decomposition with eigenspaces composed entirely of polynomials. The eigenvalues are degenerate but the degeneracy can be broken through use of the possible separable coordinate systems on the n-sphere. Then a basis for each eigenspace can be selected in terms of the simultaneous eigenfunctions of a family of commuting second order differential operators that also commute with H. The results provide a multiplicity of n-variable orthogonal and biorthogonal families of polynomials that generalize classical results for one and two variable families of Jacobi polynomials on intervals, disks, and paraboloids.

Key words. multivariable orthogonal and biorthogonal polynomials, the n-sphere

AMS(MOS) subject classifications. 22E70, 33A65, 33A75

1. Introduction. Orthogonal polynomials in one variable which also satisfy second order ordinary differential or difference equations have proven extraordinarily useful in the development of special function theory and in the practical approximation of functions, e.g. [R. Askey 1975]. Orthogonal and biorthogonal families of polynomials in several variables which satisfy second order partial differential or difference equations are similarly very useful but there is as yet no general theory and more examples are needed. In this paper we will study such families which are related to the Laplace-Beltrami eigenvalue equation on the n-sphere. Our procedure, partially based on separation of variable methods, provides a uniform setting within which to classify several known examples related to the n-sphere and to generate many new examples. (Note: There is also a considerable literature on discrete analogs of the Laplace-Beltrami eigenvalue equation on the sphere in which the symmetry groups are finite, e.g. [C. Dunkl 1988, 1989], [D. Stanton 1984].)

It was shown by [Lam and Tratnik 1985] that the Lauricella functions

\begin{equation}
\Phi = F_A \left[M + G - 1; -m_1, \cdots, -m_n; x_1, \cdots, x_n \right]
\end{equation}

*Mathematics Department, University of Waikato, Hamilton, New Zealand.
†Supported in part by the National Science Foundation under grant DMS 86-00372
**School of Mathematics, and Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455
***CNLS and T7, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
and

\[(1.2) \quad (1 - x)^M F_A \left[-M - \gamma_{n+1} + 1; -m_1, \cdots, -m_n; \frac{x_1}{1 - x}, \cdots, \frac{x_n}{1 - x} \right] \]

form a biorthogonal polynomial family where \(m_i = 0, 1, 2, \cdots, M = \sum_{k=1}^n m_i, G = \sum_{\ell=1}^{n+1} \gamma_{\ell}, x = \sum_{k=1}^n x_i\) and the \(\gamma_{\ell}\) are positive real numbers. (We will derive the inner product later.) Here, the Lauricella function \(F_A\) is defined by the series

\[(1.3) \quad F_A \left[a; b_1, \cdots, b_n; c_1, \cdots, c_n \right] = \sum_{m_1, \cdots, m_n=0}^{\infty} \frac{(a)_{m_1+\cdots+m_n} (b_1)_{m_1} \cdots (b_n)_{m_n} z_1^{m_1} \cdots z_n^{m_n}}{(c_1)_{m_1} \cdots (c_n)_{m_n} m_1! \cdots m_n!}, \]

where

\[(a)_m = \begin{cases} 1 & \text{if } m = 0 \\ a(a+1) \cdots (a+m-1) & \text{if } m \geq 1. \end{cases} \]

As is easily verified by adding the standard partial differential equations for the \(F_A\), [Appell and Kampe de Feriet 1926], these polynomial functions \(\Phi\) satisfy the eigenvalue equation

\[(1.4) \quad H \Phi = -M(M + G - 1) \Phi \]

where

\[(1.5) \quad H = \sum_{i,j=1}^{n} (x_i \delta_{ij} - x_i x_j) \partial_{x_i} x_j + \sum_{i=1}^{n} (\gamma_i - G x_i) \partial_{x_i}. \]

Here \(\delta_{ij}\) is the Kronecker delta. Note that \(H\) maps polynomials of maximum order \(m_i\) in \(x_i\) to polynomials of the same type. It is easy to see that as the \(m_i\) range over all nonnegative integers the functions (1.1) form a basis for the space of all polynomials in variables \(x_1, \cdots, x_n\), and that the spectrum of \(H\) acting on this space is exactly

\[\{-M(M + G - 1) : M = 0, 1, 2, \cdots \}.\]

(For \(n = 2\) equation (1.4) appears in the classification by [Krall and Sheffer 1967] of all second order partial differential operators such that the \(M\)th order orthogonal polynomials in two variables, with respect to some weight function, are eigenfunctions of the operator.) We will look for other bases of solutions to equation (1.4), both orthogonal and biorthogonal with respect to a natural inner product.

Equation (1.4) is closely related to the Laplace-Beltrami eigenvalue equation on the \(n\)-sphere, [Eisenhart 1949]. To see this consider the contravariant metric determined by the second derivative terms in \(H\):

\[(1.6) \quad g^{ij} = \delta_{ij} x_i - x_i x_j, \quad 1 \leq i, j \leq n. \]
Then \(\det(g^{ij}) = g^{-1} = x_1 x_2 \cdots x_n (1 - x) \) and

\[
(1.7) \quad g_{ij} = \frac{1}{1 - x} + \frac{\delta_{ij}}{x_i}.
\]

Note that

\[
\sum_{j=1}^{n} g^{ij} g_{jk} = \delta_{i}^{k} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{otherwise.} \end{cases}
\]

Thus

\[
ds^2 = \sum_{i,j=1}^{n} g_{ij} dx_i dx_j
\]

determines a metric on a Riemannian space with associated Laplace-Beltrami operator

\[
(1.8) \quad \Delta_n = \frac{1}{\sqrt{g}} \sum_{i,j=1}^{n} \partial_{x_i}(g^{ij} \sqrt{g} \partial_{x_j}).
\]

A straightforward computation yields

\[
(1.9) \quad H = \Delta_n + \Lambda_n
\]

where

\[
(1.10) \quad \Lambda_n = \sum_{j=1}^{n} [\gamma_j - \frac{1}{2} + \left(\frac{n+1}{2} - G \right) x_j] \partial_{x_j}.
\]

Thus if \(\gamma_1 = \cdots = \gamma_{n+1} = 1/2 \) then \(H \equiv \Delta_n \), but in general \(H \) differs from \(\Delta_n \) by the first order differential operator \(\Lambda_n \).

To identify the Riemannian space we introduce Cartesian coordinates \(z_0, z_1, \cdots, z_n \) in \(n + 1 \) dimensional Euclidean space and restrict these coordinates by the conditions

\[
z_0^2 = 1 - \sum_{i=1}^{n} x_i = 1 - x
\]

\[
z_1^2 = x_1
\]

\[
z_2^2 = x_2
\]

\[
\vdots
\]

\[
z_n^2 = x_n.
\]

Note that \(z_0^2 + z_1^2 + \cdots + z_n^2 = 1 \). Defining a metric \(ds^2 \) by

\[
ds^2 = \sum_{m=0}^{n} (dz_m)^2
\]
we find
\begin{equation}
(1.12) \quad ds^2 = \frac{1}{4} \sum_{i,j=1}^{n} \left(\frac{1}{1-x} + \frac{\delta_{ij}}{x_i} \right) dx_i dx_j.
\end{equation}

Thus the space corresponds to a portion of the n-sphere S^n. We can consider the coordinates $\{x_i\}$ for $0 \leq x_i$ and $x \leq 1$ as covering the portion of the n-sphere given by $0 \leq z_i$, $\sum_{k=1}^{n} z_k^2 = 1$.

One can transfer the Schrödinger equation (1.4) with vector potential Λ_n to one with a scalar potential V_n through the use of a multiplier transformation ρ. Setting $\Phi(x) = \rho(x) \Psi(x)$ for a nonzero scalar function ρ we find
\begin{align}
(\Delta_n + \Lambda_n) \Phi &= -M(M + G - 1) \Phi \\
\iff (\Delta_n + V_n(x)) \Psi &= -M(M + G - 1) \Psi,
\end{align}

provided
\begin{equation}
(1.13) \quad \rho^{-1} = x_1^{\gamma_1/2 - 1/4} \cdots x_n^{\gamma_n/2 - 1/4} (1-x)^{\gamma_{n+1}/2 - 1/4}.
\end{equation}

A straightforward but tedious computation gives for the scalar potential:
\begin{align}
V_n &= -\frac{1}{4} \sum_{i=1}^{n} \frac{(\gamma_i - \frac{1}{2})(\gamma_i - \frac{3}{2})}{x_i} \\
&\quad - \frac{1}{4} \frac{(\gamma_{n+1} - \frac{1}{2})(\gamma_{n+1} - \frac{3}{2})}{1-x} + \frac{1}{4} \left((1-G)^2 - 1 - \frac{(n-3)(n+1)}{4} \right) \\
(1.14) \quad &\quad (1-G)^2 - 1 - \frac{(n-3)(n+1)}{4}
\end{align}
or, in terms of Cartesian coordinates,
\begin{align}
V_n &= -\frac{1}{4} \sum_{i=1}^{n} \frac{(\gamma_i - \frac{1}{2})(\gamma_i - \frac{3}{2})}{x_i^2} \\
&\quad - \frac{1}{4} \frac{(\gamma_{n+1} - \frac{1}{2})(\gamma_{n+1} - \frac{3}{2})}{z_0^2} + \frac{1}{4} \left((1-G)^2 - 1 - \frac{(n-3)(n+1)}{4} \right) \\
(1.15) \quad &\quad (1-G)^2 - 1 - \frac{(n-3)(n+1)}{4}.
\end{align}

The equation $H'\Psi \equiv (\Delta_n + V_n) \Psi = \lambda \Psi$ has a natural Riemannian metric
\begin{equation}
(1.16) \quad d\omega = g^{1/2} dx_1 \cdots dx_n = x_1^{-1/2} \cdots x_n^{-1/2} (1-x)^{-1/2} dx_1 \cdots dx_n,
\end{equation}
[\text{Eisenhart 1949}]. Furthermore, the operator $H' = \rho^{-1} H \rho = \Delta_n + V_n$ is formally self-adjoint with respect to the inner product
\begin{equation}
(1.17) \quad \langle \Psi_1, \Psi_2 \rangle = \int_{x_i > 0, x < 1} \Psi_1(x) \overline{\Psi_2(x)} d\omega
\end{equation}
where Ψ_1, Ψ_2 are twice continuously differentiable functions of the x_j which take complex values:

$$< H'\Psi_1, \Psi_2 > = < \Psi_1, H'\Psi_2 > .$$

This induces an inner product on the space of polynomial functions $\Phi(x) = \rho \Psi$, with respect to which H is self-adjoint:

$$\langle \Phi_1, \Phi_2 \rangle \equiv < \Psi_1, \Psi_2 > = \int \cdots \int_{x_i > 0, x < 1} \Phi_1(x)\overline{\Phi_2(x)}\rho^{-2}(x) \, d\omega$$

$$= \int \cdots \int_{x_i > 0, x < 1} \Phi_1 \overline{\Phi_2} \, d\tilde{\omega} ,$$

(1.18)

$$d\tilde{\omega} = x_1^{\gamma_1 - 1} \cdots x_n^{\gamma_n - 1}(1 - x)^{\gamma_{n+1} - 1} \, dx_1 \cdots dx_n ,$$

$$\langle H\Phi_1, \Phi_2 \rangle = \langle \Phi_1, H\Phi_2 \rangle .$$

(Indeed, H is clearly formally self-adjoint and the boundary terms obviously vanish for the γ_i sufficiently large. The result can then be extended to all $\gamma_i > 0$ by analytic continuation.) Thus $\langle \cdot , \cdot \rangle$ is the natural inner product associated with equation (1.4).

A first order symmetry operator for the equation $H\Phi = \lambda \Phi$ is a differential operator

$$K = \sum_{i=1}^{n} f_i(x) \partial_{x_i} + g(x)$$

such that

$$[H, K] \equiv HK - KH = 0 ,$$

[Miller 1977]. The first order symmetry operators form a real Lie algebra under addition of operators, multiplication of an operator by a real scalar, and the commutator bracket $[A, B] = AB - BA$. If $\gamma_1 = \gamma_2 = \cdots = \gamma_{n+1} = 1/2$ then $H = \Delta_n$ and it is well-known [Eisenhart 1949, 1961] that the Lie algebra of real symmetry operators of Δ_n is $so(n+1)$, with dimension $n(n+1)/2$ and a basis of the form $\{L_{\ell k}\}$ where $0 \leq \ell < k \leq n$, and $L_{\ell k} = -L_{k\ell}$. Explicitly,

$$L_{\ell k} = z_\ell \partial_{z_k} - z_k \partial_{z_\ell}$$

(1.19)

and

$$L_{ij} = 2\sqrt{x_i x_j}(\partial_{x_j} - \partial_{x_i}), \quad 1 \leq i, j \leq n$$

$$L_{0i} = 2\sqrt{x_i (1 - x)} \partial_{x_i}, \quad 1 \leq i \leq n .$$

(1.20)

Furthermore, all real second-order differential operators S that commute with Δ_n can be expressed as linear combinations over \mathbb{R} of real constants, elements $L_{\ell k}$ and elements $L_{\ell k} L_{\ell' k'}$. For $\gamma_1, \ldots, \gamma_{n+1}$ arbitrary, however, we have
Lemma 1. If \(K \) is a first order operator such that \([K, H] = 0\) then \(K = c \), multiplication by the real constant \(c \). The second order operators

\[
S_{ij} \equiv 4x_i x_j (\partial_{x_i} - \partial_{x_j})^2 + 4(\gamma_i x_j - \gamma_j x_i)(\partial_{x_i} - \partial_{x_j})
\]

\[= L_{ij}^2 + 4(\gamma_i - \frac{1}{2})x_j - (\gamma_j - \frac{1}{2})x_i)(\partial_{x_i} - \partial_{x_j})
\]

\[= S_{ji}, \quad 1 \leq i < j \leq n,
\]

(1.21)

\[
S_{0i} \equiv 4x_i (1 - x)\partial_{x_i}^2 + 4[\gamma_i (1 - x) - \gamma_{n+1} x_i]\partial_{x_i}
\]

\[= L_{0i} + 4[(\gamma_i - \frac{1}{2})(1 - x) - (\gamma_{n+1} - \frac{1}{2})x_i]\partial_{x_i}
\]

\[= S_{i0}, \quad 1 \leq i \leq n,
\]

(1.22)

do commute with \(H \): \([S_{ij}, H] = [S_{0i}, H] = 0\). Also

(1.23)

\[8H \equiv \sum_{i,j=1}^{n} S_{ij} + 2 \sum_{i=1}^{n} S_{0i}.
\]

We conjecture, but have not proven, that linear combinations of the \(S_{ij} \) and \(S_{0i} \) are the only second order operators commuting with \(H \).

If \(S \) is a second order symmetry operator for \(H \) then \(S' = \rho^{-1} S \rho \) is a second order symmetry for \(H' = \Delta_n + V_n \) and, necessarily, \(S' = \Upsilon + f \) where \(\Upsilon \) is a second order symmetry for \(\Delta_n \) and \(f \) is a real-valued function. Thus \(S' \) is a formally self-adjoint operator with respect to the inner product \(<\cdot, \cdot>\) and \(S \) is formally self-adjoint with respect to \((\cdot, \cdot)\).

2. Orthogonal bases of separable solutions. In the paper [Kalnins and Miller 1986] and in the book [Kalnins 1986] all separable coordinates for the equation \(\Delta_n \Psi = \lambda \Psi \) are constructed, where \(\Delta_n \) is the Laplace-Beltrami operator on \(S^n \). It is shown that all separable coordinates are orthogonal and that for each separable coordinate system the corresponding separated solutions are characterized as simultaneous eigenfunctions of a set of \(n \) second order commuting symmetry operators for \(\Delta_n \). These operators are real linear combinations of the symmetries \(L_{ij}^2, 1 \leq i < j \leq n+1 \), where \(L_{ij} \) is a rotational generator in \(\text{so}(n+1) \). For \(n = 2 \) there are two separable systems (ellipsoidal and spherical coordinates), while for \(n = 3 \) there are 6 systems. The number of separable systems grows rapidly with \(n \), but all systems can be constructed through a simple graphical procedure. (In general, the possible separable systems are the various polyspherical coordinates [Vilenkin 1968], the basic ellipsoidal coordinates, and combinations of polyspherical and ellipsoidal
coordinates.) Moreover, the equation \((\Delta_n + V_n)\Psi = \lambda \Psi\) where the scalar potential takes the form

\[
V_n = \sum_{i=1}^{n} \frac{\alpha_i}{z_i^2} + \frac{\alpha_0}{z_0^2}, \quad \alpha_0, \alpha_1, \ldots, \alpha_n \text{ const.,}
\]

is separable in all the coordinate systems in which the Laplace-Beltrami eigenvalue equation is separable. (That is, \(V_n\) of this form is a \textit{Stäckel multiplier} for all separable coordinate systems on \(S^n\); see [Boyer, Kalnins and Miller 1986].) Indeed, the equation with potential \((2.1)\) is separable in general ellipsoidal coordinates. Since all other coordinates are limiting cases of ellipsoidal coordinates, the conclusion follows. [NOTE: If each \(\alpha_j = -\frac{1}{2} k_j (k_j + m_j - 1)\) where \(k_j\) and \(m_j\) are non-negative integers with \(m_j \geq 1\), then the equation \((\Delta_n + V_n)\Psi = \lambda \Psi\) can be viewed as a restriction of the Laplace-Beltrami eigenvalue equation \((\Delta_M + V_M)\Psi' = \lambda \Psi'\) on the \(N\)-sphere where \(N = \sum_{j=0}^{n} m_j + n\), in which the variable dependence on the subspheres \(S^{m_j}\) has already been factored out. Moreover, using the canonical equation technique found in [Kalnins, Manocha and Miller 1980] one can show that all solutions of the above equation for general \(\gamma_i\) are solutions of the flat-space wave equation in \(2n + 2\) dimensions with signature \((n+1, n+1)\). Thus the conformal symmetry algebra of the wave equation can be expected to transform solutions of the eigenvalue equations among themselves. Lemma 2 and Corollary 1 below are examples of this action.]

The results of Kalnins and Miller, characterizing separable systems by symmetry operators, can easily be translated to the present case. In those references (for \(V_n = 0\)) the symmetry operators are given explicitly as linear combinations of the symmetries \(L_{ij}^2\). The results for the potential \((1.14)\) are similar: one replaces \(L_{ij}^2\) by \(S_{ij}' = \rho^{-1} S_{ij}\rho\) and takes the same linear combinations. Moreover, since the defining symmetry operators for a separable system are real linear combinations of the \(L_{ij}^2\) plus scalar functions, they are formally self-adjoint with respect to the inner product \(\langle \cdot, \cdot \rangle\).

These results can now easily be extended to results for solutions of

\[
(\Delta_n + \Lambda_n)\Phi = \lambda \Phi
\]

through the mappings

\[
\Delta_n + \Lambda_n = \rho (\Delta_n + V_n) \rho^{-1}
\]

\[
S_{ij} = \rho S_{ij}' \rho^{-1}
\]

\[
\Phi = \rho \Psi.
\]

Thus all separable solutions \(\Psi\) map to \(R\)-separable solutions \(\Phi\) of \((2.2)\), [Miller 1977]. The \(R\)-separable coordinates and solutions are determined by commuting symmetry operators \(S\) of \(\Delta_n + \Lambda_n\) which are obtained from expressions in [Kalnins and Miller 1986] or [Kalnins 1986] where each occurrence of \(L_{ij}^2\) is replaced by \(S_{ij}\). The defining symmetry operators
are all formally self-adjoint with respect to the inner product \((\cdot, \cdot)\). Finally, since each \(S_{ij}\) maps polynomials of maximum order \(m_k\) in \(x_k\) to polynomials of the same type, it follows that a basis of separated solutions can be expressed as polynomials in the \(x_i\). Since the symmetry operators are self-adjoint, the basis of simultaneous eigenfunctions can be chosen to be orthogonal.

We conclude from this argument that every separable coordinate system for the Laplace-Beltrami eigenvalue equation on the \(n\)-sphere yields an orthogonal basis of polynomial solutions of equation (1.4), hence an orthogonal basis for all \(n\)-variable polynomials with inner product (1.18).

As an example we work out the separation equations for spherical coordinates \(\{u_i\}\) on \(S^n:\)

\[
\begin{align*}
z_0^2 &= 1 - x = 1 - u_n \\
z_1^2 &= x_1 = u_1 u_2 \ldots u_n \\
z_2^2 &= x_2 = (1 - u_1) u_2 \ldots u_n \\
&\vdots \\
z_{n-1}^2 &= x_{n-1} = (1 - u_{n-2}) u_{n-1} u_n \\
z_n^2 &= x_n = (1 - u_{n-1}) u_n.
\end{align*}
\]

(2.4)

(Note that in terms of angles \(\{\theta_i\}\) one usually sets \(u_i = \sin^2 \theta_i\).) It follows that

\[
u_j = \begin{cases}
\frac{w_j}{w_{j+1}}, & j = 1, \ldots, n-1 \\
w_n, & j = n
\end{cases}
\]

(2.5)

where

\[w_j = \sum_{i=1}^{n-1} x_i.\]

In terms of the \(\{u_i\}\), the operator (1.5) becomes

\[
H = \sum_{i=1}^{n} \frac{1}{u_{i+1} \ldots u_n} \left[u_i (1 - u_i) \partial_{u_i}^2 + \left(\sum_{j=1}^{i} \gamma_j - \sum_{p=1}^{i+1} \gamma_p u_i \right) \partial_{u_i} \right].
\]

(2.6)

Equation (1.4) is separable in these coordinates with separation equations

\[
u_1 (1 - u_1) \partial_{u_1}^2 \Theta_1 + [\gamma_1 - (\gamma_1 + \gamma_2) u_1] \partial_{u_1} \Theta_1 = c_1 \Theta_1,
\]

(2.7)

\[
\left[\frac{c_{k-1}}{u_k} + u_k (1 - u_k) \partial_{u_k}^2 \right] \Theta_k + \left[\sum_{j=1}^{k} \gamma_j - \sum_{p=1}^{k+1} \gamma_p u_k \right] \partial_{u_k} \Theta_k = c_k \Theta_k,
\]

\[k = 2, 3, \ldots, n.\]
Here $\Theta = \prod_{k=1}^{n} \Theta_k(u_k)$ and the c_i are the separation constants, with $c_n = -M(M+G-1)$.

Noting that the hypergeometric equation

$$u(1-u)\frac{d^2g}{du^2} + [c-(a+b+1)u] \frac{dg}{du} - abg = 0$$

admits the solution

$$g = {}_2F_1 \left(\begin{array}{c} a, \ b \\ c \end{array}; u \right) = \sum_{m=1}^{\infty} \frac{(a)_m (b)_m}{(c)_m m!} u^m,$$

a polynomial for $a = 0, -1, -2, \ldots$, and requiring that Θ be a polynomial in the $\{x_i\}$ we obtain the solutions

$$\Theta_1(u_1) = {}_2F_1 \left(\begin{array}{c} -\ell_1, \ \ell_1 + \gamma_1 + \gamma_2 - 1 \\ \gamma_1 \end{array}; u_1 \right)$$

$$c_1 = -\ell_1(\ell_1 + \gamma_1 + \gamma_2 - 1),$$

$$\theta_1(u_1) = \ell_1 + \gamma_1 + \gamma_2 - 1$$

(2.8)

$$\Theta_k(u_k) = {}_2F_1 \left(\begin{array}{c} -\ell_k, \ 2(\ell_1 + \cdots + \ell_{k-1}) + \ell_k + \gamma_1 + \cdots + \gamma_{k+1} - 1 \\ 2(\ell_1 + \cdots + \ell_{k-1}) + \gamma_1 + \cdots + \gamma_k \end{array}; u_k \right),$$

$$c_k = -(\ell_1 + \cdots + \ell_k)(\ell_1 + \cdots + \ell_k + \gamma_1 + \cdots + \gamma_{k+1} - 1),$$

$$k = 2, 3, \ldots, n,$$

where $\sum_{i=1}^{n} \ell_i = M$ and $\ell_i = 0, 1, 2, \ldots$. This determines Θ to within a normalization factor.

In the special case $n = 2$ we have the result of [Proriol 1957] and of [Karlin and McGregor 1964]:

$$\Theta_{\ell_1, \ell_2}(x_1, x_2) = {}_2F_1 \left(\begin{array}{c} -\ell_1, \ \ell_1 + \gamma_1 + \gamma_2 - 1 \\ \gamma_1 \end{array}; \frac{x_1}{x_1 + x_2} \right) (x_1 + x_2)^{\ell_1} \times$$

$$\frac{2\ell_1 + \ell_2 + \gamma_1 + \gamma_2 + \gamma_3 - 1}{2\ell_1 + \gamma_1 + \gamma_2} \frac{1}{x_1 + x_2}.$$

(2.9)

Returning to the general case, we have the eigenvalue equations

$$S_{\ell} \Theta_{\ell} = c_{\ell} \Theta_{\ell}, \quad \ell = 1, \ldots, n$$

(2.10)

where

$$S_1 = u_1(1-u_1) \partial_{u_1} + [\gamma_1 - (\gamma_1 + \gamma_2)u_1] \partial_{u_1},$$

(2.11)

$$S_k = \frac{1}{u_k} S_{k-1} + u_k(1-u_k) \partial_{u_k}^{2} + [\gamma_1 + \cdots + \gamma_k - (\gamma_1 + \cdots + \gamma_{k+1})u_k] \partial_{u_k},$$

$$k = 2, 3, \ldots, n,$$
and $S_n = H$. Furthermore, $[S_i, S_j] = 0$ and the S_i are self-adjoint with respect to the inner product $\langle \cdot, \cdot \rangle$. It follows immediately that

$$(\Theta_\ell, \Theta_m) = 0$$

unless $\ell_1 = m_1$, $\ell_2 = m_2$, ..., $\ell_n = m_n$. The measure $d\tilde{\omega}$ becomes in these coordinates

$$d\tilde{\omega} = u_1^{\gamma_1 - 1} u_2^{\gamma_2 - 1} \cdots u_n^{\gamma_n - 1} (1 - u_1)^{\gamma_1 - 1} (1 - u_2)^{\gamma_2 - 1} \cdots (1 - u_n)^{\gamma_n - 1} du_1 \cdots du_n,$$

where $0 < u_i < 1$. In terms of the symmetries S_{ij}, S_{0i}, (1.21-22), we have:

$$(2.12) \quad S_k = \frac{1}{8} \sum_{i,j=1}^{k+1} S_{ij}, \quad k = 1, \ldots, n - 1$$

$$S_n = H = \frac{1}{8} \left(\sum_{h,p=0}^{n} S_{hp} \right),$$

where we set $S_{hh} = 0$.

3. Orthogonal bases for another space of polynomials. Now we make the change of coordinates $x_i = y_i^2$, $1 \leq i \leq n$, and look for solutions of (1.4) that are polynomials in the y_i. In general, H doesn’t map polynomials in the y_i to polynomials, but in the special case $\gamma_1 = \gamma_2 = \cdots = \gamma_n = 1/2$, $G = \gamma_{n+1} + n/2 = s/2 + (n + 1)/2$, we have

$$(3.1) \quad H = \frac{1}{4} \sum_{i,j=1}^{n} (\delta_{ij} - y_i y_j) \partial_{y_i y_j} + \frac{1}{2} \left(G - \frac{1}{2} \right) \sum_{j=1}^{n} y_j \partial_{y_j},$$

and H does map polynomials to polynomials of at most the same degree. Moreover, the differential operators

$$(3.2) \quad L_{ij} = -L_{ji} = y_i \partial_{y_j} - y_j \partial_{y_i}, \quad 1 \leq i < j \leq n,$$

commute with H and form a basis for the symmetry algebra so(n). The special second order symmetries take the form $S_{ij} = L_{ij}^2$, $1 \leq i < j \leq n$, and

$$S_{0i} = L_{0i}^2 - 2(G - \frac{1}{2}) y_i \partial_{y_i} = \left(1 - \sum_{j=1}^{n} y_j^2 \right) \partial_{y_i}^2 - 2G y_i \partial_{y_i},$$

and clearly map polynomials to polynomials of at most the same degree. The measure takes the form

$$(3.3) \quad d\tilde{\omega} = (1 - y_1^2 - \cdots - y_n^2)^{s/2 - 1/2} dy_1 \cdots dy_n,$$
where \(-1 \leq y_i \leq 1\) and

\[
(3.4)\quad \rho^{-1} = (1 - y_1^2 - \cdots - y_n^2)^{s/4}.
\]

Again, \(H\) and the \(S_{\ell k}\) are formally self-adjoint with respect to the inner product

\[
(\Phi_1, \Phi_2) = \int \cdots \int_{\sum y_i^2 < 1} \Phi_1(y) \overline{\Phi_2(y)} \, d\omega,
\]

where \(\Phi_1, \Phi_2\) are polynomials in the \(y_i\).

Every separable coordinate system for the equation

\[
(3.6)\quad H\Phi = -M(M + G - 1)\Phi, \quad 2M \text{ a nonnegative integer},
\]

where \(H\) is given by (3.1) yields an orthogonal basis of multivariable polynomials with respect to the inner product \((\cdot, \cdot)\). (For \(n = 2\) this equation is also on the list of [Krall and Sheffer 1967].) Indeed, for spherical coordinates \(u_i = \sin^2 \theta_i\) we obtain the orthogonal basis of polynomials in \(y\):

\[
\exp(\pm 2i\ell \theta_1) \prod_{k=2}^{n-1} [\sin \theta_k]^{2(\ell_1 + \cdots + \ell_{k-1})} C_{2\ell_k}^{2(\ell_1 + \cdots + \ell_{k-1}) + (k-1)/2}(\cos \theta_k) \times
\]

\[
\left(\begin{array}{c}
-\ell_n, \\
2(\ell_1 + \cdots + \ell_{n-1}) + \ell_n + (n-1)/2 + s/2 \\
2(\ell_1 + \cdots + \ell_{n-1}) + n/2
\end{array}\right; u_n)
\]

\[
(3.7)\quad u_n^{\ell_1 + \cdots + \ell_{n-1}} F_1\left(-\ell_n, 2(\ell_1 + \cdots + \ell_{n-1}) + \ell_n + (n-1)/2 + s/2; u_n\right),
\]

where \(2\ell_i = 0, 1, 2, \ldots\) for \(1 \leq i \leq n-1\), \(\ell_n = 0, 1, 2, \ldots\), and the \(C_k^\lambda(x)\) are Gegenbauer polynomials

\[
C_k^\lambda(x) = \frac{(2\lambda)_k}{k!} F_1\left(-k, k + 2\lambda; \lambda + 1/2; 1/2 - x/2\right),
\]

[Erdeyli et al. 1951]. (The eigenvalues are defined as before.)

Using the results of [Kalmans 1986] or [Kalins and Miller 1986], many other orthogonal bases can be worked out. Moreover the symmetry group \(SO(n)\) permits the derivation of addition theorems for the basis elements, related to the addition theorem for Gegenbauer polynomials and Koornwinder's addition theorem, [Koornwinder 1972, 1975].

Next we relate the Cartesian coordinates \(z_\ell\) and the \(y_a\) via

\[
(3.8)\quad \begin{align*}
z_0^2 &= y_1^2 \\
z_1^2 &= y_2^2 \\
\vdots \\
z_{n-1}^2 &= y_n^2 \\
z_n^2 &= 1 - y_1^2 - \cdots - y_n^2,
\end{align*}
\]
a simple permutation of the relations (2.4), so that the (separable) spherical coordinates v_i are associated with the y_a through

$$ v_1 = \frac{y_2^2}{y_2^2 + y_3^2}, \quad v_2 = \frac{y_2^2 + y_3^2}{y_2^2 + y_3^2 + y_4^2}, \quad \cdots, \quad v_{n-2} = \frac{y_2^2 + \cdots + y_{n-1}^2}{y_2^2 + \cdots + y_n^2}, $$

$$ v_{n-1} = \frac{y_2^2 + \cdots + y_n^2}{1 - y_1^2}, \quad v_n = 1 - y_1^2. $$

(3.9)

From the point of view of separability for the Laplace-Beltrami eigenvalue equation, these v_i coordinates are equivalent to the u_i coordinates introduced earlier, since one system can be obtained from the other through the action of an element of the $SO(n+1)$ symmetry group for this equation. However, the term Λ_n breaks this symmetry so from the viewpoint of the eigenvalue equation for H, with $\gamma_1 = \gamma_2 = \cdots \gamma_n = 1/2$, these are distinct coordinates. The separation equations for the v_i are identical to those for the u_i if we interchange $\gamma_n = 1/2$ and $\gamma_{n+1} = s/2 + 1/2$. For $n = 2$ the orthogonal basis of polynomials is

(3.10)\)

$$ C_{2\ell_1}^{s/2} (\sin \theta_1) C_{2\ell_2}^{2\ell_1+s/2+1/2} (\cos \theta_2) \sin^{2\ell_1} \theta_1 \theta_2 $$

where $\ell_1, \ell_2 = 0, 1/2, 1, 3/2, \ldots$, $\ell_1 + \ell_2 = N$ and $v_j = \sin^2 \theta_j$. This is in agreement with the basis of [Koschmieder 1951, 1957].

For $n > 2$ we have an orthogonal basis of polynomials of the form $\Theta = \prod_{k=1}^n \Theta_k$ where

$$ \Theta_1 = e^{\pm 2i\ell_1 \theta_1}, \quad \ell_1 = 0, 1/2, 1, 3/2, \ldots, $$

$$ \Theta_k = [\sin \theta_k]^{2(\ell_1 + \cdots + \ell_{k-1})} C_{2\ell_k}^{2(\ell_1 + \cdots + \ell_{k-1})+(k-1)/2} (\cos \theta_k) $$

(3.11)

$$ \ell_k = 0, 1/2, 1, \ldots, \quad 1 < k < n - 1, $$

$$ \Theta_{n-1} = \left. v_{n-1}^{\ell_1 + \cdots + \ell_{n-2}} 2F_1 \left(\begin{array}{c} -\ell_{n-1}, 2(\ell_1 + \cdots + \ell_{n-2}) + \ell_{n-1} + (n-2)/2 + s/2, \\ 2(\ell_1 + \cdots + \ell_{n-2}) + (n-1)/2, \end{array} ; v_{n-1} \right) \right| \ell_{n-1} = 0, 1, 2, \ldots, $$

$$ \Theta_n = [\sin \theta_n]^{2(\ell_1 + \cdots + \ell_{n-1})} C_{2\ell_n}^{2(\ell_1 + \cdots + \ell_{n-1})+(n-1)/2+s/2} (\cos \theta_n) $$

$$ \ell_n = 0, 1/2, 1, \ldots, $$

where $\ell_1 + \cdots + \ell_n = M$ and $v_j = \sin^2 \theta_j$.

4. The "mixed" case. Next we consider the more general mixed case with variables
\[x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}, n_1 + n_2 = n \]

\[z_0^2 = 1 - \sum_{i=1}^{n_1} x_i - \sum_{a=1}^{n_2} y_a^2, \]

\[z_1^2 = x_1, \]

\[\vdots \]

\[z_{n_1}^2 = x_{n_1}, \]

\[z_{n_1+1}^2 = y_1^2, \]

\[\vdots \]

\[z_n^2 = y_{n_2}^2, \]

and look for polynomial solutions in \(x_i, y_a \) of the equation

\[H \Phi(x, y) = -M(M + G - 1)\Phi(x, y), \]

where \(\gamma_{n_1+1} = \gamma_{n_1+2} = \cdots = \gamma_n = 1/2 \) and

\[H = \frac{1}{4} \sum_{a,b} (\delta_{ab} - y_a y_b) \partial_{y_a y_b} + \sum_{i,j} (\delta_{ij} x_i - x_i x_j) \partial_{x_i x_j} \]

\[- \sum_{a,i} y_a x_i \partial_{y_a x_i} + \sum_{i} (\gamma_i - G x_i) \partial_{x_i} + \frac{1}{2} \sum_a (\frac{1}{2} - G) y_a \partial_{y_a}, \]

\[G = \frac{n_2 + 1}{2} + \sum_{i} \gamma_i + s/2, \quad 2M \text{ a nonnegative integer.} \]

For reference,

\[\Delta_n = \frac{1}{4} \sum_{a,b} (\delta_{ab} - y_a y_b) \partial_{y_a y_b} + \sum_{i,j} (\delta_{ij} x_i - x_i x_j) \partial_{x_i x_j} \]

\[- \sum_{a,i} y_a x_i \partial_{y_a x_i} + \frac{1}{2} \sum_{i} (1 - (n+1)x_i) \partial_{x_i} \]

\[- \frac{n}{4} \sum_a y_a \partial_{y_a}, \]

\[\Lambda_n = \sum_{i} \left[\gamma_i - \frac{1}{2} + \left(\frac{n+1}{2} - G \right) x_i \right] \partial_{x_i} + \frac{1}{2} \sum_a \left(\frac{n+1}{2} - G \right) y_a \partial_{y_a}. \]

Note that \(H \) maps polynomials in \(x_i, y_a \) to polynomials of at most the same order. The induced measure is

\[d\tilde{\omega} = x_1^{\gamma_1-1} \cdots x_{n_1}^{\gamma_{n_1}-1} (1 - \sum_i x_i - \sum_a y_a^{2^n/2-1/2} dx_1 \cdots dx_{n_1} dy_1 \cdots dy_{n_2}, \]

\[0 < x_i, \quad -1 < y_a < 1, \quad \sum_i x_i + \sum_a y_a^2 < 1, \]
and
\[\rho^{-1} = x_1^{\gamma_1/2-1/4} \cdots x_n^{\gamma_1/2-1/4} \left(1 - \sum_i x_i - \sum_a y_a^2 \right)^{s/4}. \]

Equation (4.2) admits the symmetry algebra \(\mathfrak{so}(n_2) \) with basis
\[L_{ab} = -L_{ba} = y_a \partial_{y_b} - y_b \partial_{y_a}, \quad 1 \leq a < b \leq n_2. \]

The operators \(H \) and \(S_{mk} \) are formally self-adjoint on the space of polynomials in \(x_i, y_a \) with respect to the inner product
\[(\Phi_1, \Phi_2) = \int \cdots \int_{\sum_i x_i + \sum_a y_a^2 < 1} \Phi_1(x, y) \Phi_2^* (x, y) \, d\tilde{\omega}. \]

However, in general the \(S_{mk} \) don't map a polynomial to one of the same or lower order in each variable, e.g.,
\[S_{ia} = 4x_i y_a^2 \partial_{x_i}^2 + x_i \partial_{y_a}^2 - 4x_i y_a \partial_{x_i y_a} + 4\gamma_i y_a^2 \partial_{x_i} - 2x_i \partial_{x_i} - 2\gamma_i y_a \partial_{y_a}, \]

although they do map polynomials to polynomials. It is still true that each symmetry operator \(S \) maps a polynomial eigenspace of \(H \) into itself.

It follows that all separable coordinate systems for the \(n \)-sphere yield bases of orthogonal polynomials in the mixed case, (indeed multiple sets of such bases, depending on the ordering of the variables \(x_i, y_a \)). For example, if we choose spherical coordinates \(u_\ell = \sin^2 \theta_\ell \) in the form
\[u_\ell = \frac{w_\ell}{w_{\ell+1}} \]
where
\[\begin{aligned}
 w_\ell &= \begin{cases}
 \sum_{i=1}^{\ell} x_i, & \ell = 1, \ldots, n_1 \\
 \sum_{i=1}^{n_1} x_i + \sum_{a=1}^{\ell - n_1} y_a^2, & \ell = n_1 + 1, \ldots, n_1 + n_2
 \end{cases}
\end{aligned} \quad (4.6) \]

we find the orthogonal basis of polynomials:
\[\Theta = \prod_{k=1}^{n} \Theta_k(u_k), \]
where
\[\Theta_k(u_k) = u_k^{\ell_1 + \cdots + \ell_{k-1} - 1} \binom{2\ell_1 + \cdots + \ell_{k-1} + \ell_k + \gamma_1 + \cdots + \gamma_{k+1} - 1}{2\ell_1 + \cdots + \ell_{k-1} + \gamma_1 + \cdots + \gamma_k} ; u_k, \]

14
\begin{align}
(4.7) \quad c_k &= -(\ell_1 + \cdots + \ell_k)(\ell_1 + \cdots + \ell_k + \gamma_1 + \cdots + \gamma_{k+1} - 1), \quad k = 1, \ldots, n_1, \\
\Theta_k(u_k) &= [\sin \theta_k]^{2(\ell_1 + \cdots + \ell_{k-1})} C_{2\ell_k}^{2(\ell_1 + \cdots + \ell_{k-1}) + \sum_{i=1}^{k-1} \gamma_i - 1/2} (\cos \theta_k), \\
c_k &= -(\ell_1 + \cdots + \ell_k)(\ell_1 + \cdots + \ell_k + \gamma_1 + \cdots + \gamma_{k+1} - 1), \quad k = n_1 + 1, \ldots, n_1 + n_2 - 1, \\
\Theta_n(u_n) &= u_n^{\ell_1 + \cdots + \ell_{n-1}} F_1 \left(-\ell_n, \frac{2(\ell_1 + \cdots + \ell_{n-1}) + \ell_n + G - 1}{2(\ell_1 + \cdots + \ell_{n-1}) + G - n/2 - 1/2}; u_n \right).
\end{align}

Here \(\ell_1, \ldots, \ell_{n_1}, \ell_n \) and \(2\ell_{n_1+1}, \ldots, 2\ell_{n_1+n_2-1} \) are nonnegative integers. (Recall that \(\gamma_{n_1+1} = \gamma_{n_1+2} = \cdots = \gamma_{n_1+n_2} = 1/2. \))

5. Biorthogonal families of polynomials on \(S^n. \) We begin this section with a simplified proof of the biorthogonality of the polynomials (1.1) and (1.2) with respect to the inner product \(\langle \cdot, \cdot \rangle_\gamma, \) see (1.18), (1.19). Let \(S_\gamma \) be the space of all polynomials in \(x_1, \ldots, x_n \) with respect to this inner product and let \(\mathcal{H}_\gamma,M \) be the subspace of \(S_\gamma \) consisting of solutions \(\Phi \) to the eigenvalue equation

\begin{equation}
(5.1) \quad H\Phi = -M(M + G - 1)\Phi,
\end{equation}

where \(H \) is given by (1.5). Since the functions

\begin{equation}
(5.2) \quad \mathcal{D}_m^\gamma(x) = F_A \left[\frac{M + G - 1}{\gamma_1, \cdots, \gamma_n}; -m_1, \cdots, -m_n; x_1, \cdots, x_n \right]
\end{equation}

clearly satisfy (5.1) for \(M = \sum_{i=1}^{n} m_i \) and since the highest order monomial in these solutions is \(x_1^{m_1} \cdots x_n^{m_n} \) it follows that the \(\mathcal{D}_m^\gamma \) for \(m_1 + \cdots + m_n = M \) form a basis for \(\mathcal{H}_\gamma,M \) and, as the \(m_i \) range over all nonnegative integers, a basis for \(S_\gamma. \) [Note: \(\dim \mathcal{H}_\gamma,M = \binom{M+n-1}{n-1}. \)] Since \(H \) is self-adjoint we have \(\mathcal{H}_\gamma,M \perp \mathcal{H}_{\gamma,M'} \) for \(M' \neq M. \) Thus

\begin{equation}
(5.3) \quad (\mathcal{D}_m^\gamma, \mathcal{D}_{m'}^\gamma)_\gamma = 0 \quad \text{for} \ m' \neq m.
\end{equation}

It is simple to verify the recurrence relation

\begin{equation}
(5.4) \quad \partial_{x_i} \mathcal{D}_m^\gamma(x) = \frac{(M + G - 1)(-m_i)}{\gamma_i} \mathcal{D}_m^\gamma(x),
\end{equation}

15
where
\[
\hat{\gamma}_j = \begin{cases}
\gamma_j & \text{for } j \neq i, \ 1 \leq j \leq n \\
\gamma_i + 1 & \text{for } j = i \\
\gamma_{n+1} + 1 & \text{for } j = n + 1
\end{cases}
\]

\begin{equation}
\hat{m}_j = \begin{cases}
m_j & \text{for } j \neq i, \ 1 \leq j \leq n \\
m_i - 1 & \text{for } j = i
\end{cases}
\end{equation}

\[\hat{M} = M - 1, \quad \hat{G} = G + 2.\]

We can consider \(P_i = \partial_{x_i}\) as an operator
\[P_i : \mathcal{S}_\gamma \rightarrow \mathcal{S}_\hat{\gamma} .\]

Indeed we have

Lemma 2. \(P_i, (1 \leq i \leq n),\) maps \(\mathcal{H}_\gamma, M\) onto \(\mathcal{H}_\hat{\gamma}, \hat{M}\).

Proof. Immediate from (5.4). For a basis free proof we can easily verify the operator identity

\begin{equation}
\hat{H}P_i = GP_i + P_iH
\end{equation}

where \(\hat{H}\) is the operator \(H\) with the \(\gamma_j\) replaced by \(\hat{\gamma}_j\). Then if \(H\Phi = -M(M + G - 1)\Phi\) we have \(\hat{H}(P_i\Phi) = -\hat{M}(\hat{M} + \hat{G} - 1)(P_i\Phi)\). The null space of \(P_i\) acting on \(\mathcal{H}_\gamma, M\) is of dimension \(\binom{M+n-2}{n-2}\) for \(n \geq 2\), hence the dimension of the range of \(P_i\) is

\[
\binom{M + n - 1}{n - 1} - \binom{M + n - 2}{n - 2} = \binom{M + n - 2}{n - 1} = \dim \mathcal{H}_\hat{\gamma}, \hat{M}.
\]

\[\square\]

Corollary 1. The operator \(P_i - P_j\) maps \(\mathcal{H}_\gamma, M\) into \(\mathcal{H}_\hat{\gamma}, \hat{M}\), where \(1 \leq i < j \leq n\) and

\[
\tilde{\gamma}_k = \begin{cases}
\gamma_k & \text{for } 1 \leq k \leq n + 1, \ k \neq i, j \\
\gamma_i + 1 & \text{for } k = i \\
\gamma_j + 1 & \text{for } k = j
\end{cases}
\]

\[\tilde{M} = M - 1, \quad \tilde{G} = G + 2.\]

Proof.

\[\hat{H}(P_i - P_j) = G(P_i - P_j) + (P_i - P_j)H\]
Thus if $H \Phi = -M(M + G - 1)\Phi$ we have $
abla H([P_i - P_j] \Phi) = -\nabla M(\nabla \Phi + \Phi - 1)[P_i - P_j] \Phi$.

The operator P_i induces an adjoint operator $P_i^* : S_{\gamma} \rightarrow S_{\gamma}$, defined by

$$(P_i^* \Phi, \Phi')_{\gamma} = (\Phi, P_i \Phi')_{\gamma}$$

for all $\Phi, \Phi' \in S_{\gamma}$. A straightforward computation yields

$$(5.7) \quad P_i^* = -x_i(1-x) \partial_{x_i} - \gamma_i(1-x) + \gamma_{n+1} x_i.$$

Theorem 1. P_i^* is a 1-1 map of $\mathcal{H}_{\gamma, M}$ into $\mathcal{H}_{\gamma, M}$.

Proof. Taking the adjoint of the relation (5.4) we obtain

$$P_i^* \nabla H = GP_i^* + HP_i^*.$$

Furthermore, P_i^* is 1-1 since P_i is onto.

Let

$$C_m^{\gamma}(x) = (P_1^*)^{m_1} \cdots (P_n^*)^{m_n} 1 \in S_{\gamma}$$

be the result of applying m_n operators P_n^*, \ldots, m_1 operators P_1^*, one at a time, to the function $1 \in S_{\gamma'}$ where

$$\gamma_i' = \gamma_i + m_i, \quad 1 \leq i \leq n,$$

$$\gamma_{n+1}' = \gamma_{n+1} + m.$$

(Each time an operator P_j^* is applied it lowers γ_j and γ_{n+1} by 1 and leaves the other γ_k's unchanged. The order in which these operators are applied makes no difference in the result.) It follows from the recurrence relation

$$\left(x_i \sum_{j=1}^{n} x_j \partial_{x_j} - x_i \partial_{x_i} + x_i(-M - \gamma_{n+1} + 1) - \gamma_i + 1 \right) \times$$

$$F_A \left[-M - \gamma_{n+1} + 1; \quad -m_1, \cdots, -m_n; \gamma_1, \cdots, \gamma_n; x_1, \cdots, x_n \right]$$

$$(5.8) \quad = (1 - \gamma_i) F_A \left[-(M + 1) - (\gamma_{n+1} - 1) + 1; \quad -m_1, \cdots, -(m_i + 1), \cdots, -m_n; \gamma_1, \cdots, \gamma_{i-1}, \cdots, \gamma_n; x_1, \cdots, x_n \right]$$
and a simple induction argument that

\[(5.9) \quad C_m^\gamma(x) = c_{\gamma,m}(1 - x)^M F_A \left[\begin{array}{c}
-M - \gamma_{n+1} + 1; -m_1, \ldots, -m_n; - \frac{x_1}{1 - x}, \ldots, - \frac{x_n}{1 - x} \\
\gamma_1, \ldots, \gamma_n
\end{array} \right] \]

where \(c_{\gamma,m}\) is a nonzero constant. It follows from Theorem 1 that the \(C_m^\gamma\) belong to \(\mathcal{H}_{\gamma,M}\) for \(M = m_1 + \cdots + m_n\). Since there are \(\binom{M+\gamma-1}{n-1}\) of these functions for fixed \(M\) and since they are clearly linearly independent, they form a basis for \(\mathcal{H}_{\gamma,M}\).

Now consider the inner product

\[(C_m^\gamma, D_{m'}^\gamma)_\gamma.\]

If \(m \neq M = m' = M'\) the inner product vanishes, since \(\mathcal{H}_{\gamma,M} \perp \mathcal{H}_{\gamma,M'}\). If \(m = m'\) but \(m \neq m'\) then \(m_i > m_i'\) for some \(i\). Thus

\[(C_m^\gamma, D_{m'}^\gamma)_\gamma = \kappa (1, P_1^{m_1} \ldots P_n^{m_n} D_{m'}^{m'})_\gamma = 0\]

since \(P_i^{m_i} D_{m'}^{m'} = 0\). (Here, \(\kappa\) is a nonzero constant.) We conclude that the set \(\{C_m^\gamma, D_{m'}^\gamma\}\) is biorthogonal. (This family is a generalization of biorthogonal polynomials in two variables studied by [P. Appell and J. Kempé de Fériet, 1926] and extended by [E.D. Fackerell and R.A. Littler, 1974].)

Note that the norm of the weight function is

\[
\int_0^1 dx_1 \int_0^{1-x_1} dx_2 \cdots \int_0^{1-x_1-\cdots-x_{n-1}} dx_n \left[\prod_{k=1}^n x_1^{\gamma_k-1} \right] (1 - x)^{\gamma_{n+1} - 1} = (1, 1)_\gamma = \frac{\prod_{k=1}^{n+1} \Gamma(\gamma_k)}{\Gamma(G)}.
\]

(5.10)

The relation

\[(P_i C_m^\gamma, D_{m'}^\gamma)_\gamma = (C_m^\gamma, P_i D_{m'}^\gamma)_\gamma\]

yields (for \(m = m'\)) the recurrence relation

\[(C_m^\gamma, D_{m'}^\gamma)_\gamma = -\frac{m_i(M + G - 1)}{\gamma_i} (C_{m'}^\gamma, D_{m'}^\gamma)_\gamma.\]

The normalization of the biorthogonal basis can be obtained from this result and (5.10).

Now we extend the biorthogonality relations to the full \(n\)-sphere. We make the change of variables

\[x_k = y_k^2, \quad k = 1, 2, \ldots, n\]
in (5.10) and extend the domain of integration to negative values of \(y_k \), since the integrand is even in all variables, to get

\[
\int_{-1}^{1} dy_1 \int_{-\sqrt{1-y_1^2}}^{1-\sqrt{1-y_1^2}} dy_2 \cdots \int_{-\sqrt{1-y_1^2-\cdots-y_{n-1}^2}}^{1-y_1^2-\cdots-y_{n-1}^2} dy_n \left[\prod_{k=1}^{n} (y_k^2)^{\gamma_k - \frac{1}{2}} \right] (1 - y_1^2 - \cdots - y_n^2)^{s/2-1/2} \quad (5.11)
\]

\[
= (1,1)'_{\gamma} = \frac{[\prod_{k=1}^{n} \Gamma(\gamma_k)] \Gamma\left(\frac{s}{2} + \frac{1}{2}\right)}{\Gamma(\gamma_1 + \cdots + \gamma_n + \frac{s}{2} + \frac{1}{2})}.
\]

Here we have set \(\gamma_{n+1} = s/2 + 1/2 \). (This is a generalization of the weight function for the biorthogonal family \(\{V_m(s)(x), U_m(s)(x)\} \) on the \(n \)-sphere of [Appell and Kampé de Fériet 1926], which is obtained by setting \(\gamma_1 = \cdots = \gamma_n = 1/2 \).) Under this change of variables the polynomials \(\{C_m, D_m\} \) become

\[
U^{(\gamma,s)}_{2m}(y) = (1 - y_1^2 - \cdots - y_n^2)^M \times F_A \left(-M - s/2 + 1/2; \begin{array}{cccc}
-m_1, \ldots, -m_n, \\
gamma_1, \ldots, \gamma_n
\end{array} \frac{-y_1^2}{1 - y_1^2 - \cdots - y_n^2}, \ldots, \frac{-y_n^2}{1 - y_1^2 - \cdots - y_n^2} \right), \quad (5.12)
\]

\[
V^{(\gamma,s)}_{2m}(y) = F_A \left(M + \gamma_1 + \cdots + \gamma_n + s/2 - 1/2; \begin{array}{cccc}
-m_1, \ldots, -m_n, \\
gamma_1, \ldots, \gamma_n
\end{array} \frac{y_1^2}{1 - y_1^2 - \cdots - y_n^2}, \ldots, \frac{y_n^2}{1 - y_1^2 - \cdots - y_n^2} \right).
\]

In the special case \(\gamma_1 = \cdots = \gamma_n = 1/2 \) these are exactly the \(U_m(s)(y) \) and \(V_m(s)(y) \) of [Appell and Kampé de Fériet 1926, page 269]. (To see this transform \(m_k \rightarrow m_k'/2 \), reverse the order of the sums in \(F_A \) by transforming the summation indices as \(j_k \rightarrow m_k'/2 - j_k \), and then use the reflection formula \(\Gamma(z)\Gamma(1 - z) = \pi / \sin(\pi z) \) to represent these polynomials in terms of \(F_B \), as given on page 269.) The biorthogonality demonstration given above immediately implies

\[
(V^{(\gamma,s)}_{2m}, U^{(\gamma,s)}_{2m'})_{\gamma} \sim \prod_{k=1}^{n} \delta_{m_k m_k'} \quad (5.13)
\]

where

\[
(V, U)'_{\gamma} = \int \cdots \int_{0 < y_1^2 + \cdots + y_n^2 < 1} \left[\prod_{k=1}^{n} (y_k^2)^{\gamma_k - 1/2} \right] (1 - y_1^2 - \cdots - y_n^2)^{s/2-1/2} V(y) U(y) dy_1 \ldots dy_n. \quad (5.14)
\]

Also, since the operator \(H \) is self-adjoint with respect to this inner product and since \(U_m(s) \) and \(V_m(s) \) are eigenfunctions of \(H \) we have

\[
(V^{(\gamma,s)}_{2m}, V^{(\gamma,s)}_{2m'})_{\gamma} = (U^{(\gamma,s)}_{2m}, U^{(\gamma,s)}_{2m'})_{\gamma} = 0 \quad \text{if} \ M \neq M'. \quad (5.15)
\]
Here, $U^{(s)}_{2m}(y)$ and $V^{(s)}_{2m}(y)$ are strictly even degree in all the variables y_k with total degree $2M$. We define odd degree polynomials as follows:

$$
V^{(\gamma,s)}_{2m+1}(y) = \prod_{k \in Q} y_k V^{(\gamma',s)}_{2m}(y)
$$

$$
U^{(\gamma,s)}_{2m+1}(y) = \prod_{k \in Q} y_k U^{(\gamma',s)}_{2m}(y),
$$

(5.16)

where Q is any subset of $(1,2,\ldots,n)$, and

$$
\gamma'_k = \gamma_k + 1 \quad \text{if} \quad k \in Q
$$

$$
\gamma'_k = \gamma_k \quad \text{if} \quad k \notin Q.
$$

(5.17)

Since the weight function is even in all variables and the odd degree polynomials are odd in the variables y_k, $k \in Q$, we immediately deduce by parity

$$
(V^{(\gamma,s)}_{2m+1}, V^{(\gamma,s)}_{2m'})_{\gamma} = (U^{(\gamma,s)}_{2m+1}, U^{(\gamma,s)}_{2m'})_{\gamma} = 0,
$$

$$
(V^{(\gamma,s)}_{2m+1}, U^{(\gamma,s)}_{2m'})_{\gamma} = (V^{(\gamma,s)}_{2m}, U^{(\gamma,s)}_{2m+1})_{\gamma} = 0.
$$

(5.18)

Also, $(V^{(\gamma,s)}_{2m+1}, U^{(\gamma,s)}_{2m'} + 1)_{\gamma}$ vanishes by parity unless both polynomials are odd in exactly the same variables, in which case it is easy to verify that

$$
(V^{(\gamma,s)}_{2m+1}, U^{(\gamma,s)}_{2m'+1})_{\gamma} = (V^{(\gamma',s)}_{2m+1}, U^{(\gamma',s)}_{2m'+1})_{\gamma'} \sim \prod_{k=1}^{n} \delta_{m_k m'_k}.
$$

(5.19)

Similarly,

$$
(V^{(\gamma,s)}_{2m+1}, V^{(\gamma,s)}_{2m'})_{\gamma} = (U^{(\gamma,s)}_{2m+1}, U^{(\gamma,s)}_{2m'+1})_{\gamma} = 0 \quad \text{if} \quad M \neq M'.
$$

(5.20)

Theorem 2. Let

$$
V^{(\gamma,s)}_{m}(y) \equiv \begin{cases}
V^{(\gamma,s)}_{2q}(y) \\
V^{(\gamma,s)}_{2q+1}(y)
\end{cases}
$$

$$
U^{(\gamma,s)}_{m}(y) \equiv \begin{cases}
U^{(\gamma,s)}_{2q}(y) \\
U^{(\gamma,s)}_{2q+1}(y)
\end{cases}
$$

Then

$$
(V^{(\gamma,s)}_{m}, V^{(\gamma,s)}_{m'})_{\gamma} \sim \prod_{k=1}^{n} \delta_{m_k m'_k},
$$

$$
(V^{(\gamma,s)}_{m}, V^{(\gamma,s)}_{m'})_{\gamma} = (U^{(\gamma,s)}_{m}, U^{(\gamma,s)}_{m'})_{\gamma} = 0 \quad \text{if} \quad M \neq M'.
$$
In the case \(n = 1 \) the biorthogonal polynomials are orthogonal:

\[
V_{2m}^{(\gamma, s)}(y) = U_{2m}^{(\gamma, s)}(y) = \frac{2F_1}{\gamma} \left(\begin{array}{c} m + \gamma + s/2 - 1/2, -m \\ \gamma \end{array} ; y^2 \right)
\]

\[
V_{2m+1}^{(\gamma, s)}(y) = U_{2m+1}^{(\gamma, s)}(y) = y \frac{2F_1}{\gamma + 1} \left(\begin{array}{c} m + \gamma + s/2 + 1/2, -m \\ \gamma + 1 \end{array} ; y^2 \right).
\]

The measure on the interval \(-1 \leq y \leq 1\) is

\[
d\omega(y) = (y^2)^{\gamma-1/2}(1-y^2)^{s/2-1/2} dy.
\]

For \(\gamma = 1/2 \) these are exactly the Gegenbauer polynomials. For general \(\gamma \) they are a generalization of these polynomials.

The same construction with \(U_m = V_m \) can be carried out for all the orthogonal systems of polynomials in the variables \(x_k \) as found in \(\S 2 \) to obtain orthogonal polynomials in the variables \(y_k \) on the full \(n \)-sphere. In general, something is lost in this construction, however. The polynomials \(U_m = V_m \) are (except for the even case) no longer eigenfunctions of \(H \). Indeed, we have

Lemma 3. Let \(\Phi(y) \) be a polynomial eigenfunction of \(H \):

\[
H\Phi = -M(M+G-1)\Phi
\]

in the coordinates \(y_k \), where \(x_k = y_k^2 \), \(1 \leq k \leq n \), and let \(Q \) be a subset of \(\{1, 2, \ldots, n\} \) with \(|Q| > 0 \) elements. Then \(\Psi_Q = \prod_{i \in Q} \Phi(y_i) \) is an eigenfunction of the operator \(H' \) corresponding to parameters \(\gamma'_k, \gamma'_{n+1}, G' \) if and only if

\[
\gamma_k = \frac{3}{2} \quad \text{for } k \in Q,
\]

and

\[
\gamma'_k = \frac{1}{2} \quad \text{for } k \in Q,
\]

\[
\gamma'_k = \gamma_k \quad \text{for } k \not\in Q
\]

\[
G' = G - |Q|, \quad M' = M + \frac{|Q|}{2}.
\]

Then

\[
H'\Psi_Q = -M'(M' + G' - 1)\Psi_Q.
\]

It follows from this result that in the case where \(\gamma_1 = \cdots = \gamma_n = 1/2 \), the construction leading to Theorem 2 yields the biorthogonal polynomials \(U^{(s)}_m(y) \) and \(V^{(s)}_m(y) \) of [Appell and Kampé de Fériet 1926]. These polynomials are all eigenfunctions of \(H \). Similarly, for \(\gamma_1 = \cdots = \gamma_n = 1/2 \) the same construction applied to the families of orthogonal polynomials in \(x_k \), found in \(\S 2 \), leads to the families of orthogonal polynomials in \(y_k \), found in \(\S 3 \), all eigenfunctions of \(H \).
6. The “mixed” biorthogonal case. Using the techniques introduced in §5 it is now easy to determine a biorthogonal basis of polynomials in the mixed case with coordinates (4.1). We set

\[n_1 + n_2 = n, \quad x \equiv \sum_{k=1}^{n_1} x_k, \quad y^2 \equiv \sum_{k=1}^{n_2} y_k^2, \]

\[M \equiv \sum_{k=1}^{n_1} m_k, \quad \tilde{M} \equiv \sum_{k=1}^{n_2} \tilde{m}_k. \]

The basic building blocks are the polynomials

\[C_{m,2\tilde{m}}^{(\gamma,s)}(x,y) = \]

\[(1 - x - y^2)^{M + \tilde{M}} F_A \left(-M - \tilde{M} - s/2 + 1/2; -m_k, -\tilde{m}_k, \frac{-x_k}{\gamma_k}, \frac{-y_k^2}{s_k}; \frac{1}{1 - x - y^2}, \frac{1}{1 - x - y^2} \right) \]

and

\[D_{m,2\tilde{m}}^{(\gamma,s)}(x,y) = \]

\[F_A \left(M + \tilde{M} + \frac{1}{\gamma_k} + \cdots + \frac{1}{\gamma_n} + s_1 + \cdots + s_n + s/2 - 1/2; -m_k, -\tilde{m}_k, x_k, y_k^2 \right). \]

The weight function is

\[w(x,y) = \left[\prod_{k=1}^{n_1} x_k^{\gamma_k - 1} \right] \left[\prod_{k=1}^{n_2} (y_k^2)^{s_k - 1/2} \right] (1 - x - y^2)^{s/2 - 1/2} \]

with \(\gamma_k, s_k > 0 \) and \(s > -1 \). The inner product is

\[< \Phi_1, \Phi_2 >_{\gamma,s} = \int \cdots \int_{0 < x_i, x + y^2 < 1} \Phi_1(x,y) \overline{\Phi_2(x,y)} w(x,y) dx_1 \cdots dx_n dy_1 \cdots dy_{n_2}. \]

Furthermore,

\[< 1,1 >_{\gamma,s} = \frac{[\prod_{k=1}^{n_1} \Gamma(\gamma_k)][\prod_{k=1}^{n_2} \Gamma(s_k)]\Gamma(s/2 + 1/2)}{\Gamma(\gamma_1 + \cdots + \gamma_n + s_1 + \cdots + s_n + s/2 + 1/2)}. \]
It follows from the results immediately preceding (5.10) that the polynomial sets (6.1) and (6.2) are biorthogonal. However, since they are even functions of the y_k they don't form a basis for all polynomial functions in the variables x_k, y_k. To construct such a basis we define functions

$$C_{m',2\tilde{m}+1}^{(\gamma,s)}(x, y) = \prod_{k \in Q} y_k \cdot C_{m',2\tilde{m}+1}^{(\gamma,s_k+1,s)}(x, y),$$

$$\tag{6.6} D_{m',2\tilde{m}+1}^{(\gamma,s)}(x, y) = \prod_{k \in Q} y_k \cdot D_{m',2\tilde{m}+1}^{(\gamma,s_k+1,s)}(x, y),$$

where Q is any nonempty subset of $(1, 2, \ldots, n_2)$.

By parity we have

$$< C_{m',2\tilde{m}+1}^{(\gamma,s)}, D_{m',2\tilde{m}'+1}^{(\gamma,s)} >_{\gamma,s} = 0,$$

$$< C_{m',2\tilde{m}+1}^{(\gamma,s)}, D_{m',2\tilde{m}'+1}^{(\gamma,s)} >_{\gamma,s} = 0 \text{ if } Q \neq Q'.$$

If $Q = Q'$ a simple computation yields

$$< C_{m',2\tilde{m}+1}^{(\gamma,s)}, D_{m',2\tilde{m}'+1}^{(\gamma,s)} >_{\gamma,s} = < C_{m,2\tilde{m}}^{(\gamma,s)}, D_{m,2\tilde{m}'}^{(\gamma,s)} >_{\gamma,s} \sim \prod_{k=1}^{n_1} \delta_{m_k m'_k} \prod_{k=1}^{n_2} \delta_{\tilde{m}_k \tilde{m}'_k}.$$

Since $C_{m',2\tilde{m}}^{(\gamma,s)}$ and $D_{m,2\tilde{m}}^{(\gamma,s)}$ are eigenfunctions of H there are additional orthogonality relations obeyed by the C's alone and by the D's alone. Collecting all these results we have

Theorem 3. Let

$$C_{m,2\tilde{m}}^{(\gamma,s)}(x, y) \equiv \begin{cases} C_{m,2\tilde{m}}^{(\gamma,s)}(x, y) \\ C_{m,2\tilde{m}+1}^{(\gamma,s)}(x, y). \end{cases}$$

$$D_{m,2\tilde{m}}^{(\gamma,s)}(x, y) \equiv \begin{cases} D_{m,2\tilde{m}}^{(\gamma,s)}(x, y) \\ D_{m,2\tilde{m}+1}^{(\gamma,s)}(x, y). \end{cases}$$

Then

$$< C_{m,2\tilde{m}}, D_{m',2\tilde{m}'}^{(\gamma,s)} >_{\gamma,s} \sim \prod_{k=1}^{n_1} \delta_{m_k m'_k} \prod_{k=1}^{n_2} \delta_{\tilde{m}_k \tilde{m}'_k},$$

$$< C_{m,2\tilde{m}}, C_{m',2\tilde{m}'}^{(\gamma,s)} >_{\gamma,s} = 0 \text{ if } M + \tilde{M} \neq M' + \tilde{M'},$$

$$< D_{m,2\tilde{m}}, D_{m',2\tilde{m}'}^{(\gamma,s)} >_{\gamma,s} = 0 \text{ if } M + \tilde{M} \neq M' + \tilde{M'}.$$

In general, the biorthogonal polynomials listed in Theorem 3 are not eigenfunctions of H. However, in the case $s_1 = \cdots = s_{n_2} = 1/2$ it follows from Lemma 3 that each of the polynomials satisfies the eigenvalue equation

$$H \Phi = -(M + \tilde{M})(M + \tilde{M} + G - 1) \Phi.$$
where \(G = \sum_{k=1}^{r_1} \gamma_k + (n_2 + 1)/2 + s. \)

Similarly, the above procedure when applied to any one of the orthogonal bases discussed in §2 leads to an orthogonal polynomial basis with respect to the inner product \(<\cdot, \cdot>_s \). Restriction to the case \(s_1 = \cdots = s_{n_2} = 1/2 \) yields eigenfunctions of \(H \) and coincides with the results of §4.

REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>495</td>
<td>Lucas Hsu, Niky Kamran and Peter J. Olver</td>
<td>Equivalence of Higher Order Lagrangians II. The Cartan Form for Particle Lagrangians</td>
</tr>
<tr>
<td>496</td>
<td>D.J. Kaup and Peter J. Olver</td>
<td>Quantization of BiHamiltonian Systems</td>
</tr>
<tr>
<td>497</td>
<td>Metin Arik, Fahrünisa Neyzi, Yavuz Nutku, Peter J. Olver and John M. Verovsky</td>
<td>Multi-Hamiltonian Structure of the Born-Infeld Equation</td>
</tr>
<tr>
<td>498</td>
<td>David H. Wagner</td>
<td>Detonation Waves and Deflagration Waves in the One Dimensional ZND Model for High Mach Number Combustion</td>
</tr>
<tr>
<td>499</td>
<td>Jerrold R. Griggs and Daniel J. Kleitman</td>
<td>Minimum Cutsets for an Element of a Boolean Lattice</td>
</tr>
<tr>
<td>500</td>
<td>Dieter Jungnickel</td>
<td>On Affine Difference Sets</td>
</tr>
<tr>
<td>501</td>
<td>Pierre Leroux</td>
<td>Reduced Matrices and q-log Concavity Properties of q-Stirling Numbers</td>
</tr>
<tr>
<td>502</td>
<td>A. Narain and Y. Kizilyalli</td>
<td>The Flow of Pure Vapor Undergoing Film Condensation Between Parallel Plates</td>
</tr>
<tr>
<td>503</td>
<td>Donald A. French</td>
<td>On the Convergence of Finite Element Approximations of a Relaxed Variational Problem</td>
</tr>
<tr>
<td>504</td>
<td>Yisong Yang</td>
<td>Computation, Dimensionality, and Zero Dissipation Limit of the Ginzburg-Landau Wave Equation</td>
</tr>
<tr>
<td>505</td>
<td>Jürgen Sprekels</td>
<td>One-Dimensional Thermomechanical Phase Transitions with Non-Convex Potentials of Ginzburg-Landau Type</td>
</tr>
<tr>
<td>506</td>
<td>Yisong Yang</td>
<td>A Note On Nonabelian Vortices</td>
</tr>
<tr>
<td>507</td>
<td>Yisong Yang</td>
<td>On the Abelian Higgs Models with Sources</td>
</tr>
<tr>
<td>508</td>
<td>Chjan. C. Lim</td>
<td>Existence of Kam Tori in the Phase Space of Vortex Systems</td>
</tr>
<tr>
<td>509</td>
<td>John Weiss</td>
<td>Bäcklund Transformations and the Painlevé Property</td>
</tr>
<tr>
<td>510</td>
<td>Pu Fu-cho and D.H. Sattinger</td>
<td>The Yang-Baxter Equation for Integrable Systems</td>
</tr>
<tr>
<td>511</td>
<td>E. Bruce Pitman and David G. Schaeffer</td>
<td>Instability and Ill-Posedness in Granular Flow</td>
</tr>
<tr>
<td>512</td>
<td>Brian A. Coomes</td>
<td>Polynomial Flows on C"</td>
</tr>
<tr>
<td>514</td>
<td>Peter J. Olver</td>
<td>Invariant Theory, Equivalence Problems, and the Calculus of Variations</td>
</tr>
<tr>
<td>515</td>
<td>Daniel D. Joseph and Thomas S. Lundgren with an appendix by R. Jackson and D.A. Saville</td>
<td>Ensemble Averaged and Mixture Theory Equations</td>
</tr>
<tr>
<td>516</td>
<td>P. Singh, Ph. Caussignac, A. Fortes, D.D. Joseph and T. Lundgren</td>
<td>Stability of Periodic Arrays of Cylinders Across the Stream by Direct Simulation</td>
</tr>
<tr>
<td>517</td>
<td>Daniel D. Joseph</td>
<td>Generalization of the Foscolo-Gibilaro Analysis of Dynamic Waves</td>
</tr>
<tr>
<td>518</td>
<td>A. Narain and D.D. Joseph</td>
<td>Note on the Balance of Energy at a Phase Change Interface</td>
</tr>
<tr>
<td>519</td>
<td>Daniel D. Joseph</td>
<td>Remarks on inertial radii, persistent normal stresses, secondary motions, and non-elastic extensional viscosities</td>
</tr>
<tr>
<td>520</td>
<td>D. D. Joseph</td>
<td>Mathematical Problems Associated with the Elasticity of Liquids</td>
</tr>
<tr>
<td>521</td>
<td>Henry C. Simpson and Scott J. Spector</td>
<td>Some Necessary Conditions at an Internal Boundary for Minimizers in Finite Elasticity</td>
</tr>
<tr>
<td>522</td>
<td>Peter Gritzmann and Victor Klee</td>
<td>On the 0-1 Maximization of Positive Definite Quadratic Forms</td>
</tr>
<tr>
<td>523</td>
<td>Fu-Cho Pu and D.H. Sattinger</td>
<td>The Yang-Baxter Equations and Differential Identities</td>
</tr>
<tr>
<td>524</td>
<td>Avner Friedman and Fernando Reitich</td>
<td>A Hyperbolic Inverse Problem Arising in the Evolution of Combustion Aerosol</td>
</tr>
<tr>
<td>525</td>
<td>E.G. Kalnins, Raphael D. Levine and Willard Miller, Jr.</td>
<td>Conformal Symmetries and Generalized Recurrences for Heat and Schrödinger Equations in One Spatial Dimension</td>
</tr>
<tr>
<td>526</td>
<td>Wang Jinghua and Gerald Warnecke</td>
<td>On Entropy Consistency of Large Time Step Godunov and Glimm Schemes</td>
</tr>
<tr>
<td>527</td>
<td>C. Guillopé and J.C. Saut</td>
<td>Existence Results for the Flow of Viscoelastic Fluids with a Differential Constitutive Law</td>
</tr>
<tr>
<td>528</td>
<td>H.L. Bodlaender, P. Gritzmann, V. Klee and J. Van Leeuwen</td>
<td>Computational Complexity of Norm-Maximization</td>
</tr>
<tr>
<td>529</td>
<td>Li Ta-tsen (Li Da-qian) and Yu Xin</td>
<td>Life-Span of Classical Solutions to Fully Nonlinear Wave Equations</td>
</tr>
<tr>
<td>530</td>
<td>Jong-Shenq Guo</td>
<td>A Variational Inequality Associated with a Lubrication Problem</td>
</tr>
<tr>
<td>531</td>
<td>Jong-Shenq Guo</td>
<td>On the Semilinear Elliptic Equation $\Delta w - \frac{1}{2}y \cdot \nabla w + \lambda w - w^{-\beta} = 0$ in \mathbb{R}^n</td>
</tr>
<tr>
<td>532</td>
<td>Andrew E. Yagle</td>
<td>Inversion of the Bloch transform in magnetic resonance imaging using asymmetric two-component inverse scattering</td>
</tr>
</tbody>
</table>