A PARABOLIC SYSTEM ARISING IN FILM DEVELOPMENT

By

Wenxiong Liu

IMA Preprint Series # 577
August 1989
A Parabolic System Arising In Film Development

Wenxiong Liu
School of Mathematics
University of Minnesota
Minneapolis, MN 55455

Key words and phrases: Existence and uniqueness, edge enhancement, large time behavior

§1 Introduction

In this paper we shall study the Cauchy problem:

\[P_t - P_{xx} = E(x)F(Q) - P + Q \quad \text{in} \quad \mathbb{R}^1 \times [0, \infty), \quad (1.1) \]

\[Q_t = P - Q \quad \text{in} \quad \mathbb{R}^1 \times [0, \infty), \quad (1.2) \]

\[P(x, 0) = Q(x, 0) = 0 \quad \text{for} \quad x \in \mathbb{R}^1, \quad (1.3) \]

\[\max_x |P(x, t)| < \infty, \quad \max_x |Q(x, t)| < \infty, \quad \text{for any} \ t < \infty. \quad (1.4) \]

where \(E(x) \) is a step function:

\[E(x) = \begin{cases} C_1 & x < 0 \\ C_2 & x > 0 \end{cases}, \quad \text{where} \ C_1 > C_2 > 0; \]

\(F(u) \) is a \(C^2 \) positive decreasing function, \(-\infty < u < \infty\). System (1.1) arises in film development; for background, see [1].

Define dye \(D(x, T) \) at time \(T \) by

\[D(x, T) = E(x) \int_0^T F(Q(X, t)) dt \quad (1.5) \]
where \((P, Q)\) is the solution of \((1.1)-(1.4)\). Then one expects the profile of D-curve to be as indicated in Figure 1.

![Figure 1](image)

If it does, then we say that edge enhancement occurs (see [1]). In section 3, we shall prove that if \(T\) is sufficiently small, then this phenomenon does occur.

We shall be mainly interested however in the large time behavior of solutions. It turns out that this depends on the behavior of \(F(u)\) as \(u \to \infty\). If \(F(u)\) reaches zero at a finite point \(u = M > 0\), then both \(P\) and \(Q\) converge to \(M\) as \(t \to \infty\) under some additional assumption on \(F\) (Theorem 4.3). If \(F(u)\) approaches a positive limit as \(u \to \infty\), then both \(P\) and \(Q\) increase linearly in \(t\) as \(t \to \infty\) (Theorem 4.10).

The most interesting case is when \(F(u)\) is strictly positive but converges to zero as \(u \to \infty\); then \(P\) and \(Q\) still converge to \(\infty\); more specifically, if \(F(u)/u^{-\gamma} \to \beta, -F'(u)/u^{-\gamma-1} \to \gamma \beta\) as \(u \to \infty\) for some \(\beta > 0\) and \(\gamma > 0\), then

\[
\begin{align*}
P(x,t)/t^{1+\gamma} & \to \frac{1}{2} g(0) \\
Q(x,t)/t^{1+\gamma} & \to \frac{1}{2} g(0)
\end{align*}
\]

as \(t \to \infty\).

Here \(g(x)\) is the solution of

\[
\begin{align*}
g''(x) + \frac{\gamma}{2} g'(x) & = \frac{1}{1+\gamma} g - 2\gamma \beta E(x)/g^\gamma, \\
g(+\infty) & = (2\gamma C_2)^{1/1+\gamma}, \quad g(-\infty) = (2\gamma C_1)^{1/1+\gamma}.
\end{align*}
\] (1.6)

\section{Preliminary Results}

Let \(W_{p,1}^1(K) = \{u : u, D_t u, D_x u \text{ and } D_{xx} u \text{ are all in } L^p(K)\}\), where \(K \subset R^1 \times [0, \infty)\). By a solution \((P, Q)\) of \((1.1)-(1.4)\), we mean that \(P \in W_{p,1}^1(K), Q \in W_{p,1}^1(K)\) for any \(p > 1\) and any compact subset \(K\), and \((P, Q)\) satisfies \((1.1)-(1.4) ((1.1), (1.2) \text{ in a.e. sense})\).

In the sequel, various constants will be denoted by \(C\). We shall first establish the existence and uniqueness of solutions of \((1.1)-(1.4)\) for small time.
Lemma 2.1 There exists a $\delta > 0$, such that the system (1.1)-(1.4) has a unique solution (P,Q) in $R^1 \times [0, \delta]$; furthermore, $P > 0$, $Q > 0$.

Proof. From (1.2), we get

$$Q(x,t) = \int_0^t e^{-(t-s)}P(x,s)ds,$$

so that (1.1) can be rewritten in the form

$$(P_t - P_{xx})(x,t) = E(x)F\left(\int_0^t e^{-(t-s)}P(x,s)ds\right) - P + \int_0^t e^{-(t-s)}P(x,s)ds. \quad (2.2)$$

We first solve (2.2) with $P(x,0) = 0$. Let

$$B = C^0(R^1 \times [0, \delta]) \cap \{f : f \text{ is bounded in every strip } R^1 \times [0, t] \text{ for any } t < \delta\}.$$

For any $\bar{P} \in B$, let P be the unique solution of

$$(P_t - P_{xx})(x,t) = E(x)F\left(\int_0^t e^{-(t-s)}\bar{P}(x,s)ds\right) - \bar{P} + \int_0^t e^{-(t-s)}\bar{P}(x,s)ds,$$

$$P(x,0) = 0.$$

Define an operator L by $L\bar{P} = P$. It is easy to check that L maps B into B, and L is a contraction provided δ is small. Therefore, there exists a unique fixed point P of L. Defining Q by (2.1), it is clear (P,Q) forms the unique solution of (1.1)-(1.4). By standard L_p-estimates (see [2]), P_t and P_{xx} are in $L^p(K)$ for any $p > 1$ and any compact subset $K \subset R^1 \times [0, \delta]$.

To prove that $P(x,t) > 0$, we represent P by means of the fundamental solution

$$\Gamma(x,t; y,s) = \frac{1}{2\sqrt{\pi(t-s)}} e^{-\frac{(x-y)^2}{4(t-s)}},$$

$$P(x,t) = \int_0^t \int_{R^1} \Gamma(x,t; y,s)(E(y)F(Q) - P(y,s) + Q(y,s))dyds. \quad (2.3)$$

Then

$$|P(x,t)| \leq \int_0^t \int_{R^1} \Gamma(x,t; y,s)(E(y)F(Q) + C)dyds \leq Ct.$$

By (2.1), we also have the same estimate for $Q(x,t)$. Therefore,

$$P(x,t) \geq \int_0^t \int_{R^1} \Gamma(x,t; y,s)(E(y)F(Q) - 2Cs)dyds \geq Ct > 0,$$

since $F(Q) > \frac{1}{2} > 0$ for $Q \leq Ct \leq C\delta$ if δ is small. By (2.1), also $Q(x,t) > 0$.

We next prove some a priori estimates (for global solution).
Lemma 2.2 If \((P,Q)\) is a solution of (1.1)-(1.4) in \(\mathbb{R}^1 \times [0, T)\), then

\[
P(x,t) > 0, \quad (2.4) \\
Q(x,t) > 0 \quad (2.5)
\]
in \(\mathbb{R}^1 \times (0, T)\).

Proof. If the assertions are not true, then there exists a point \((x_0, t_0)\) such that (2.4) and (2.5) hold for all \(t < t_0\) but one of the inequalities becomes an equality at \((x_0, t_0)\), i.e. either \(P(x_0, t_0) = 0\), or \(Q(x_0, t_0) = 0\). Note that \(Q(x_0, t_0) = 0\) is impossible by (2.1), so that \(P(x_0, t_0) = 0\). Since

\[
P_t - P_{xx} + P = E(x)F(Q) + Q > 0
\]
in the strip \(\{0 \leq t \leq t_0\}\), the maximum principle then implies that \(P \equiv 0\) in \(\{0 \leq t \leq t_0\}\), a contradiction.

Lemma 2.3 Let \((P,Q)\) be a solution of (1.1)-(1.3) in \(\mathbb{R}^1 \times [0, T)\). Then

\[
P(x,t) \leq CTe^T, \\
Q(x,t) \leq CTe^T
\]
in \(\mathbb{R}^1 \times [0, T)\).

Proof. From (2.3) and the fact that \(P > 0\), we have

\[
P(x,t) \leq \int_0^t \int_{\mathbb{R}^1} G(x,t; y,s)(C_1F(0) + Q(y,s))dyds \\
\leq C_1F(0)t + \int_0^t \max_x Q(x,s)ds \\
= C_1F(0)t + \int_0^t \int_0^s e^{-(t-s)} \max_x P(x,u)duds \quad \text{(by (2.1))} \\
\leq C_1F(0)t + \int_0^t \max_x P(x,s)ds.
\]

Gronwall inequality then gives

\[
\max_x P(x,t) \leq C_1F(0)te^t \leq CTe^T.
\]

By (2.1), the same inequality holds for \(Q\).

The a priori estimates of Lemma 2.3 enable us to apply the local existence and uniqueness result of Lemma 2.1, step by step, in order to obtain a unique global solution:

Theorem 2.4 There exists a unique solution of (1.1)-(1.4), for all \(t > 0\); furthermore, \(P > 0, Q > 0\).

We next establish additional regularities.
Theorem 2.5 The solution (P, Q) has the following regularity properties: P_ξ and P_{xx} are in $L^p(K)$ for any $p > 1$; furthermore, P_t and P_x are continuous up to $\{ t = 0 \}$ except at $(0,0)$. The same conclusions hold for Q.

Proof. Since (P, Q) is a solution of (1.1)-(1.3), for any $\xi \in C_0^\infty(R^1 \times (0, \infty))$, we have

$$-\int_0^\infty \int_{R^1} P(\xi_t + \xi_{xx}) = \int_0^\infty \int_{R^1} (E(x)F(Q) - P + Q)\xi.$$

Replacing ξ by ξ_t, and using integration by parts, we see that

$$\int_0^\infty \int_{R^1} P_t(\xi_t + \xi_{xx}) = -\int_0^\infty \int_{R^1} (E(x)F'(Q)Q_t - P_t + Q_t)\xi. \quad (2.6)$$

Equation (2.6) says that P_t is a weak solution of

$$P_{tt} - P_{txx} = (1 + E(x)F'(Q))Q_t - P_t. \quad (2.7)$$

Also

$$P_t(x, 0) = E(x)F(0).$$

Since P_t, Q_t are in $L^p(K)$ for any compact subset $K \subset R^1 \times [0, \infty)$, standard L^p-estimates give us that P_{tt} and P_{txx} are in $L^p(K)$ for any $p > 1$. By Sobolev imbedding theorems, we see that P_t and P_x are continuous in $R^1 \times (0, \infty)$. Noting that $E(x)$ has a jump only at 0, we conclude that P_t and P_x are continuous up to $\{ t = 0 \}$ except at $(0,0)$. By (2.1), all assertions are also true for Q.

§3 Edge Enhancement

In this section, we establish the edge enhancement phenomenon.

Theorem 3.1 Let $D(x, T)$ be the dye as defined in (1.6). Then, for any T sufficiently small, we have that

$$D(x, T) = E(x)g(x, T) + O(T^4)$$

where $g(x, T) \in C^\infty(R^1)$ and $\inf_{x, T} \frac{g(x, T)}{T} \geq c > 0$; furthermore,

$$g_x(x, T) \geq 0, \quad x \in R^1$$
$$g_{xx}(x, T) \geq 0 \quad \text{if} \ x < 0,$$
$$g_{xx} \leq 0 \quad \text{if} \ x > 0,$$

$$\lim_{x \to -\infty} g(x, T) = F(0)T(1 + \frac{1}{6}C_2F(0)F'(0)T^2), \quad \lim_{x \to \infty} g(x, T) = F(0)T(1 + \frac{1}{6}C_1F(0)F'(0)T^2).$$

Proof. Let $f(x, t) = (1 + E(x)F'(Q))Q_t - P_t$. Then from (2.10)

$$P_t(x, t) = \int_{R^1} \Gamma(x, t; y, 0)E(y)F(0)dy + \int_0^t \int_{R^1} \Gamma(x, t; y, s)f(y, s)dyds$$
$$\Delta = I_1 + I_2. \quad (3.1)$$
We compute

\[
I_1 = F(0)[C_1 \int_{-\infty}^{0} \Gamma(x, t; y, 0) dy + C_2 \int_{0}^{\infty} \Gamma(x, t; y, 0) dy] = F(0)[\frac{C_1 + C_2}{2} + (C_2 - C_1) \int_{-\infty}^{0} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du],
\]

(3.2)

and

\[
I_2 \leq \int_{0}^{t} |f|_{L^\infty([t, \infty))} ds \leq Ct. \tag{3.3}
\]

Now let us calculate \(Q(x, t)\) for small \(t\):

\[
Q(x, t) = \int_{0}^{t} e^{-(t-s)} P(x, s) ds
= \int_{0}^{t} P(x, s) ds + \int_{0}^{t} P(x, s)(e^{-(t-s)} - 1) ds
= \int_{0}^{t} P_t(x, s)(t - s) ds + O(t^3). \tag{3.4}
\]

Hence

\[
\int_{0}^{T} Q(x, t) dt = \frac{1}{2} \int_{0}^{T} P_t(x, s)(T - s)^2 ds + O(T^4)
= \frac{1}{2} \int_{0}^{T} I_1(x, s)(T - s)^2 ds + \int_{0}^{T} I_2(x, s)(T - s)^2 ds + O(T^4) \quad \text{(by (3.1))}
= \frac{1}{2} \int_{0}^{T} I_1(x, t)(T - t)^2 dt + O(T^4) \quad \text{(by (3.3)).} \tag{3.5}
\]

From (3.4), we know that \(Q(x, t) = O(t^2)\). Therefore

\[
F(Q(x, t)) = F(0) + F''(0)Q(x, t) + O(t^4).
\]

Integrating in \(t\) and using (3.5) and (3.2), we get

\[
\int_{0}^{T} F(Q(x, t)) dt = F(0)T + F''(0) \int_{0}^{T} Q(x, t) dt + O(T^4)
\leq g(x, T) + O(T^4),
\]

where

\[
g(x, T) = F(0)T + \frac{1}{2} F''(0)F(0) \int_{0}^{T} \frac{C_1 + C_2}{2} + (C_2 - C_1) \int_{-\infty}^{0} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du](T - t)^2 dt.
\]

It is easy to check that \(g(x, T)\) has all the properties stated in Theorem 3.1. It is also clear that D-curve has the profile indicated in Figure 1. Hence, if \(T\) is sufficiently small, edge enhancement occurs.
§4 Large Time Behavior

To study the large time behavior, we need to distinguish three cases:

There exists an \(M > 0 \), such that \(F(M) = 0 \),

\[
F(u) \to \beta > 0 \text{ as } u \to \infty, \quad (4.1)
\]

\[
F(u) \to 0 \text{ as } u \to \infty. \quad (4.3)
\]

We shall begin with case 1.

Lemma 4.1 In addition to (4.1), we also assume that \(F \) satisfies

\[
1 + \max_u C_1 F'(u) \geq 0. \quad (4.4)
\]

Then \(P_t > 0, \ Q_t > 0 \) in \(R^1 \times [0, \infty) \).

Proof. By (1.2) and Lemma 2.3, we see that

\[
|Q_t|_{L^\infty(R^1 \times [0,1])} \leq C < \infty, \quad (4.5)
\]

Representing \(P_t \), the solution of (2.7) with \(P_t(x,0) = E(x)F(0) \), in terms of the fundamental solution, we get

\[
P_t(x,t) = \int_{R^1} \Gamma(x,t;y,0)E(y)F(0)dy + \int_0^t \int_{R^1} \Gamma(x,t;y,s)(1 + E(y)F'(Q))Q_t - P_t)dyds.
\]

Hence

\[
|P_t(x,t)| \leq C_1 F(0) + \tilde{C} t + \int_0^t \max_x |P_t(x,s)|ds, \quad (t \leq 1)
\]

where \(\tilde{C} = \max_{x,0 \leq t \leq 1}(1 + E(x)F'(Q(x,s)))|Q_t(x,t)| < \infty \) by (4.5). Gronwall's inequality then gives

\[
\max_x |P_t(x,t)| \leq (C_1 + \tilde{C}) e^t \leq C \quad (t \leq 1).
\]

Using (4.5) and (4.7) in (4.6), we obtain

\[
P_t(x,t) \geq C_2 F(0) - Ct > 0
\]

in \(R^1 \times [0, \delta] \) for some small \(\delta > 0 \). Since \(Q_t = \int_0^t e^{-(t-s)}P_t(x,s)ds \), we also have \(Q_t(x,t) > 0 \).

On the other hand, by the assumption (4.4):

\[
P_{tt} - P_{xxx} + P_t = (1 + E(x)F'(Q))Q_t \geq 0
\]

as long as \(Q_t \geq 0 \). The argument used in the proof of Lemma 2.2 now shows that \(P_t > 0 \), and \(Q_t > 0 \) in \(R^1 \times [0, \infty) \).

Lemma 4.2 Under the same assumptions of Lemma 4.1, we have

\[
P(x,t) < M, \ Q(x,t) < M \text{ in } R^1 \times [0, \infty).
\]
Proof. By Lemma 2.3, there is a $\delta > 0$, such that

$$P(x, t) < M \text{ in } R^1 \times [0, \delta).$$

Let $\bar{P} = M - P(x, t)$, $\bar{Q} = M - Q(x, t)$, then

$$\bar{P} > 0 \quad \bar{Q} > 0 \quad \text{in } R^1 \times [0, \delta].$$

From (1.1)

$$\bar{P}_t - \bar{P}_{xx} = -E(x)F(\bar{Q}) - \bar{P} + \bar{Q}.$$

Since $F'(M) = 0$,

$$F(\bar{Q}) = \int_0^1 F'(M + s(Q - M))ds(Q - M)$$

so that

$$\bar{P}_t - \bar{P}_{xx} + \bar{P} = [1 + E(x) \int_0^1 F'(M + s(Q - M))ds]\bar{Q} \geq 0$$

as long as $\bar{Q} \geq 0$. The same argument as before shows that $\bar{P} \geq 0, \bar{Q} \geq 0$.

Now we are in a position to state:

Theorem 4.3 If F satisfies (4.1) and (4.4), then for any $x \in R^1$

$$P(x, t) \to M \quad Q(x, t) \to M \quad \text{as } t \to \infty.$$

Proof. By Lemma 4.1, the limits $\lim_{t \to \infty} P(x, t) \triangleq \bar{P}(x), \lim_{t \to \infty} Q(x, t) \triangleq \bar{Q}(x)$ exist. By Lemma 4.2, $\bar{P}(x) \leq M, \bar{Q}(x) \leq M$.

Integrating $Q_t = P - Q$ over $(t - 1, t)$, we get

$$Q(x, t) - Q(x, t-1) = P(x, t) - Q(x, t) + \int_{t-1}^t (P(x, s) - P(x, t))ds - \int_{t-1}^t (Q(x, s) - Q(x, t))ds.$$

Letting $t \to \infty$, we obtain

$$\bar{P}(x) - \bar{Q}(x) = 0. \quad (4.8)$$

Let $\xi(x) \in C_0^\infty (R^1)$. We multiply $P_t - P_{xx} = E(x)F(\bar{Q}) - P + Q$ by ξ, then integrate over $R^1 \times (t - 1, t)$, and finally let $t \to \infty$ to get

$$- \int_{R^1} \bar{P}(x)\xi''(x) = \int E(x)F(\bar{P}(x))dx. \quad (4.9)$$

This means that $\bar{P}(x)$ is a solution of

$$\bar{P}'' + E(x)F(\bar{P}) = 0. \quad (4.10)$$

and, in particular, $\bar{P}'' \leq 0$. But the function satisfying $0 \leq \bar{P} \leq M, \bar{P}'' \leq 0$ is clearly a constant and since \bar{P} satisfies (4.10), this constant must be equal to M. This proves the assertions of the theorem.
Remark 4.4 We conjecture that Theorem 4.3 is not true without assumption (4.4), as the following example suggests. Let

$$F(u) = \begin{cases} M - u & \text{if } u \leq M \\ 0 & \text{otherwise.} \end{cases}$$

Consider the system

$$\begin{align*}
p' &= K F(q) - p + q, \\
q' &= p - q, \\
p(0) &= q(0) = 0,
\end{align*}$$

where $K > 1$. This system corresponds to (1.1)-(1.4) with $E(x) \equiv K$, and certainly (4.4) is violated. Since $q'' = p' - q' = K F(q) - 2q'$ and $q'(0) = 0$, we see that $q'(t) = \int_0^t e^{-(t-s)} K F(q(s))ds > 0$ for any $t > 0$. Noting that $q'' = K(M - q) - 2q'$ for $q \leq M$, we can solve this linear ODE with initial conditions: $q(0) = q'(0) = 0$. From the resulting expression for q, we see that $q(t_0) = M$ for some $t_0 > 0$. Since $q' > 0$, we conclude that $\lim_{t \to \infty} q(t) > M$. Hence the conclusions of Theorem 4.3 are not true in this case.

Now we turn to the remaining cases (4.2) and (4.3). We shall first consider the system

$$\begin{align*}
p' &= K F(q) - p + q, \\
q' &= p - q, \\
p(0) &= q(0) = 0
\end{align*}$$

where K is a positive constant and F satisfies either (4.2) or (4.3). By Theorem 2.4, there exists a unique positive global solution of (4.11)-(4.13).

Lemma 4.5 If F satisfies either (4.2) or (4.3), then there exist positive constants c, C and t_0 such that

$$0 < q' \leq C \quad \text{for any } t \in R^+, \quad |p'| \leq C \quad \text{for any } t \in R^+.$$ \hspace{1cm} (4.15)

Moreover, if $F(u) \sim u^{-\gamma}$ at ∞ for $\gamma \geq 0$ (If $\gamma = 0$, we shall mean that F satisfies (4.2)), then

$$ct^{1/(1+\gamma)} \leq p(t) \leq C t^{1/(1+\gamma)}, \quad ct^{1/(1+\gamma)} \leq q(t) \leq C t^{1/(1+\gamma)}$$

for $t \geq t_0$.

Proof. The same argument of Remark 4.4 shows that $q' > 0$ in R^+. From this we deduce that

$$p' = K F(q) - q' \leq K F(q) \leq K F(0).$$

This, in turn, implies

$$q'(t) = \int_0^t e^{-(t-s)} p'(s)ds \leq K F(0),$$

and $p' = K F(q) - q' \geq -q' \geq -K F(0)$. We have thus proved (4.15).

Next we show that $q(t) \to \infty$ as $t \to \infty$. Suppose this is not true, i.e.

$$0 < q(t) \leq M < \infty \quad \text{for any } t.$$ \hspace{1cm} (4.17)
Integrating \(q'' = p' - q' = KF(q) - 2q'(t) \) over \((0, t)\), we get

\[
q'(t) + 2q(t) = K \int_0^t F(q(s)) ds.
\]

(4.18)

Since \(F(q(s)) \geq F(M) \), we see that the RHS of (4.18) is larger than \(KF(M)t \), whereas the LHS of (4.18) is less than \(KF(0) + 2M \) by (4.15) and (4.17). This is a contradiction if \(t \) is large.

Now integrating \(q''/F(q) = K - 2q'/F(q) \) over \((0, t)\), and using integration by parts, we obtain

\[
\int_0^{q(t)} \frac{1}{F(s)} ds = \frac{K}{2} t - \frac{q'(t)}{2F(q(t))} - \int_0^t \frac{F''(q)}{F^2(q)} q'^2 ds
\]

\[
\geq \frac{K}{2} t - \frac{q'(t)}{2F(q(t))} \quad \text{(since } F' \leq 0\text{)}
\]

\[
\geq \frac{K}{2} t - \frac{C}{F(q(t))} \quad \text{(since } 0 < q' \leq KF(0)\text{)}.
\]

Since \(q(t) \to \infty \) as \(t \to \infty \), we conclude from the above that

\[
\frac{K}{2} t \leq \frac{C}{F(q(t))} + \int_0^{q(t)} \frac{1}{F(s)} ds
\]

\[
\leq Cq(t) + Cq(t)^{1+\gamma}
\]

\[
\leq Cq(t)^{1+\gamma},
\]

provided \(t \) is large. This gives \(q(t) \geq ct^{1/(1+\gamma)} \). Next integrating \(q'' = KF(q) - 2q' \) over \((0, t)\), and applying the result we just proved, we get

\[
q(t) = \frac{K}{2} \int_0^t F(q(s)) ds - \frac{q'(t)}{2}
\]

\[
\leq C \int_0^t \frac{1}{q(s)^\gamma} ds + C
\]

\[
\leq C \int_0^t s^{-\gamma/(1+\gamma)} ds + C
\]

\[
\leq Ct^{1+\gamma}
\]

provided \(t \) is large. Since \(p(t)/q(t) = q'(t)/q(t) + 1 \), and \(q(t) \to \infty \) while \(q' \) remains bounded, we see that \(p(t)/q(t) \to 1 \) as \(t \to \infty \). Hence all the estimates for \(q \) hold for \(p \) as well. The proof is complete.

Lemma 4.6 If \(F(u) \sim u^{-\gamma} \) at \(\infty (\gamma \geq 0) \), then

\[
p_1(t) \leq P(x, t) \leq p_2(t),
\]

\[
q_1(t) \leq Q(x, t) \leq q_2(t),
\]

10
where \((p_i, q_i)\) is a solution of (4.12)-(4.14) with \(K = K_i\), and \(K_1\) is sufficiently small while \(K_2\) is sufficiently large.

Combining Lemma 4.5 and Lemma 4.6, we obtain

Corollary 4.7 Under the same assumptions of Lemma 4.6, we can find positive constants \(c, C\) and \(t_0\), such that

\[
c t^{1/(1+\gamma)} \leq P(x, t) \leq C t^{1/(1+\gamma)},
\]

\[
c t^{1/(1+\gamma)} \leq Q(x, t) \leq C t^{1/(1+\gamma)},
\]

for all \(x \in R^1\) and \(t \geq t_0\).

Proof of Lemma 4.6. Let \(u_i = P - p_i, v_i = Q - q_i\). It is easy to see that

\[
u_{it} - u_{ixx} + u_i = E(x)F(Q) - K_i F(q_i) + v_i \Delta J_i(x, t) \tag{4.19}
\]

\[v_{it} = u_i - v_i\]

\[u_i(x, 0) = v_i(x, 0) = 0.\]

Representing the solution \(u_i\) of (4.19) with \(u_i(x, 0) = 0\), in terms of the fundamental solution, we get that for \(t\) small

\[
u_1(x, t) = \int_0^t \int_{R^1} \Gamma(x, t; y, s)[E(y)F(Q(y, s)) - K_1 F(q_1(s)) + v_1(y, s) - u_1(y, s)]dyds
\]

\[\geq \int_0^t \int_{R^1} \Gamma(x, t; y, s)[\frac{E(y) - 2K_1}{2} F(0) - C_s]dyds
\]

\[\geq \int_0^t \frac{C_2 - 2K_1}{2} - C_s)ds
\]

\[> 0 \quad \text{if } K_1 < \frac{C_2}{2}.
\]

Hence also

\[v_1(x, t) = \int_0^t e^{-(t-s)}u_1(x, s)ds > 0 \tag{4.20}
\]

for \(t\) small. Using mean value theorem, we see that

\[J_1 = (E(x) - K_1) F(Q) + [1 + K_1 F'(\lambda Q + (1 - \lambda)q)](Q - q) \geq 0 \quad \text{(for some } \lambda, 0 < \lambda < 1)\]

as long as \(Q - q = v_1 \geq 0\) and \(K_1\) is sufficiently small. Now we use the maximum principle to argue as same as in the proof of Lemma 2.2 to deduce that \(u_1(x, t) > 0, v_1(x, t) > 0\) in \(R^1 \times (0, \infty)\).

Next we consider \(u_2(x, t), v_2(x, t)\). The same argument as in proving (4.20) shows that \(u_2(x, t) < 0, v_2(x, t) < 0\) in \(R^1 \times (0, \delta]\) for some \(\delta > 0\), provided \(K_2\) is sufficiently large. We shall next show that

\[J_2(x, t) \leq 0 \quad \text{in } R^1 \times [0, \infty) \tag{4.21}
\]

as long as \(v_2(x, t) \leq 0\). Hence the maximum principle gives that \(u_2(x, t) < 0, v_2(x, t) < 0\) in \(R^1 \times (0, \infty)\).
It remains to verify (4.21). By the assumptions on F, we have that $|F'(u)| \to 0$ as $u \to \infty$. We choose N so large such that $\frac{N}{2} \geq C_1 F(0)$ and $1 + E(x)F'(u) \geq 0$ if $u \geq \frac{N}{2}$. If $q_2 \geq N$, $Q \leq \frac{N}{2}$, then

$$J_2(x, t) \leq E(x)F(0) - \frac{N}{2} \leq 0.$$

If $q_2 \geq N$, $Q \geq \frac{N}{2}$, then

$$J_2(x, t) = (E(x) - K_2)F(q_2) + E(x)(F(Q) - F(q_2)) + Q - q_2$$

$$= (E(x) - K_2)F(q_2) + [1 + E(x)F'(\lambda q_2 + (1 - \lambda)Q)](Q - q_2)$$

$$\leq 0$$

as long as $v_2 = Q - q_2 \leq 0$, because $\lambda q_2 + (1 - \lambda)Q \geq \frac{N}{2}$ implies that $1 + E(x)F'(\lambda q_2 + (1 - \lambda)Q) \geq 0$.

Finally, if $q \leq N$, then

$$J_2(x, t) \leq C_1 F(0) - K_2 F(N) + Q - q_2$$

$$\leq C_1 F(0) - K_2 F(N)$$

$$\leq 0$$

as long as $v_2 = Q - q_2 \leq 0$ and K_2 is sufficiently large. The proof is complete.

Lemma 4.8 Under the same assumptions of Lemma 4.6, we have that

$$|P_t| \leq M$$

$$Q_1 \leq M$$

in $R^1 \times [0, \infty)$.

From (1.1) and (1.2), we then get

Corollary 4.9 $|P_{xx}| \leq C < \infty$, $|Q_{xx}| \leq C < \infty$ in $R^1 \times [0, \infty)$.

Proof of Lemma 4.8. From (4.6), we obtain

$$|P_t(x, t)| \leq C + C \int_0^t \int_{R^1} \Gamma(x, t; y, s)[|P - Q|(y, s) + |P_t|(y, s)]dyds$$

$$\leq C + C \int_0^t se^{Cs}ds + \int_0^t \max_x |P_t(x, s)ds$$

(b) by Lemma 2.3).

Gronwall inequality then gives

$$\max_x |P_t(x, t)| \leq g(t) \quad (4.22)$$

where $g(t)$ is a positive increasing function. Let $u = P_t - M$, $v = Q_t - M$. It is easy to see that

$$u_t - u_{xx} + u = (1 + E(x)F'(Q))u + ME(x)F'(Q)$$

$$v_t = u - v. \quad (4.23)$$

$$v_t = u - v. \quad (4.24)$$
By Corollary 4.7 and the fact that $F'(u) \to 0$ as $u \to \infty$, we can find a \tilde{t}, such that

$1 + E(x)F'(Q(x, t)) \geq 0 \quad \text{in} \quad R^1 \times [\tilde{t}, \infty).$

By (4.22), we can choose M so large such that

$$
\begin{align*}
 u &< 0 \\
v &< 0
\end{align*}
$$

in $R^1 \times [0, \tilde{t}]$.

We shall show that $u < 0$, $v < 0$ in $R^1 \times [0, \infty)$. If they are not true, then the argument as in the proof of Lemma 2.2, shows that there exists a point (x_0, t_0), such that

$$
\begin{align*}
 u &< 0 \\
v &< 0
\end{align*}
$$

in $R^1 \times [0, t_0)$

and $u(x_0, t_0) = 0$. Obviously, $\tilde{t} < t_0$. Hence we see that the RHS of (4.23) is nonpositive in $R^1 \times [\tilde{t}, t_0)$. The maximum principle implies that $u \equiv 0$ in the strip $R^1 \times [\tilde{t}, t_0)$, which is a contradiction. This proves our assertions. Similarly, we can prove $P_t + M \geq 0$, $Q_t + M \geq 0$ in $R^1 \times [0, \infty)$. The proof is complete.

Theorem 4.10 If F satisfies (4.2), then

$$
\lim_{t \to \infty} \frac{P(x, t)}{t} = \frac{C_1 + C_2}{4} \beta, \quad \lim_{t \to \infty} \frac{Q(x, t)}{t} = \frac{C_1 + C_2}{4} \beta \quad \text{uniformly in } x \text{ as } t \to \infty.
$$

Proof. From (1.1) and (1.2)

$$(P + Q)_t - \frac{1}{2}(P + Q)_{xx} = E(x)F(Q) + \frac{1}{2}(P - Q)_{xx}. $$

Making a change of variables: $y = \sqrt{2}x$, $w = P + Q$, we get

$$
w_t - w_{yy} = E(y)F(Q) + (P - Q)_{yy}. \quad (4.25)
$$

Also

$$w(y, 0) = 0.$$

Representing w in terms of the fundamental solution, we have

$$w(y, t) = \int_0^t \int_{R^1} \Gamma(y, t; z, s)E(z)F(Q(z, s))dzds + \int_0^t \int_{R^1} \Gamma(y, t; z, s)(P - Q)_{zz}(z, s)dzds \triangleq I_1 + I_2. \quad (4.26)
$$

Since by Corollary 4.7, $F(Q(y, t)) \to \beta$ uniformly in y as $t \to \infty$, we can get

$$
\begin{align*}
 \frac{I_1}{t} &= \frac{1}{t} \int_0^t \int_{R^1} \frac{1}{\sqrt{2\pi}}e^{-u^2/2}E(y + \sqrt{2(t-s)}u)F(Q(y + \sqrt{2(t-s)}u, s))dsdu \\
 &= \int_{R^1} \frac{1}{\sqrt{2\pi}}e^{-u^2/2}du \int_0^t E(y + \sqrt{2t(1-v)}u)F(Q(y + \sqrt{2t(1-v)}u, tv))dv \\
 &\to \int_0^\infty \frac{1}{\sqrt{2\pi}}e^{-u^2/2}C_1 \beta du + \int_0^0 \frac{1}{\sqrt{2\pi}}e^{-u^2/2}C_2 \beta du \\
 &= \frac{C_1 + C_2}{2} \beta \quad \text{uniformly in } y \text{ as } t \to \infty. \quad (4.27)
\end{align*}
$$
We turn to the estimate of I_2. Write
\[
I_2 = \int_0^{t-1} \int_{\mathbb{R}^1} \Gamma(y, t; z, s)(P - Q)_{zz}(z, s) dz ds + \int_t^{t-1} \int_{\mathbb{R}^1} \Gamma(y, t; z, s)(P - Q)_{zz}(z, s) dz ds \\
\overset{\triangle}{=} J_1 + J_2.
\]

By Corollary 4.9,
\[
\frac{|J_2|}{t} \leq \frac{C}{t} \int_{t-1}^{t} ds = \frac{C}{t}.
\]

As to J_1, using integrations by parts, and noting that boundary terms disappear because $(P - Q)_y$ and $(P - Q)$ are bounded in y at ∞, we obtain
\[
\frac{|J_1|}{t} \leq \frac{C}{t} \int_0^{t-1} \int_{\mathbb{R}^1} \Gamma(y, t; z, s)|P - Q| dz ds \\
\leq \frac{C}{t} \int_0^{t-1} \int_{\mathbb{R}^1} \frac{1}{t - s} + \frac{(y - z)^2}{(t - s)^2} |Q_t(z, s)| dz ds \\
\leq \frac{C}{t} \int_0^{t-1} \frac{1}{t - s} ds \\
= \frac{C \log t}{t} \to 0, \quad \text{as } t \to \infty.
\]

From (4.26)-(4.27), and the estimates on the J_i, we conclude that
\[
\frac{w(y, t)}{t} \to \frac{C_1 + C_2}{2} \beta \quad \text{uniformly in } y \text{ as } t \to \infty. \quad (4.28)
\]

Noting that $Q_t = P - Q$, and Q_t is bounded whereas $Q(x, t) \to \infty$ as $t \to \infty$, we get
\[
\frac{P(x, t)}{Q(x, t)} = 1 + \frac{Q_t(x, t)}{Q(x, t)} \to 1 \quad \text{uniformly in } x \text{ as } t \to \infty. \quad (4.29)
\]

Combining (4.28) and (4.29), we obtain the assertions of the theorem.

§5 Large Time Behavior(Continued)

In this section, we consider the case (4.3); more specifically, we shall assume that
\[
\begin{cases}
F(u)u^\gamma \to \beta > 0 \\
-F'(u)u^{\gamma+1} \to \gamma \beta > 0
\end{cases} \quad \text{as } u \to \infty. \quad (5.1)
\]

We shall study the large time behavior of $w \equiv P + Q$. It will be convenient to rewrite (4.25) as
\[
\begin{align*}
\frac{w_t - w_y}{\gamma} &= 2\gamma E(y)F(w) + E(y)F(w)(\frac{F_2}{F(w)} - 2\gamma) + (P - Q)_{yy} \\
&\overset{\triangle}{=} 2\gamma E(y)F(w) + f_1(y, t) + f_2(y, t).
\end{align*}
\]

14
Consider the solution of
\begin{align}
\begin{cases}
u_t - u_{yy} = 2^\gamma F(y)F(w) \\
u(y, 0) = 0.
\end{cases}
\end{align}
(5.2)

Lemma 5.1 The function u satisfies
\begin{align}
\frac{|u - w|_{L^{\infty}(R^1)}(t)}{t^{1/(1+\gamma)}} \to 0 \quad \text{as } t \to \infty,
\end{align}
(5.3)
and consequently
\begin{align}
ct^{1+\frac{1}{\gamma}} \leq u(y, t) \leq Ct^{1+\frac{1}{\gamma}}
\end{align}
(5.4)
for all $y \in R^1$ and $t \geq N$, N a large constant.

Proof. It is clear that $u - w = I_1 + I_2$ where
\begin{align}
I_i(y, t) = \int_0^t \int_{R^1} \Gamma(y, t; z, s)f_i(z, s)dzds, \quad i = 1, 2.
\end{align}

I_2 is the same in the proof of Theorem 4.10 so that $I_2(y, t)/t^{1/(1+\gamma)} \to 0$ uniformly in y as $t \to \infty$. To complete the proof of (5.3), it remains to show that $I_1(y, t)/t^{1/(1+\gamma)} \to 0$ uniformly in y as $t \to \infty$. Noting that
\begin{align}
h(t) \triangleq \max_y \left| \frac{F(Q)}{F(w)} - 2^\gamma \right| \to 0 \quad \text{as } t \to \infty
\end{align}
by (4.29) and (5.1), we get
\begin{align}
|I_1(y, t)|/t^{1/(1+\gamma)} &\leq \frac{1}{t^{1/(1+\gamma)}} \int_0^t \int_{R^1} \Gamma(y, t; z, s)F(w)w^\gamma \left| \frac{F(Q)}{F(w)} - 2^\gamma \right| dzds \\
&\leq \frac{C}{t^{1/(1+\gamma)}} \int_0^t h(s) s^{-\gamma/(1+\gamma)} ds \quad \text{(by Lemma 5.1)} \\
&= C \int_0^1 \frac{h(tv)}{v^{\gamma/(1+\gamma)}} dv \to 0 \quad \text{as } t \to \infty.
\end{align}
From (5.3) and Corollary 4.7, (5.4) follows.

Next we prove

Lemma 5.3 There exist positive constants C and t_0 such that
\begin{align}
|u_y(y, t)| \leq Ct^{1+\frac{1}{\gamma}-\frac{1}{2}}
\end{align}
for all $y \in R^1$ and $t \geq t_0$.

Proof. Representing u in terms of the fundamental solution, we have
\begin{align}
u(y, t) = \int_0^t \int_{R^1} \Gamma(y, t; z, s)2^\gamma E(z)F(w(z, s))dzds.
\end{align}
Differentiating the above equation in \(y \) and using Corollary 4.7, we see that

\[
|u_y(y, t)| \leq C \int_0^t \int_{R^1} \Gamma(y, t; z, s) \frac{|x - y|}{(t-s)w^\gamma(z, s)}dzds
\leq C \int_0^t \frac{1}{(t-s)^{1/2}w^{\gamma/(1+\gamma)}}ds
\leq Ct^{1+\gamma - \frac{1}{2}}.
\]

To study the large time behavior of \(u \), we shall introduce the scaled function \(u_\alpha(y, t) = u(a + \alpha y, \alpha^2 t)/\alpha^{1+\gamma} \) for any \(a \in R^1 \) and \(\alpha > 0 \). Then

\[
\begin{align*}
 u_{\alpha t} - u_{\alpha yy} &= 2\gamma \alpha^{1+\gamma} E(a + \alpha y)F(w) \\
 &= \frac{2\gamma E(a + \alpha y)}{u_\alpha^2} F(u)u' + 2\gamma E(a + \alpha y)\alpha^{2\gamma}(F(w) - F(u)) \\
 \triangleq g_{1\alpha} + g_{2\alpha}.
\end{align*}
\]

(5.5)

In the above expressions, all functions are evaluated at \((a + \alpha y, \alpha^2 t)\). Using the assumption (5.1) and (5.3), we obtain

\[
|g_{2\alpha}(y, t)| \leq C\alpha^{2\gamma} |F'(\lambda u + (1 - \lambda)w)||u - w| \quad (0 < \lambda < 1)
\leq C\frac{1}{\alpha^{1+\gamma}} |u - w|_{L^\infty(R^1)(\alpha^2 t)} \rightarrow 0 \quad \text{as } \alpha \rightarrow \infty, \text{ for any } t > 0; \quad (5.6)
\]

here, as before, all functions are evaluated at \((a + \alpha y, \alpha^2 t)\). Note that, by (5.4),

\[
ct^{1+\gamma} \leq u_\alpha(y, t) \leq Ct_0^{1+\gamma} \quad \text{for } \alpha \text{ sufficiently large.} \quad (5.7)
\]

We next estimate \(g_{1\alpha}(y, t) \) as follows.

If \(\alpha^2 \leq N \), \(N \) is the constant in (5.4), then

\[
g_{1\alpha}(y, t) \leq C\alpha^{2\gamma} \leq C \frac{1}{t^{\gamma/(1+\gamma)}}.
\]

If \(\alpha^2 t \geq N \), then by (5.7)

\[
g_{1\alpha}(y, t) \leq \frac{C}{u_\alpha^2(y, t)} \leq \frac{C}{t^{\gamma/(1+\gamma)}}.
\]

We conclude that

\[
g_{1\alpha}(y, t) \leq \frac{C}{t^{\gamma/(1+\gamma)}} \quad \text{for any } \alpha, t. \quad (5.8)
\]

From (5.6) and (5.8), we see that the RHS of (5.5) is bounded in any compact subset \(K \subset R^1 \times (0, \infty) \). Applying \(L^p \)-estimates, we get \(|u_\alpha|_{W_0^{1,2}(K)} \leq C < \infty \). By Sobolev imbedding
theorem, we can find a sequence $\alpha_n \to \infty$, such that $u_{\alpha_n}(y, t) \to \bar{u}(y, t)$ uniformly in K as $\alpha_n \to \infty$, for some function \bar{u}. By a diagonal argument, we may assume that

$$u_{\alpha_n}(y, t) \to \bar{u}(y, t) \quad \text{in} \quad R^1 \times (0, \infty). \quad (5.9)$$

By (5.7), we have

$$ct^{1/(1+\gamma)} \leq \bar{u}(y, t) \leq Ct^{1/(1+\gamma)} \quad \text{for any} \ t > 0.$$

Since $u_{\alpha_n}(y, 0) = 0$, we can represent u_{α_n} in terms of the fundamental solution to get

$$u_{\alpha_n}(y, t) = \int_0^t \int_{R^1} \Gamma(y, t; z, s)g_{1\alpha_n}(z, s)dzds + \int_0^t \int_{R^1} \Gamma(y, t; z, s)g_{2\alpha_n}(z, s)dzds.$$

Letting $\alpha_n \to \infty$, we see that (by (5.6) and (5.9))

$$\bar{u}(y, t) = \int_0^t \int_{R^1} \Gamma(y, t; z, s)2^{\gamma} \beta \frac{E(z)}{u^{-\gamma}(z, s)}dzds; \quad (5.10)$$

i.e.

$$\begin{cases}
\bar{u}_t - \bar{u}_{yy} = 2^{\gamma} \beta E(y)/\bar{u}^{-\gamma} \quad \text{in} \quad R^1 \times (0, \infty) \\
\bar{u}(y, 0) = 0 \\
ct^{1/(1+\gamma)} \leq \bar{u}(y, t) \leq Ct^{1/(1+\gamma)}.
\end{cases} \quad (5.11)$$

Lemma 5.3 The solution of (5.11) is unique.

Proof. Suppose u_1, u_2 are the two solutions of (5.11). Setting $v = u_1 - u_2$, we have

$$v_t - v_{yy} + g(y, t)v = 0 \quad \text{in} \quad R^1 \times (0, \infty)$$

where $g(y, t) = 2^{\gamma} \beta E(y)\gamma[\lambda u_1(y, t) + (1 - \lambda)u_2(y, t)]^{\gamma - 1}/u_1^\gamma(y, t)u_2^\gamma(y, t) \geq 0$ (for some λ, $0 < \lambda < 1$). Set $v_\epsilon = v + \epsilon$. From the third equation of (5.13), we see that $v_\epsilon > 0$ in $R^1 \times [0, \delta]$ for some $\delta > 0$. Since

$$v_{\epsilon t} - v_{\epsilon yy} + g(y, t)v_\epsilon = \epsilon g(y, t) \geq 0,$$

the maximum principle gives us that $v_\epsilon > 0$ in $R^1 \times [0, \infty)$. Letting $\epsilon \to 0$, we deduce that $v \geq 0$. Similarly, we can prove that $v \leq 0$. Hence $v \equiv 0$.

By Lemma 5.3, we conclude that

$$u_\alpha(y, t) \to \bar{u}(y, t) \quad \text{as} \ \alpha \to \infty.$$

For $\alpha > 0$, $\bar{\alpha} > 0$, we have that

$$u_{\alpha \bar{\alpha}}(y, t) \to \bar{u}(y, t) \quad \text{as} \ \alpha \to \infty.$$

On the other hand

$$u_{\alpha \bar{\alpha}}(y, t) = \frac{1}{\bar{\alpha}^{1+\gamma}} u_\alpha(\bar{\alpha}y, \bar{\alpha}^2t) \to \frac{1}{\bar{\alpha}^{1+\gamma}} \bar{u}(\bar{\alpha}y, \bar{\alpha}^2t) \quad \text{as} \ \alpha \to \infty.$$

17
Therefore,
\[\tilde{u}(y, t) = \frac{1}{\tilde{\alpha}^{1+\gamma}} \tilde{u}(\tilde{\alpha}y, \tilde{\alpha}^2 t). \]

Let \(\tilde{\alpha} = \frac{1}{\sqrt{t}} \), we see that \(\tilde{u}(y, t) \) must have the form:
\[\tilde{u}(y, t) = t^{\frac{1}{2+\gamma}} g\left(\frac{y}{\sqrt{t}}\right). \] (5.12)

It is easy to see that \(g \) must satisfy:
\[g''(x) + \frac{x}{2} g'(x) = \frac{1}{1+\gamma} g - 2\gamma \beta \frac{E(x)}{g^\gamma}. \] (5.13)

Set \(f(t) = \lim_{y \to \infty} \tilde{u}(y, t) \). Then rewrite (5.10) as
\[\tilde{u}(y, t) = \int_0^t \int_{R^2} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} 2\gamma \beta \frac{E(y + \sqrt{2(t-s)u})}{\tilde{u}(y + \sqrt{2(t-s)u}, s)} du ds. \]

Letting \(y \to \infty \), we see that
\[f(t) = \int_0^t \frac{2\gamma \beta C_2}{f^\gamma(s)} ds; \]
i.e.
\[f' = \frac{2\gamma \beta C_2}{f^\gamma}, \quad f(0) = 0. \]

Hence \(f(t) = (2\gamma \beta C_2)^{\frac{1}{1+\gamma}} t^{\frac{1}{1+\gamma}} \). Comparing with (5.12), we see that
\[\lim_{y \to \infty} g(y) = (2\gamma \beta C_2)^{\frac{1}{1+\gamma}}. \] (5.14)

Similarly,
\[\lim_{y \to -\infty} g(y) = (2\gamma \beta C_1)^{\frac{1}{1+\gamma}}. \] (5.15)

Since \(\tilde{u} \) is unique, the solution of (5.13)-(5.15) is also unique. From the relation \(u_\alpha(0, t) \to t^{\frac{1}{1+\gamma}} g(0) \), we see that
\[\frac{u(a, \alpha^2 t)}{\alpha^{2/(1+\gamma)}} \to t^{\frac{1}{1+\gamma}} g(0) \quad \text{as} \quad \alpha \to \infty. \]

In particular,
\[\frac{u(0, t)}{t^{1/(1+\gamma)}} \to g(0) \quad \text{as} \quad t \to \infty. \]

Using Lemma 5.2, we get that for any \(y \in [-M, M] \)
\[\frac{|u(y, t) - u(0, t)|}{t^{1/(1+\gamma)}} \leq \frac{|u_y(\lambda y, t)||y|}{t^{1/(1+\gamma)}} \leq \frac{CM}{\sqrt{t}}. \]
We conclude that for any $M > 0$

$$\frac{u(y,t)}{t^{1/(1+\gamma)}} \longrightarrow g(0) \quad \text{uniformly in } y \in [-M, M] \text{ as } t \to \infty.$$

Using (5.3) and the fact that $w = P + Q$, we have established

Theorem 5.4 If F satisfies the assumption (5.1), then for any $M > 0$

$$\lim_{t \to \infty} \frac{P(x,t)}{t^{1+\gamma}} = \lim_{t \to \infty} \frac{Q(x,t)}{t^{1+\gamma}} = \frac{1}{2} g(0),$$

uniformly in $x \in [-M, M]$; here g is the unique solution of (5.13)-(5.15).

Acknowledgement. I am grateful to Dr. David S. Ross from Eastman Kodak company who introduce the problem to us at an IMA industrial problem seminar; I would also thank Professor Avner Friedman for several stimulating conversations.

References

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>495</td>
<td>Lucas Hsu, Niky Kamran and Peter J. Olver,</td>
<td>Equivalence of Higher Order Lagrangians</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II. The Cartan Form for Particle Lagrangians</td>
</tr>
<tr>
<td>496</td>
<td>D.J. Kaup and Peter J. Olver,</td>
<td>Quantization of BiHamiltonian Systems</td>
</tr>
<tr>
<td>497</td>
<td>Metin Arik, Fahrunisa Neyzi, Yavuz Nutku, Peter J. Olver and John M.</td>
<td>Verosky Multi-Hamiltonian Structure of the Born-Infeld Equation</td>
</tr>
<tr>
<td>498</td>
<td>David H. Wagner,</td>
<td>Detonation Waves and Deflagration Waves in the One Dimensional ZND Model for High Mach Number Combustion</td>
</tr>
<tr>
<td>499</td>
<td>Jerrold R. Griggs and Daniel J. Kleitman,</td>
<td>Minimum Cutsets for an Element of a Boolean Lattice</td>
</tr>
<tr>
<td>500</td>
<td>Dieter Jungnickel,</td>
<td>On Affine Difference Sets</td>
</tr>
<tr>
<td>501</td>
<td>Pierre Leroux,</td>
<td>Reduced Matrices and q-log Concavity Properties of q-Stirling Numbers</td>
</tr>
<tr>
<td>502</td>
<td>A. Narain and Y. Kizilyalli,</td>
<td>The Flow of Pure Vapor Undergoing Film Condensation Between Parallel Plates</td>
</tr>
<tr>
<td>503</td>
<td>Donald A. French,</td>
<td>On the Convergence of Finite Element Approximations of a Relaxed Variational Problem</td>
</tr>
<tr>
<td>504</td>
<td>Yisong Yang,</td>
<td>Computation, Dimensionality, and Zero Dissipation Limit of the Ginzburg-Landau Wave Equation</td>
</tr>
<tr>
<td>505</td>
<td>Jürgen Spreckels,</td>
<td>One-Dimensional Thermomechanical Phase Transitions with Non-Convex Potentials of Ginzburg-Landau Type</td>
</tr>
<tr>
<td>506</td>
<td>Yisong Yang,</td>
<td>A Note On Nonabelian Vortices</td>
</tr>
<tr>
<td>507</td>
<td>Yisong Yang,</td>
<td>On the Abelian Higgs Models with Sources</td>
</tr>
<tr>
<td>508</td>
<td>Ch'yan. C. Lin,</td>
<td>Existence of Kam Tori in the Phase Space of Vortex Systems</td>
</tr>
<tr>
<td>509</td>
<td>John Weiss,</td>
<td>Bäcklund Transformations and the Painlevé Property</td>
</tr>
<tr>
<td>510</td>
<td>Pu Fu-cho and D.H. Sattinger,</td>
<td>The Yang-Baxter Equation for Integrable Systems</td>
</tr>
<tr>
<td>511</td>
<td>E. Bruce Pitman and David G. Schaeffer,</td>
<td>Instability and Ill-Posedness in Granular Flow</td>
</tr>
<tr>
<td>512</td>
<td>Brian A. Coomes,</td>
<td>Polynomial Flows on C*-</td>
</tr>
<tr>
<td>514</td>
<td>Peter J. Olver,</td>
<td>Invariant Theory, Equivalence Problems, and the Calculus of Variations</td>
</tr>
<tr>
<td>515</td>
<td>Daniel D. Joseph and Thomas S. Lundgren with an appendix by R. Jackson and D.A. Saville</td>
<td>Ensemble Averaged and Mixture Theory Equations</td>
</tr>
<tr>
<td>516</td>
<td>P. Singh, Ph. Caussignac, A. Fortes, D.D. Joseph and T. Lundgren,</td>
<td>Stability of Periodic Arrays of Cylinders Across the Stream by Direct Simulation</td>
</tr>
<tr>
<td>517</td>
<td>Daniel D. Joseph,</td>
<td>Generalization of the Foscolo-Gibalaro Analysis of Dynamic Waves</td>
</tr>
<tr>
<td>518</td>
<td>A. Narain and D.D. Joseph,</td>
<td>Note on the Balance of Energy at a Phase Change Interface</td>
</tr>
<tr>
<td>519</td>
<td>Daniel D. Joseph,</td>
<td>Remarks on inertial radii, persistent normal stresses, secondary motions, and non-elastic extensional viscosities</td>
</tr>
<tr>
<td>520</td>
<td>D. D. Joseph,</td>
<td>Mathematical Problems Associated with the Elasticity of Liquids</td>
</tr>
<tr>
<td>521</td>
<td>Henry C. Simpson and Scott J. Spector,</td>
<td>Some Necessary Conditions at an Internal Boundary for Minimizers in Finite Elasticity</td>
</tr>
<tr>
<td>522</td>
<td>Peter Gritzmann and Victor Klee,</td>
<td>On the 0-1 Maximization of Positive Definite Quadratic Forms</td>
</tr>
<tr>
<td>523</td>
<td>Fu-Cha Pu and D.H. Sattinger,</td>
<td>The Yang-Baxter Equations and Differential Identities</td>
</tr>
<tr>
<td>524</td>
<td>Avner Friedman and Fernando Reitich,</td>
<td>A Hyperbolic Inverse Problem Arising in the Evolution of Combustion Aerosol</td>
</tr>
<tr>
<td>525</td>
<td>E.G. Kahnins, Raphael D. Levine and Willard Miller, Jr.,</td>
<td>Conformal Symmetries and Generalized Recurrences for Heat and Schrödinger Equations in One Spatial Dimension</td>
</tr>
<tr>
<td>526</td>
<td>Wang Jinghua and Gerald Warnecke,</td>
<td>On Entropy Consistency of Large Time Step Godunov and Glimm Schemes</td>
</tr>
<tr>
<td>527</td>
<td>C. Guillopé and J.C. Saut,</td>
<td>Existence Results for the Flow of Viscoelastic Fluids with a Differential Constitutive Law</td>
</tr>
<tr>
<td>528</td>
<td>H.L. Bodlaender, P. Gritzmann, V. Klee and J. Van Leeuwen,</td>
<td>Computational Complexity of Norm-Maximization</td>
</tr>
<tr>
<td>529</td>
<td>Li Ta-tsen (Li Da-qian) and Yu Xin,</td>
<td>Life-Span of Classical Solutions to Fully Nonlinear Wave Equations</td>
</tr>
<tr>
<td>530</td>
<td>Jong-Shenq Guo,</td>
<td>A Variational Inequality Associated with a Lubrication Problem</td>
</tr>
<tr>
<td>531</td>
<td>Jong-Shenq Guo,</td>
<td>On the Semilinear Elliptic Equation $\Delta w - \frac{1}{2} y \cdot \nabla w + \lambda w - w^{-p} = 0$ in \mathbb{R}^n</td>
</tr>
<tr>
<td>532</td>
<td>Andrew E. Yagle,</td>
<td>Inversion of the Bloch transform in magnetic resonance imaging using asymmetric two-component inverse scattering</td>
</tr>
<tr>
<td>#</td>
<td>Author/s</td>
<td>Title</td>
</tr>
<tr>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>Bei Hu, A Fiber Tapering Problem</td>
<td></td>
</tr>
<tr>
<td>534</td>
<td>Peter J. Olver, Canonical Variables for BiHamiltonian Systems</td>
<td></td>
</tr>
<tr>
<td>535</td>
<td>Michael Renardy, A Well-Posed Boundary Value Problem for Supercritical Flow of Viscoelastic Fluids of Maxwell Type</td>
<td></td>
</tr>
<tr>
<td>536</td>
<td>Michael Renardy, Ill-Posedness Resulting from Slip As a Possible Explanation of Melt Fracture</td>
<td></td>
</tr>
<tr>
<td>537</td>
<td>Michael Renardy, Compatibility Conditions at Corners Between Walls and Inflow Boundaries for Fluids of Maxwell Type</td>
<td></td>
</tr>
<tr>
<td>538</td>
<td>Rolf Rees, The Spectrum of Restricted Resolvable Designs with (r = 2)</td>
<td></td>
</tr>
<tr>
<td>539</td>
<td>D. Lewis and J.C. Simo, Nonlinear stability of rotating pseudo-rigid bodies</td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>Robert Hardt and David Kinderlehrer, Variational Principles with Linear Growth</td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>San Yih Lin and Yisong Yang, Computation of Superconductivity in Thin Films</td>
<td></td>
</tr>
<tr>
<td>542</td>
<td>A. Narain, Pressure Driven Flow of Pure Vapor Undergoing Laminar Film Condensation Between Parallel Plates</td>
<td></td>
</tr>
<tr>
<td>543</td>
<td>P.J. Vassiliou, On Local Equivalence for Vector Field Systems</td>
<td></td>
</tr>
<tr>
<td>544</td>
<td>Brian A. Coomes, On Conditions Sufficient for Injectivity of Maps</td>
<td></td>
</tr>
<tr>
<td>545</td>
<td>Yanchun Zhao, A Class of Global Smooth Solutions of the One Dimensional Gas Dynamics System</td>
<td></td>
</tr>
<tr>
<td>546</td>
<td>H. Holden, L. Holden and N.H. Risebro, Some Qualitative Properties of 2 \times 2 Systems of Conservation Laws of Mixed Type</td>
<td></td>
</tr>
<tr>
<td>547</td>
<td>M. Slenrod, Dynamics of Measured Valued Solutions to a Backward-Forward Heat Equation</td>
<td></td>
</tr>
<tr>
<td>548</td>
<td>Avner Friedman and Jürgen Sprekels, Steady States of Austenitic-Martensitic-Domains in the Ginzburg-Landau Theory of Shape Memory Alloys</td>
<td></td>
</tr>
<tr>
<td>549</td>
<td>Avner Friedman and Bei Hu, Degenerate Hamilton-Jacobi-Bellman Equations in a Bounded Domain</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>E.G. Kalnins, Willard Miller, Jr., and M.V. Tratnik, Families of Orthogonal and Biorthogonal Polynomials on the N-Sphere</td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>Heinrich Freistühler, On Compact Linear Degeneracy</td>
<td></td>
</tr>
<tr>
<td>552</td>
<td>Matthew Witten, Quantifying the Concepts of Rate and Acceleration/Deceleration of Aging</td>
<td></td>
</tr>
<tr>
<td>553</td>
<td>J.P. Albert and J.L. Bona, Total Positivity and the Stability of Internal Waves in Stratified Fluids of Finite Depth</td>
<td></td>
</tr>
<tr>
<td>554</td>
<td>Brian Coomes and Victor Zurkowski, Linearization of Polynomial Flows and Spectra of Derivations</td>
<td></td>
</tr>
<tr>
<td>555</td>
<td>Yuriko Renardy, A Couette-Poiseuille Flow of Two Fluids in a Channel</td>
<td></td>
</tr>
<tr>
<td>556</td>
<td>Michael Renardy, Short wave instabilities resulting from memory slip</td>
<td></td>
</tr>
<tr>
<td>557</td>
<td>Daniel D. Joseph and Michael Renardy, Stokes' first problem for linear viscoelastic fluids with finite memory</td>
<td></td>
</tr>
<tr>
<td>558</td>
<td>Xiaxi Ding, Superlinear Conservation Law with Viscosity</td>
<td></td>
</tr>
<tr>
<td>559</td>
<td>J.L. Ericksen, Liquid Crystals with Variable Degree of Orientation</td>
<td></td>
</tr>
<tr>
<td>560</td>
<td>F. Robert Ore, Jr. and Xinfu Chen, Electro-Optic Modulation in an Arbitrary Cross-Section Waveguide</td>
<td></td>
</tr>
<tr>
<td>561</td>
<td>M.V. Tratnik, Multivariable biorthogonal continuous-discrete Wilson and Racah polynomials</td>
<td></td>
</tr>
<tr>
<td>562</td>
<td>Yisong Yang, Existence of Solutions for a Generalized Yang-Mills Theory</td>
<td></td>
</tr>
<tr>
<td>563</td>
<td>Peter Gritzmann, Laurent Habsieger and Victor Klee, Good and Bad Radii of Convex Polygons</td>
<td></td>
</tr>
<tr>
<td>564</td>
<td>Martin Golubitsky, Martin Krupa and Chjan. C. Lim, Time-Reversibility and Particle Sedimentation</td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>G. Yin, Recent Progress in Parallel Stochastic Approximations</td>
<td></td>
</tr>
<tr>
<td>566</td>
<td>G. Yin, On H-Valued SA: Finite Dimensional Approximations</td>
<td></td>
</tr>
<tr>
<td>567</td>
<td>Chien-Cheng Chang, Accurate Evaluation of the Effect of Diffusion and Conductivity in Certain Equations</td>
<td></td>
</tr>
<tr>
<td>568</td>
<td>Chien-Cheng Chang and Ruey-Ling Chern, The Effect of Viscous Diffusion in Discrete Vortex Dynamics for Slightly Viscous Flows</td>
<td></td>
</tr>
<tr>
<td>569</td>
<td>Li Ta-Tsien (Li Da-qian) and Zhao Yan-Chun, Global Existence of Classical Solutions to the Typical Free Boundary Problem for General Quasilinear Hyperbolic Systems and its Applications</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>Thierry Cazenave and Fred B. Weissler, The Structure of Solutions to the Pseudo-Conformally Invariant Nonlinear Schrödinger Equation</td>
<td></td>
</tr>
<tr>
<td>571</td>
<td>Marshall Slemrod and Athanasios E. Tzavaras, A Limiting Viscosity Approach for the Riemann Problem in Isentropic Gas Dynamics</td>
<td></td>
</tr>
<tr>
<td>573</td>
<td>P.J. Vassiliou, On the Geometry of Semi-Linear Hyperbolic Partial Differential Equations in the Plane Integrable by the Method of Darboux</td>
<td></td>
</tr>
<tr>
<td>574</td>
<td>Jerome V. Moloney and Alan C. Newell, Nonlinear Optics</td>
<td></td>
</tr>
<tr>
<td>575</td>
<td>Keti Tenenblat, A Note on Solutions for the Intrinsic Generalized Wave and Sine-Gordon Equations</td>
<td></td>
</tr>
<tr>
<td>576</td>
<td>P. Szomolyan, Heteroclinic Orbits in Singularly Perturbed Differential Equations</td>
<td></td>
</tr>
<tr>
<td>577</td>
<td>Wenxiong Liu, A Parabolic System Arising In Film Development</td>
<td></td>
</tr>
</tbody>
</table>