THE PROFILE NEAR BLOWUP TIME
FOR SOLUTION OF THE HEAT EQUATION
WITH A NONLINEAR BOUNDARY CONDITION

By

Bei Hu
and
Hong-Ming Yin

IMA Preprint Series # 1116
March 1993
THE PROFILE NEAR BLOWUP TIME
FOR SOLUTION OF THE HEAT EQUATION
WITH A NONLINEAR BOUNDARY CONDITION

BEI HU AND HONG-MING YIN

ABSTRACT. This paper studies the blowup profile near the blowup time for the heat equation $u_t = \Delta u$ with the nonlinear boundary condition $u_n = u^p$ on $\partial \Omega \times [0, T)$. Under certain assumptions, the exact rate of the blowup is established. It is also proved that the blowup will not occur in the interior of the domain. The asymptotic behavior near the blowup point is also studied.

1. Introduction

In this paper we consider the profile near the blowup time for the solution of the following problem:

\begin{align}
\frac{\partial u}{\partial t} &= \Delta u \quad \text{for } x \in \Omega, \ t > 0, \\
\frac{\partial u}{\partial n} &= u^p \quad \text{for } x \in \partial \Omega, \ t > 0, \\
u(x, 0) &= u_0(x) \quad \text{for } x \in \Omega
\end{align}

where Ω is a bounded domain in \mathbb{R}^n with boundary $\partial \Omega$, n is the exterior normal vector on $\partial \Omega$, $p > 1$ and $u_0(x) \geq 0$.

It is known for a long time (cf. [18]) that the problem does not have a global solution in time, provided $u_0(x)$ is not identically equal to 0. Moreover, if u^p is replaced by a general nonlinear function $f(u)$, a necessary and sufficient condition was found in [24] for the problem to have a finite time blowup. However, there are many important and interesting questions which have been open for some years. For examples, how does the solution approach the blowup time? Where is the hot spot located (blowup set)? In one space dimension as well as a radial symmetric domain in \mathbb{R}^n, the questions were answered recently in [10], under certain monotonicity assumptions on the initial value. An improvement was given in [5] where the monotonicity condition was removed. For

1991 Mathematics Subject Classification. 35B35, 35B40, 35K05, 35K60.

Key words and phrases. Blowup rate, asymptotic behavior, elliptic estimates, parabolic estimates.

The first author is partially supported by US National Science Foundation Grant DMS 90-24986 and DMS 92-24933; the second author is partially supported by NSERC of Canada.
several space dimensions, the problem is much more challenging and there is no result except some partial answer obtained in a recent paper [27]. To see the difficulties of the problem, let us recall some techniques used to analyze the profile of the solution near the blowup time for the following equation:

\[u_t - \Delta u = u^p, \quad (p > 1). \]

For this equation, the above mentioned questions were studied by a number of authors (cf. [2], [4], [11], [13]-[15],[20]-[21], [25]-[26], etc.). In [11] various results regarding to the blowup rate and blowup set were obtained. In deriving the blowup rate, the monotonicity of solution with respect to \(t \) was imposed. Later, by introducing self-similarity variables, the authors of [14] eliminated the monotonicity condition and obtained the rate estimates if \(p \in (1, \frac{n+2}{n-2}) \). Moreover, the asymptotic behavior near the blowup time were obtained in [13] and [15]. But in their proofs, the convexity of the domain is essential in order to derive the desired energy estimates. However, the convexity of the domain does not provide any help in our case since our nonlinearity is located on the boundary. By imposing the monotonicity of \(u(x,t) \) with respect to \(t \), one can show the energy \(E(s) \) is nevertheless uniformly bounded (see (5.9) for the definition of \(E(s) \)). Another difficulty we encounter is the lacking of results for the corresponding steady state problem. It is well known that in order to study the asymptotic behavior for the solution of an evolution equation, one needs a lot of results for the steady state equation. But to our knowledge, there are not many results available for an elliptic equation with nonlinear boundary condition in an unbounded domain. To see such an example, let us consider the following elliptic problem:

\[
\begin{align*}
\Delta w &= 0, \quad \text{in } \Omega, \\
\frac{\partial w}{\partial n} &= w^p, \quad \text{on } \partial \Omega,
\end{align*}
\]

where \(\Omega = \{ x = (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n : x_1 > 0 \} \) and \(p > 1 \). Obviously, there is a trivial solution \(w \equiv 0 \). Does the problem have a positive solution? The answer depends on the dimension \(n \) and \(p \). In order to show that zero is the only solution, one must study the singularity of the solution at infinity because of the unboundedness of the domain. Indeed, when \(n = 1 \) a direct calculation concludes that zero is the only solution. When \(n = 2 \), one can use the maximum principle to show that there is no positive solution (see Lemma 6.1 in Section 6). However, when \(n > 2 \) and \(p = \frac{n}{n-2} \) there is indeed a positive solution

\[w(x) = \frac{c}{|x - x_0|^{n-2}}, \]

where \(x_0 = (-1, 0, \cdots, 0) \) and \(c \) is chosen properly.
By employing Kelvin's transform as in [3] and [7], we are able to show that the above elliptic problem does not have any positive solution if \(p \in [1, \frac{n-1}{n-2}) \). This uniqueness result enables us to use the "localized" maximum principle, and deduce the blowup rate estimate:

\[
\max_{\Omega} u(x, t) \leq C(T - t)^{-1/[2(p-1)]},
\]

where \(T \) is the blowup time. The second main result in this paper is concerned with blowup set. The examples in [22] indicate that the blowup may occur in the interior of the domain if the heat supply through the boundary is fast enough (with exponential rate). This is not too surprising if one examines the representation of the solution and compares the boundary value with the heat kernel. Hence, in order to answer the question, we first need to show that the growth rate near the blowup time is not too fast. More precisely, we show that the rate does not exceed

\[
\frac{1}{(T - t)^q}
\]

for some large \(q \). Then by constructing a suitable auxiliary function, we prove that the blowup only occurs on the boundary (it may occur only at a point or at every point depending on the initial data and the shape of the domain). This implies that the diffusion term is the dominating term in the interior of the domain if the heat supply is give by a polynomial power of the temperature.

The paper is written in the following manner. In Section 2, for the completeness we give a new proof for the blowup property. Section 3 deals with the blowup rate of the solution. In Section 4, the blowup set is studied. The asymptotic behavior near the blowup time is considered in Section 5. The final Section provides some uniqueness results for elliptic problems with a nonlinear boundary condition, which are of independent interest.

2. Blowup at finite time

Throughout this paper, we shall use \(C \) and \(c \) to denote various generic constants, if there is no confusion. A solution of (1.1)–(1.3) is always understood in the classical sense.

We assume that \(\Omega \) is a bounded smooth domain in \(\mathbb{R}^n \). Although the following result is known (see [19], [24], for example), we present a simple argument below. The argument will also be used in Section 4.

Theorem 2.1. For any nonzero, nonnegative initial data \(u_0(x) \), the solution of the system (1.1)–(1.3) blows up in a finite time.

Proof. Local existence is clear. By the maximum principle, \(\inf_{x \in \Omega} u(x, \varepsilon) > 0 \) (for small \(\varepsilon > 0 \)). Replacing \(t = 0 \) by \(t = \varepsilon \) if necessary, we may assume without loss of
generality that \(\inf_{x \in \Omega} u_0(x) = c > 0 \). Take \(v(x) \) such that
\[
\inf_{x \in \Omega} \Delta v > 0,
\]
\[
\frac{\partial v}{\partial n} = v^p \quad \text{for } x \in \partial \Omega,
\]
\[
\frac{c}{2} \leq v(x) \leq c \quad \text{for } x \in \Omega.
\]
The existence of such a \(v(x) \) can be obtained, for example, by the variational method. Then the comparison principle implies that \(u(x, t) \geq \varphi(x, t) \), where \(\varphi(x, t) \) is the solution of (1.1)–(1.2) with initial condition \(\varphi(x, 0) = v(x) \). Clearly, \(\varphi_t(x, t) \geq 0 \), by maximum principle. As a consequence, \(\varphi(x, t) \geq \varphi(x, 0) \geq c/2 \). Let \(\psi(x, t) = \varphi_t(x, t) - \delta \varphi_p(x, t) \), then a direct calculation shows that
\[
\frac{\partial \psi}{\partial t} - \Delta \psi \geq 0 \quad \text{for } x \in \Omega, \; t > 0,
\]
\[
\frac{\partial \psi}{\partial n} = pu^p \psi \quad \text{for } x \in \partial \Omega, \; t > 0,
\]
and \(\psi(x, 0) \geq 0 \) if \(\delta \) is small enough. It follows that \(\psi(x, t) \geq 0 \), which implies that \(\varphi_t \geq \delta \varphi_p \). Thus \(\varphi(x, t) \) blows up in a finite time, and \(u(x, t) \) must blow up at a finite time. \(\square \)

3. Blowup Rate

Suppose that \(T \) is the blowup time. We first derive the blowup rate from above.

Theorem 3.1. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^n \) such that \(\partial \Omega \in C^{2+\alpha} \) for some \(0 < \alpha < 1 \). Suppose that \(1 < p < \infty \) for \(n = 2 \) and \(1 < p < \frac{n-1}{n-2} \) for \(n \geq 3 \). We assume that the initial value \(u_0 \in C^2(\overline{\Omega}) \) satisfies
\[
(3.1) \quad u_0 \geq 0, \quad \Delta u_0 \geq 0 \quad \text{for } x \in \Omega,
\]
\[
(3.2) \quad \frac{\partial u_0}{\partial n} = u_0^p \quad \text{for } x \in \partial \Omega.
\]
Then
\[
(3.3) \quad \max_{x \in \overline{\Omega}} u(x, t) \leq \frac{C}{(T-t)^{1/2(p-1)}}.
\]

Remark 3.1. The restriction on \(p \) comes from a nonexistence result for elliptic equations in Section 6.

Proof. Considering the equations for the functions \(u \) and \(u_t \) and using the maximum principle, we immediately obtain
\[
u(x, t) \geq 0, \quad u_t(x, t) \geq 0.
\]
Thus the function $M(t) = \max_{x \in \Omega} u(x, t)$ is monotone nondecreasing and $M(t) \to \infty$ as $t \to T - 0$. The maximum principle implies that $M(t) = \max_{x \in \partial \Omega} u(x, t)$.

We now take $T/2 < t^* < T$, and let $M^* = M(t^*)$. Take any point $x^* \in \partial \Omega$ such that $M(t^*) = u(x^*, t^*)$ (there may be more than one choice of such x^* for each t^*) and introduce the rescaled function

$$
(3.4) \quad \varphi_{\lambda}(y, s) = \frac{1}{M^*} u(\lambda R y + x^*, \lambda^2 s + t^*) \quad \text{for } y \in \Omega_\lambda, \quad -\frac{T}{2\lambda^2} \leq s \leq 0,
$$

where $\Omega_\lambda = \{ y; \lambda R y + x^* \in \Omega \}$ and R is a rotation operator such that $(-1, 0, 0, \cdots, 0)$ is the exterior normal vector of $\partial \Omega_\lambda$ at 0. We choose λ such that

$$
\lambda (M^*)^{p-1} = 1.
$$

Then φ_{λ} solves

$$
(3.5) \quad \frac{\partial \varphi_{\lambda}}{\partial s} = \Delta_y \varphi_{\lambda} \quad \text{for } y \in \Omega_\lambda, \quad -\frac{T}{2\lambda^2} \leq s \leq 0,
$$

$$
(3.6) \quad \frac{\partial \varphi_{\lambda}}{\partial n} = \varphi_{\lambda}^p \quad \text{for } y \in \partial \Omega_\lambda, \quad -\frac{T}{2\lambda^2} \leq s \leq 0,
$$

$$
(3.7) \quad \varphi_{\lambda}(0, 0) = 1,
$$

$$
(3.8) \quad 0 \leq \varphi_{\lambda}(y, s) \leq 1, \quad (\varphi_{\lambda})_s(y, s) \geq 0.
$$

By the assumption, the boundary $\partial \Omega_\lambda \cap \{|y| \leq K\}$ is uniformly in the class of $C^{2+\alpha}$ and approaches the hyperplane $\{y_1 = 0\}$ as $\lambda \to 0+$. Recalling (3.8), and using Schauder’s estimates, we obtain

$$
(3.9) \quad \|\varphi_{\lambda}\|_{C^{2+\alpha, 1+\alpha/2}(\Omega_\lambda \cap \{|y| \leq K\} \times [-K^2, 0])} \leq C_K,
$$

where the constant C_K is independent of λ.

Next we claim that there exist $c > 0$, $\delta > 0$ (independent of the choices of x^* and the rotation R) such that

$$
(3.10) \quad \frac{\partial \varphi_{\lambda}}{\partial s}(0, 0) \geq c \quad \text{for } T - \delta < t^* < T.
$$

It is clear that $(\varphi_{\lambda})_s(0, 0) > 0$, by Hopf’s lemma. Therefore if (3.10) is not true, then there exists a sequence $t^*_j \to T - 0$ such that

$$
(\varphi_{\lambda_j})_s(0, 0) \to 0,
$$

where $\lambda_j = 1/[M(t^*_j)]^{p-1}$. Using (3.9) and compactness, the family $\{\varphi_{\lambda_j}\}$ has a subsequence which converges to a function $\varphi(y, s)$. Taking this subsequence, still denoted by the subscript λ_j, we have

$$
\|\varphi_{\lambda_j} - \varphi\|_{C^{2+\beta, 1+\beta/2}(\Omega_\lambda \cap \{|y| \leq K\} \times [-K^2, 0])} \to 0,
$$

for some $\beta > 0$. Then for all $t_0 < T$ and $\varepsilon > 0$ we can find λ_{j_ε} such that

$$
\|\varphi_{\lambda_{j_\varepsilon}}(t, y) - \varphi(t, y)\|_{C^{2+\beta, 1+\beta/2}(\Omega_{\lambda_{j_\varepsilon}} \cap \{|y| \leq K\} \times [-K^2, 0])} < \varepsilon
$$

for all $(t, y) \in (t_0, T) \times \Omega_{\lambda_{j_\varepsilon}}$. This contradicts (3.9) since $\|\varphi_{\lambda_{j_\varepsilon}} - \varphi\|_{C^{2+\alpha, 1+\alpha/2}(\Omega_{\lambda_{j_\varepsilon}} \cap \{|y| \leq K\} \times [-K^2, 0])} \to 0$ as $\lambda_{j_\varepsilon} \to 0+$. Therefore (3.10) holds.
for $0 < \beta < \alpha$ and for any $K > 0$. It follows that φ satisfies

$$
\frac{\partial \varphi}{\partial s} = \Delta_y \varphi \quad \text{for } 0 < y_1 < \infty, \quad -\infty < s \leq 0,
$$

$$
\frac{\partial \varphi}{\partial n} = \varphi^p \quad \text{for } y_1 = 0, \quad -\infty < s \leq 0,
$$

$$
\varphi(0, 0) = 1, \quad \varphi_s(0, 0) = 0
$$

$$
0 \leq \varphi(y, s) \leq 1, \quad \varphi_s(y, s) \geq 0.
$$

The regularity theory of parabolic PDEs implies that φ is in C^∞ for both y and s direction up to the boundary $y_1 = 0$. Differentiating (3.12) in s we obtain

$$
\frac{\partial \varphi_s}{\partial n} = p\varphi^{p-1}\varphi_s \quad \text{for } y_1 = 0, \quad -\infty < s \leq 0,
$$

which implies that $\frac{\partial \varphi_s}{\partial n}(0, 0) = 0$. Notice that $\varphi_s(0, 0) = 0$ is the minimum of the function φ_s, it follows that $\varphi_s(y, s) \equiv 0$ for $s < 0, \quad y_1 > 0$, by Hopf’s lemma. Thus we obtain a function $\varphi(y) \equiv \varphi(s, y)$ which satisfies the equations

$$
\Delta_y \varphi = 0 \quad \text{for } 0 < y_1 < \infty,
$$

$$
\frac{\partial \varphi}{\partial n} = \varphi^p \quad \text{for } y_1 = 0,
$$

$$
\varphi(0) = 1, \quad 0 \leq \varphi(y) \leq 1.
$$

This is a contradiction to the nonexistence result which will be proved in Section 6. Thus (3.10) is established. We can rewrite (3.10) as

$$
\frac{\partial u}{\partial t}(x^*, t^*) \geq c(M*)^{2p-1} \quad \text{for } T - \delta < t^* < T.
$$

For each $h > 0$,

$$
\frac{M(t^* + h) - M(t^*)}{h} = \frac{M(t^* + h) - u(x^*, t^*)}{h} \geq \frac{u(x^*, t^* + h) - u(x^*, t^*)}{h}.
$$

Letting $h \to 0+$, (noticing that $M(t)$ is Lipschitz continuous), we obtain

$$
M'(t^*) \geq u_t(x^*, t^*) \geq cM^{2p-1}(t^*).
$$

Integrating the above equation, we conclude (3.3). □

We can also get the lower bound of the blowup rate. The proof from Theorem 3.1 can be used here if we assume $u_t \geq 0$ (It will be true for any $1 < p < \infty$). However, the assumption $u_t \geq 0$ will no longer be needed if we use the integral equation.
Theorem 3.2. Suppose that Ω is a bounded domain in \mathbb{R}^n such that $\partial \Omega \in C^{1+\alpha}$ for some $0 < \alpha < 1$, and $u_0(x) \geq 0$. Then

$$\max_{x \in \Omega} u(x, t) \geq \frac{c}{(T - t)^{1/[2(p-1)]}}.$$

Proof. We use the integral equation for $u(x, t)$. Let $\Gamma(x, t)$ be the fundamental solution for the heat equation, namely,

$$\Gamma(x, t) = \frac{1}{(4\pi t)^{(n/2)}} \exp \left[-\frac{|x|^2}{4t} \right].$$

Then for $0 < z < t < T$ and $x \in \Omega$, we have the Green's identity:

$$u(x, t) = \int_{\Omega} \Gamma(x - y, t - z) u(y, z) dy$$

$$+ \int_{\partial \Omega} \int_{t}^{t} u(y, \tau) \Gamma(x - y, t - \tau) dS_y d\tau$$

$$- \int_{\partial \Omega} \int_{t}^{t} u(y, \tau) \frac{\partial \Gamma}{\partial n_y}(x - y, t - \tau) dS_y d\tau.$$

Letting $x \to \partial \Omega$ and using the jump relation for the third term on the right-hand-side of (3.23) (cf. [12]), we obtain

$$\frac{1}{2} u(x, t) = \int_{\Omega} \Gamma(x - y, t - z) u(y, z) dy$$

$$+ \int_{\partial \Omega} \int_{t}^{t} u(y, \tau) \Gamma(x - y, t - \tau) dS_y d\tau$$

$$- \int_{\partial \Omega} \int_{t}^{t} u(y, \tau) \frac{\partial \Gamma}{\partial n_y}(x - y, t - \tau) dS_y d\tau \quad \text{for } x \in \partial \Omega, \ 0 < z < t.$$

We now set

$$M(t) = \max_{x \in \Omega} u(x, t), \quad M_b(t) = \max_{x \in \partial \Omega} u(x, t).$$

Since $\partial \Omega \in C^{1+\alpha}$, Γ satisfies (cf. [12])

$$\left| \frac{\partial \Gamma}{\partial n_y}(x - y, t - \tau) \right| \leq \frac{C}{(t - \tau)^{\mu}} \frac{1}{|x - y|^{n+1-2\mu-\alpha}} \quad \text{for } x, y \in \partial \Omega.$$
We fix μ such that $1 - \frac{\alpha}{2} < \mu < 1$, then (3.24) implies that

$$
\frac{1}{2} M_b(t) \leq M(z) + C \int_z^t \frac{M_b^p(\tau)}{\sqrt{t-\tau}} d\tau + C \int_z^t \frac{M_b(\tau)}{(t-\tau)^\mu} d\tau
$$

$$
\leq M(z) + C \left(\max_{z \leq \tau \leq t} M_b(\tau) \right)^p 2\sqrt{t-z} + C \left(\max_{z \leq \tau \leq t} M_b(\tau) \right) (t-z)^{1-\mu}
$$

$$
\leq M(z) + C \left(\max_{z \leq \tau \leq t} M_b(\tau) \right)^p 2\sqrt{T-z} + C \left(\max_{z \leq \tau \leq t} M_b(\tau) \right) (T-z)^{1-\mu}.
$$

For any $z \leq \eta \leq t$,

$$
\frac{1}{2} M_b(\eta) \leq M(z) + C \left(\max_{z \leq \tau \leq \eta} M_b(\tau) \right)^p 2\sqrt{T-z} + C \left(\max_{z \leq \tau \leq \eta} M_b(\tau) \right) (T-z)^{1-\mu}
$$

$$
\leq M(z) + C \left(\max_{z \leq \tau \leq \eta} M_b(\tau) \right)^p 2\sqrt{T-z} + C \left(\max_{z \leq \tau \leq \eta} M_b(\tau) \right) (T-z)^{1-\mu},
$$

which implies that

$$
\frac{1}{2} \max_{z \leq \tau \leq t} M_b(\tau) \leq M(z) + C \left(\max_{z \leq \tau \leq \eta} M_b(\tau) \right)^p 2\sqrt{T-z} + C \left(\max_{z \leq \tau \leq \eta} M_b(\tau) \right) (T-z)^{1-\mu}.
$$

(3.25)

By assumption, T is the blowup time; therefore

$$
h_z(t) \equiv \max_{z \leq \tau \leq t} M_b(\tau) \to \infty \quad \text{as } t \to T - 0.
$$

Since $h_z(z) = M_b(z) \leq M(z)$, we can choose $t < T$ such that $\max_{z \leq \tau \leq t} M_b(\tau) = 4M(z)$, and the inequality (3.25) becomes

$$
M(z) \leq 2^{2p+1} C \sqrt{T-z} M^p(z) + 4C(T-z)^{1-\mu} M(z).
$$

The above inequality implies that

$$
M(z) \leq 2^{2p+2} C \sqrt{T-z} M^p(z),
$$

provided $T-z$ is small enough. The theorem follows. \Box

The integral equation (3.24) will also give us the estimate for the upper bound for the integral $\|u(\cdot,t)\|_{L^p(\partial\Omega)}$. There is no restriction on p.

Theorem 3.3. Suppose that Ω is a bounded domain in \mathbb{R}^n such that $\partial\Omega \in C^{1+\alpha}$ for some $0 < \alpha < 1$, $u_0(x) \geq 0$, and $\Delta u_0(x) \geq 0$. Then

$$
\left(\int_{\partial\Omega} u^p(x,t) dS \right)^{1/p} \leq \frac{C}{(T-t)^{1/2(p-1)}}.
$$

(3.26)
Proof. Let $A(t) = \|u(\cdot,t)\|_{L^p(\partial \Omega)}$. Under our assumptions, $u_t \geq 0$. It follows that $A'(t) \geq 0$. The Hölder's inequality implies that

$$A(t) \geq c \int_{\partial \Omega} u(x,t) dS.$$

Integrating (3.24) over $\partial \Omega$, we obtain

$$c \int_{\partial \Omega} u(x,t) dS \geq c \int_z^t \frac{A^p(\tau)}{\sqrt{T - \tau}} d\tau - C \int_z^t \frac{A(\tau)}{|t - \tau|^\mu} d\tau \geq c \int_z^t \frac{A^p(\tau)}{\sqrt{T - \tau}} d\tau - C^* A(t) |T - z|^{1-\mu}.$$

Taking z so that $C^* |T - z|^{1-\mu} = 1/2$, we obtain

$$(3.27) \quad A(t) \geq c_0 \int_z^t \frac{A^p(\tau)}{\sqrt{T - \tau}} d\tau \equiv c_0 I(t).$$

Clearly,

$$I'(t) = \frac{A^p(t)}{\sqrt{T - t}} \geq \frac{c_0^p I^p(t)}{\sqrt{T - t}}.$$

It follows that

$$\int_{I(t)}^{I(T)} \frac{dI}{I^p} \geq 2c_0^p \sqrt{T - t}.$$

Assuming that $I(T) = \infty$ (otherwise there is nothing to prove), then the above inequality implies that

$$(3.28) \quad I(t) \leq 2^{-1/(p-1)} c_0^{-p/(p-1)} (p-1)^{-1/(p-1)} (T - t)^{-1/[2(p-1)]}$$

$$\equiv C^* (T - t)^{-1/[2(p-1)]}.$$

On the other hand, for $\tilde{t} = 2t - T$ (We assume that t is close to T here),

$$I(t) \geq \int_t^{\tilde{t}} \frac{A^p(\tau)}{\sqrt{T - \tau}} d\tau \geq A^p(\tilde{t}) \int_{2t-T}^{\tilde{t}} \frac{d\tau}{\sqrt{T - \tau}} = 2(\sqrt{2} - 1) \sqrt{T - t} A^p(\tilde{t}).$$

Combining this inequality with (3.28), we obtain

$$A(\tilde{t}) \leq (C^*)^{1/p} [2(\sqrt{2} - 1)]^{-1/p} (T - t)^{-1/[2(p-1)]} \leq (C^*)^{1/p} [2(\sqrt{2} - 1)]^{-1/p} 2^{1/[2(p-1)]} (T - \tilde{t})^{-1/[2(p-1)]}.$$

The Theorem follows. \qed

Remark 3.2. The above argument can be applied to the following integral equation:

$$A(t) = A_0 + \int_0^t \frac{f(A(\tau))}{\sqrt{t - \tau}} d\tau,$$

where $f(s) = s^p$, $(p > 1)$ and $A_0 > 0$.

Without any condition, one can prove that \(A(t)\) will blow up in a finite time. Moreover, there exist two constants \(C_1\) and \(C_2\) such that

\[C_1(T - t)^{1/(p-1)} \leq A(t) \leq C_2(T - t)^{1/(p-1)},\]

where \(T\) is the blowup time.

4. Blowup Set

We shall prove in this section that the blow-up will occur only at the boundary of the domain.

Theorem 4.1. Suppose that the function \(u(x, t)\) is continuous on the domain \(\overline{\Omega} \times [0, T)\) and satisfies

\[u_t = \Delta u \quad \text{for } (x, t) \in \Omega \times [0, T), \]

\[u \leq \frac{C}{(T - t)^q} \quad \text{for } (x, t) \in \partial \Omega \times [0, T), \quad \text{for some } q > 0.\]

Then for any \(\Omega' \subset \subset \Omega,\)

\[\sup \{u(x, t); \quad (x, t) \in \Omega' \times [0, T)\} < \infty.\]

Proof. By approximating the domain from inside if necessary, we may assume without loss of generality that \(\partial \Omega\) is smooth, say \(C^2\).

Let \(d(x) = \text{dist}(x, \partial \Omega)\) and

\[v(x) = d^2(x) \quad \text{for } x \in N_\varepsilon(\partial \Omega),\]

where \(N_\varepsilon(\partial \Omega) = \{(x \in \Omega, d(x) < \varepsilon)\}. \) Since \(\partial \Omega\) is \(C^2\), the function \(v(x)\) is in \(C^2(N_\varepsilon(\partial \Omega))\) if \(\varepsilon\) is small enough. Clearly,

\[\Delta v - \frac{(q + 1)|\nabla v|^2}{v} = 2 - 4(q + 1) \quad \text{on } \partial \Omega.\]

Since \(v \in C^2(N_\varepsilon(\partial \Omega)),\)

\[\Delta v - \frac{(q + 1)|\nabla v|^2}{v} \geq -4(q + 1) \quad \text{in } N_{\varepsilon_0}(\partial \Omega)\]

if \(\varepsilon_0\) is small enough. We next extend \(v(x)\) to a function on \(\overline{\Omega}\) such that \(v \in C^2(\overline{\Omega})\) and \(v \geq c_0 > 0\) on \(\Omega \setminus N_{\varepsilon_0}(\partial \Omega)\). Then

\[\Delta v - \frac{(q + 1)|\nabla v|^2}{v} \geq -C^* \quad \text{on } \overline{\Omega}\]

for some \(C^* > 0.\) Set

\[w(x, t) = \frac{C_1}{[v(x) + C^*(T - t)]^q}.\]
Then
\[w_t - \Delta w = \frac{C_1 q}{[v(x) + C^*(T - t)]^{(q+1)}} \left(C^* + \Delta v - \frac{(q + 1)|\nabla v|^2}{v + C^*(T - t)} \right) > 0. \]

Take \(C_1 \) to be large enough so that \(w(x, 0) \geq u(x, 0) \) and \(C_1 \geq (C^*)^q \). Then the maximum principle implies that \(w(x, t) \geq u(x, t) \), and
\[
\sup\{u(x, t); (x, t) \in \Omega' \times [0, T)\} \leq C_1 \sup\left\{ \frac{1}{v^q(x)}; x \in \Omega' \right\} < \infty. \]

Corollary 4.2. Assume that \(u_0(x) \geq 0 \) and \(\Delta u_0(x) \geq 0 \) (which implies that \(u_t \geq 0 \)). Then no blowup will occur in the interior of the domain \(\Omega \).

Proof. As in the proof of Theorem 2.1, we can easily establish \(\max_{x \in \overline{\Omega}} u(x, t) \leq C \) for \(t \geq \varepsilon \) for small \(\delta \) and \(\varepsilon \). It then follows that
\[
(4.1) \quad \max_{x \in \overline{\Omega}} u(x, t) \leq \frac{C}{(T - t)^{1/(p-1)}}.
\]

Although (4.1) does not give us the best rate at the boundary, it is enough for us to apply Theorem 4.1. \(\square \)

5. Asymptotic Behavior Near the Blowup Point

We first establish some preliminary estimates. We will assume throughout this section that
\[
(5.1) \quad \max_{x \in \overline{\Omega}} u(x, t) \leq \frac{C}{(T - t)^\beta}, \quad \beta = \frac{1}{2(p - 1)}.
\]

This condition will be satisfied if the assumptions of Theorem 3.1 are in force. As in Giga and Kohn [14], we introduce the scaled solution:
\[
w(y, s) = (T - t)^\beta u(x, t),
\]
\[
x - a = y\sqrt{T - t}, \quad T - t = e^{-s},
\]

where \(a \) is a fixed point on \(\partial \Omega \). If \(u \) solves (1.1), then \(w \) solves
\[
(5.2) \quad \frac{\partial}{\partial s} w - \Delta w + \frac{1}{2} y \cdot \nabla w + \beta w = 0
\]
in the domain
\[
W = \bigcup_{s > s_0} \Omega(s),
\]
where
\[
\Omega(s) = \{(y, s); \quad e^{-s/2} y + a \in \Omega\}, \quad s_0 = -\ln T.
\]
From the proof of Theorem 3.1, (cf. (3.9)) we have the following estimates
\[
\left| \frac{\partial}{\partial x_j} u(x, t) \right| \leq C \max_{x \in \overline{\Omega}} u^p(x, t) \leq \frac{C}{(T - t)^p},
\]
\[
\left| \frac{\partial^2}{\partial x_j \partial x_k} u(x, t) \right| \leq C \max_{x \in \overline{\Omega}} u^{2p-1}(x, t) \leq \frac{C}{(T - t)^{(2p-1)}p}.
\]

As a consequence,
\[
(5.3) \quad 0 \leq w(y, s) \leq C \quad \text{for } (y, s) \in W,
\]
\[
(5.4) \quad \left| \frac{\partial}{\partial y_j} w(y, s) \right| \leq C \quad \text{for } (y, s) \in W,
\]
\[
(5.5) \quad \left| \frac{\partial^2}{\partial y_j \partial y_k} w(y, s) \right| \leq C \quad \text{for } (y, s) \in W.
\]

We need the following formulae:

Lemma 5.1. If \(f(s, y) : W \mapsto R \) is a smooth function, then
\[
(5.6) \quad \frac{d}{ds} \int_{\Omega(s)} f(s, y) dy = \int_{\Omega(s)} f_s(s, y) dy + \frac{1}{2} \int_{\partial \Omega(s)} f(s, y) (y \cdot n) dS,
\]
\[
(5.7) \quad \frac{d}{ds} \int_{\partial \Omega(s)} f(s, y) dS = \int_{\partial \Omega(s)} f_s(s, y) dS
\]
\[
+ \frac{1}{2} \int_{\partial \Omega(s)} [(n - 1)f(s, y) + \nabla f(s, y) \cdot y] dS,
\]
where \(n \) is the exterior normal vector of \(\partial \Omega(s) \) and \(dS \) is the surface area element.

Proof. The proof of (5.6) can be found in Liu [20], and (5.7) can be proved in a similar manner. \(\square \)

Let us rewrite the equation (5.2) in divergence form
\[
(5.8) \quad \rho w_s - \nabla \cdot (\rho \nabla w) + \beta \rho w = 0,
\]
where
\[
\rho = e^{-\|y\|^2/4}.
\]

Now we introduce the "energy" functional as in Giga and Kohn [14],
\[
(5.9) \quad E(s) = \frac{1}{2} \int_{\Omega(s)} \left(\rho |\nabla w|^2 + \beta \rho w^2 \right) dy - \frac{1}{p + 1} \int_{\Omega(s)} \rho w^{p+1} dS.
\]

First of all, multiplying (5.9) with \(w_s \) and integrating over \(\Omega(s) \), we have the following identity:
\[
\int_{\Omega(s)} \rho |w_s|^2 dy + \int_{\Omega(s)} [\rho \nabla w \nabla w_s + \beta \rho \rho w_s] dy = \int_{\partial \Omega(s)} \rho w^p w_s dS.
\]
Using formulae (5.6)–(5.7) and the above identity, we now obtain,

\[
E'(s) = \int_{\partial\Omega(s)} (\rho |\nabla w|^2 + \beta \rho w^2) (y \cdot n) dS + \frac{1}{4} \int_{\partial\Omega(s)} \left(\rho |\nabla w|^2 + \beta \rho w^2 \right) (y \cdot n) dS \\
- \int_{\partial\Omega(s)} \rho |w_s|^2 dS - \frac{1}{2(p+1)} \int_{\partial\Omega(s)} \left[(n-1) \rho w^{p+1} + \nabla (\rho w^{p+1}) \cdot y \right] dS
\]

(5.10)

\[
= - \int_{\Omega(s)} \rho |w_s|^2 dy + J(s),
\]

where

\[
J(s) = \frac{1}{4} \int_{\partial\Omega(s)} (\rho |\nabla w|^2 + \beta \rho w^2) (y \cdot n) dS \\
- \frac{1}{2(p+1)} \int_{\partial\Omega(s)} \left[(n-1) \rho w^{p+1} + \nabla (\rho w^{p+1}) \cdot y \right] dS.
\]

The estimate on \(J(s) \) is crucial for taking the limit as \(s \to \infty \).

Lemma 5.2. There exists a constant \(C^* \) such that

\[
J(s) < C^* e^{-s/4}.
\]

Proof. Without loss of generality, we may assume that \(a = 0 \in \partial\Omega \) and \((-1, 0, \cdots, 0)\) is the exterior unit normal vector of \(\Omega \) at 0. Then \(\partial\Omega \) near 0 is represented by the formula

\[
x_1 = g(x_2, x_3, \cdots, x_n) \quad \text{for} \quad x_1^2 + \cdots + x_n^2 \leq \delta^2,
\]

where \(g \in C^{2+\alpha} \) and \(g(0) = 0, \nabla g(0) = 0 \). We can represent \(\partial\Omega(s) \) by

\[
y_1 = e^{s/2} g(y' e^{-s/2}) \equiv G(y') \quad \text{for} \quad |y'| \leq \delta e^{s/2}, \quad y' = (y_2, y_3, \cdots, y_n).
\]

Clearly,

\[
G(0) = 0, \quad \nabla G(0) = 0, \quad |G_{y_j y_k}| \leq C e^{-s/2} \quad (2 \leq k, j \leq n),
\]

\[
n = \left(\frac{-1}{\sqrt{1 + |\nabla G|^2}}, \, \frac{\nabla G}{\sqrt{1 + |\nabla G|^2}} \right), \quad dS = \sqrt{1 + |\nabla G|^2} dy',
\]

\[
y \cdot n = \frac{-G + y_2 G_{y_2} + \cdots + y_n G_{y_n}}{\sqrt{1 + |\nabla G|^2}}.
\]

From now on, the generic constants \(C \) will depend only on the given data like \(\partial\Omega \), \(u_0(x) \) and \(p \).

We split the integrals in \(J(s) \) on \(\partial\Omega(s) \) into \(\partial\Omega(s) \cap \{ |y'| \leq \delta e^{s/8} \} \) and \(\partial\Omega(s) \cap \{ |y'| > \delta e^{s/8} \} \). Recalling (5.3)–(5.5),
the integrals in $J(s)$ on $\partial \Omega(s) \cap \{ |y'| > \delta e^{s/8} \}$

\[
\leq C \int_{\partial \Omega(s) \cap \{ |y'| > \delta e^{s/8} \}} e^{-|y'|^2/8} dS \\
\leq C \exp \left(-\frac{1}{8} \delta^2 e^{s/8} \right) \cdot |\partial \Omega(s)| \\
\leq C \exp \left(-\frac{1}{8} \delta^2 e^{s/8} + \frac{(n-1)s}{2} \right).
\]

(5.14)

Now we write

the integrals in $J(s)$ on $\partial \Omega(s) \cap \{ |y'| \leq \delta e^{s/8} \} \equiv I_1(s) + I_2(s),$

where $I_1(s)$ is estimated as follows:

\[
|I_1(s)| = \frac{1}{4} \left| \int_{\partial \Omega(s) \cap \{ |y'| \leq \delta e^{s/8} \}} \left(\rho |\nabla w|^2 + \beta \rho w^2 \right) (y \cdot n) dS \right| \\
\leq C \int_{\partial \Omega(s) \cap \{ |y'| \leq \delta e^{s/8} \}} \rho |(y \cdot n)| dS \\
\leq C \int_{\{ |y'| \leq \delta e^{s/8} \}} \rho |y'|^2 \max |G_{y_j y_k}| dy' \\
\leq C e^{-s/2} (e^{s/8})^2 \int_{\{ |y'| \leq \delta e^{s/8} \}} \rho dy' \\
\leq C e^{-s/4}.
\]

(5.15)

To estimate $I_2(s)$, we let $\varphi(y, s) = \rho w^{p+1}$ and compute

\[
2(p-1)|I_2(s)| \\
= \left| \int_{\partial \Omega(s) \cap \{ |y'| \leq \delta e^{s/8} \}} \left[(n-1) \rho w^{p+1} + \nabla(\rho w^{p+1}) \cdot y \right] dS \right| \\
= \left| \int_{\{ |y'| \leq \delta e^{s/8} \}} \left[(n-1) \varphi + (\varphi_{y_1} G + \varphi_{y_2} y_2 + \cdots + \varphi_{y_n} y_n) \right] \sqrt{1 + |\nabla G|^2} dy' \right| \\
\leq K_1(s) + K_2(s),
\]

(5.16)
where

\[K_2(s) = \int_{\{|y'| \leq \delta e^{s/8}\}} |\varphi_{y_1} \left(G - \sum_{k=2}^{n} y_k G_{y_k} \right)| \sqrt{1 + |\nabla G|^2} \, dy' \]

\[\leq C \int_{\{|y'| \leq \delta e^{s/8}\}} e^{-|y'|^2/8} |y'|^2 \max |G_{y_j y_k}| \, dy' \]

\[\leq C e^{-s/2} (e^{s/8})^2 \int_{R^{n-1}} e^{-|y'|^2/8} \, dy' \]

\[\leq C e^{-s/4}. \]

(5.17)

Finally, let's estimate \(K_1(s) \) using integration by parts on the \(n - 1 \) dimensional disk:

\[
K_1(s) = \int_{\{|y'| \leq \delta e^{s/8}\}} (n-1)\varphi + \sum_{k=2}^{n} \left(\varphi_{y_1} G_{y_k} + \varphi_{y_k} y_k \right) \sqrt{1 + |\nabla G|^2} \, dy'
\]

\[= \int_{\{|y'| \leq \delta e^{s/8}\}} \left\{ (n-1)\varphi \right.
\]

\[+ \sum_{k=2}^{n} y_k \frac{\partial}{\partial y_k} \varphi \left[G(y_2, \cdots, y_n), y_2, \cdots, y_n \right] \}

\[\sqrt{1 + |\nabla G|^2} \, dy' \]

(5.18)

\[
\leq Ce^{s/8} \int_{\{|y'| = \delta e^{s/8}\}} \rho dy' + Ce^{-s/2} \int_{\{|y'| \leq \delta e^{s/8}\}} \rho |y'| \, dy'
\]

\[\leq C e^{s/8} \exp \left(-\frac{1}{4} \delta^2 e^{s/4} + \frac{(n-2)s}{2} \right) + Ce^{-s/2} \]

Combining the estimates from (5.14)–(5.18), we conclude the lemma. \(\square \)

Remark 5.1. The estimates are uniformly valid for \(a \in \partial \Omega. \)

From Lemma 5.2 and (5.10),

\[
\frac{d}{ds} \left(E(s) + 4C^*e^{-s/4} \right) \leq 0.
\]

It follows that the function \(E(s) + 4C^*e^{-s/4} \) is monotone decreasing. Clearly \(E(s) \)

is bounded from below. Therefore the limit \(\lim_{s \to \infty} (E(s) + 4C^*e^{-s/4}) \) exists. So the limit

(5.19) \[\lim_{s \to \infty} E(s) = E(\infty) \text{ exists.} \]

Integrating (5.10), we also conclude
Lemma 5.3.

\[\int_{s_0}^{\infty} \int_{\Omega(s)} \rho |w_s|^2 dy ds \leq C < \infty. \] (5.20)

Notice that (5.19) claims that the "energy \(E(s) \)" has a limit. The energy \(E(s) \) is the difference of two terms. In fact, the limits of both terms exist. Let

\[E_1[w](s) = \int_{\Omega(s)} \left(\rho |\nabla w|^2 + \beta \rho w^2 \right) dy \]

\[E_2[w](s) = \int_{\partial \Omega(s)} \rho w^{p+1} dS. \]

Theorem 5.4.

\[\lim_{s \to \infty} E_1[w](s) = \frac{2(p + 1)}{p - 1} E(\infty), \quad \lim_{s \to \infty} E_2[w](s) = \frac{2(p + 1)}{p - 1} E(\infty). \]

Proof. By (5.19)

\[\lim_{s \to \infty} \left(\frac{1}{2} E_1(s) - \frac{1}{p + 1} E_2(s) \right) = E(\infty) \] (5.21)

By (5.3)–(5.5), we can take a subsequence \(s_j \to \infty \) such that \(w(y, s + s_j) \) converges weakly to a function \(w_\infty(y, s) \). Lemma 5.3 implies that \(w_\infty \) is independent of \(s \). Hence

\[-\nabla (\rho \nabla w_\infty) + \beta \rho w_\infty = 0 \quad \text{for} \quad y_1 > 0, \quad -\infty < y_k < \infty \quad (2 \leq k \leq n), \]

\[\frac{\partial w_\infty}{\partial n} = w_\infty^p \quad \text{on} \quad y_1 = 0. \] (5.22)

(5.23)

It follows that \(E_1[w](s + s_j) \to c_1 \) and \(E_2[w](s + s_j) \to c_2 \) as \(s_j \to \infty \), where \(c_1 = E_1[w_\infty] \) and \(c_2 = E_2[w_\infty] \). Multiplying (5.22) by \(w_\infty \) and integrating, we obtain

\[c_2 - c_1 = 0. \]

Combining it with (5.21) we find that

\[c_1 = c_2 = \frac{2(p + 1)}{p - 1} E(\infty). \]

Since \(c_1 \) and \(c_2 \) are uniquely determined by \(E(\infty) \), the limits \(\lim_{s \to \infty} E_1[w](s + s_j) \) and \(\lim_{s \to \infty} E_2[w](s + s_j) \) are actually independent of the choices of the subsequence \(s_j \). The theorem is proved. \(\square \)

As in the proof of Giga and Kohn [14], \(w(y, s) \) will have to converge to \(w_\infty \) uniformly on any bounded subset as \(s \to \infty \), if the solution \(w_\infty \) in (5.22)–(5.23) is independent of the choices of the subsequence \(s_j \). This is the case if the positive solution to the system is unique.
Theorem 5.5. If bounded positive solution with bounded gradient to the system
\begin{align}
(5.24) \quad -\Delta \psi + \frac{1}{2} y \cdot \nabla \psi + \beta \psi &= 0 \quad \text{for } y_1 > 0, \quad -\infty < y_k < \infty \quad (2 \leq k \leq n), \\
(5.25) \quad -\frac{\partial \psi}{\partial y_1} &= \psi^p \quad \text{for } y_1 = 0, \quad -\infty < y_k < \infty \quad (2 \leq k \leq n)
\end{align}
is unique, then for the solution \(u \) of (1.1) and \(a \in \partial \Omega \),
\begin{equation}
(5.26) \quad \lim_{t \to T} (T - t)^\beta u(a + y\sqrt{T - t}, t)
\end{equation}
exists and equals either 0 or \(\psi \). The limit in (5.26) is taken uniformly on each bounded set \(|y| \leq C \).

The one-dimensional positive solution (i.e., the solution which is a function of \(y_1 \) only) of (5.24)–(5.25) is unique ([10]). Therefore we just recovered a result proved in [10].

Corollary 5.6. Suppose that \(\Omega \) is a ball and that the initial data is radially symmetric with \(u_0 \geq 0 \) and \(\Delta u_0 \geq 0 \). Then for the solution \(u \) of (1.1) and \(a \in \partial \Omega \),
\begin{equation}
(5.27) \quad \lim_{t \to T} (T - t)^\beta u(a + y\sqrt{T - t}, t)
\end{equation}
exists and equals either 0 or \(\psi \), where \(\psi \) is the one-dimensional positive solution. The limit in (5.27) is taken uniformly on each bounded set \(|y| \leq C \).

Proof. It suffices to prove that the solution \(w_\infty \) is independent of the choices of the subsequence \(s_j \). Since \(w_\infty \) is independent of the variables \((y_2, \ldots, y_n) \) on \(y_1 = 0 \), the maximum principle implies that \((w_\infty)_y = 0 \) for \(k = 2, \ldots, n \). Therefore \(w_\infty \) is uniquely determined as a one dimensional solution of \(y_1 \). \(\square \)

Remark 5.2. If the positive solutions of (5.24)–(5.25) are “discrete” (which will guarantee that \(w_\infty \) is independent of the choices of \(s_j \)), then the limit in (5.26) will converge to one of the nonnegative solutions. By “discrete” we mean that \(\| \psi_1 - \psi_2 \| \geq c_0 > 0 \) for any two distinct solutions \(\psi_1 \) and \(\psi_2 \), where \(c_0 \) is independent of the solutions. The norm \(\| \cdot \| \) could be any norms like \(\| \psi \| = \| \rho \psi \|_{L^2} \), \(\| \psi \| = \| \rho \nabla \psi \|_{L^2} \), or \(\| \psi \| = \| \psi \|_{L^\infty} \).

6. Nonexistence result for the elliptic equations

In this section we prove the nonexistence result used in Section 3. We first consider the case \(n = 2 \); the proof is very simple.
Lemma 6.1. Suppose that $n = 2$ and
\begin{align}
\Delta_y \varphi &= 0 \quad \text{for } 0 < y_1 < \infty, -\infty < y_2 < \infty, \\
-\frac{\partial \varphi}{\partial y_1} &\geq 0 \quad \text{for } y_1 = 0, \\
0 &\leq \varphi(y) \leq 1.
\end{align}

Then
\begin{equation}
\varphi(y) \equiv \text{constant}.
\end{equation}

Proof. Take $y_0 \in [0, \infty) \times (-\infty, \infty)$. For any $0 < \varepsilon < 1$, $0 < \delta < 1$, we construct the auxiliary function
\[
\psi(y) = \varepsilon \log \left(\frac{|y-y_0|^2}{\delta^2} \right) + C_\delta,
\]
where $C_\delta = \max_{|y-y_0|=\delta} [\varphi(y_0) - \varphi(y)]$. That $\psi = C_\delta$ on $|y-y_0| = \delta$, $\psi(y) > 1 \geq \varphi(y_0) - \varphi(y)$ on $|y-y_0| = \varepsilon^{1/\varepsilon}$. A direct calculation also shows that $-\psi_{y_1}(0, y_2) \geq 0$. Thus by maximum principle,
\[
\varphi(y_0) - \varphi(y) \leq \psi(y) \quad \text{in the region } \{y_1 > 0, \ \delta < |y-y_0| < \varepsilon^{1/\varepsilon}\}.
\]
Letting $\varepsilon \to 0+$ and then $\delta \to 0+$, we conclude $\varphi(y_0) - \varphi(y) \leq 0$ for any y and y_0. \hfill \square

Lemma 6.2. Suppose that $n \geq 3$, $p < \frac{n-1}{n-2}$ and
\begin{align}
\Delta_y \varphi &= 0 \quad \text{for } 0 < y_1 < \infty, -\infty < y_k < \infty \ (2 \leq k \leq n), \\
-\frac{\partial \varphi}{\partial y_1} &= \varphi^p \quad \text{for } y_1 = 0, \\
\varphi(y) &\geq 0.
\end{align}

Then
\begin{equation}
\varphi(y) \equiv 0.
\end{equation}

Proof. Assume for the contrary that $\varphi \not\equiv 0$, then we claim that
\begin{equation}
\varphi(y) \geq \frac{c}{|y|^{n-2}} \quad \text{for } y_1 > 0, 1 \leq |y| < \infty,
\end{equation}

for some $c > 0$. In fact, if we take $c = \min_{|y|=1} \varphi(y)$, then by maximum principle, $c > 0$.

The function $w(|y|) = \frac{c}{|y|^{n-2}}$ satisfies
\[
\begin{align*}
\Delta w &= 0 \quad \text{for } 0 < y_1 < \infty, 1 \leq |y| < \infty, \\
-\frac{\partial w}{\partial y_1} &= 0 \leq -\frac{\partial \varphi}{\partial y_1} \quad \text{for } y_1 = 0, \\
w(y) &\leq \varphi(y) \quad \text{on } |y| = 1.
\end{align*}
\]

Therefore by maximum principle,
\[
w(|y|) - w(R) \leq \varphi(y) \quad \text{for } 0 < y_1 < \infty, 1 \leq |y| < R.
\]

Letting $R \to \infty$, we obtain (6.9).

In order to study the behavior of $\varphi(y)$ near ∞, we introduce the Kelvin’s inversion:
\[
\psi(z) = |y|^{n-2} \varphi(y), \quad z = \frac{y}{|y|^2}.
\]

The function $\psi(z)$ may have a singularity at 0, it satisfies the equations:
\[
\begin{align*}
\Delta \psi &= 0 \quad \text{for } 0 < z_1 < \infty, -\infty < z_k < \infty \quad (2 \leq k \leq n), \\
-\frac{\partial \psi}{\partial z_1} &= |z|^{-\alpha} \psi^p \quad \text{for } z_1 = 0, \ |z| > 0, \quad \text{where } \alpha = n - p(n - 2).
\end{align*}
\]

Recalling (6.9), we have
\[
\psi(z) \geq c > 0 \quad \text{for } 0 \leq z_1 \leq 1, \ 0 < |z| \leq 1.
\]

For any $\varepsilon > 0$, we take a smooth cut-off function $\zeta(z)$ such that
\[
\begin{align*}
\zeta(z) &= 0 \quad \text{for } |z| \leq \varepsilon \text{ and } |z| \geq 4\varepsilon, \\
\zeta(z) &= 1 \quad \text{for } 2\varepsilon \leq |z| \leq 3\varepsilon, \\
0 &\leq \zeta(z) \leq 1, \quad |\nabla \zeta(z)| \leq \frac{C}{\varepsilon}.
\end{align*}
\]

Multiplying the equation (6.10) with $\zeta^2 \psi^{-1}$ and integrating over $\Omega = \{z_1 > 0, 0 < |z| < 1\}$, we obtain
\[
\begin{align*}
\int_\Omega \zeta^2 \frac{|\nabla \psi|^2}{|\psi|^2} \, dz + \int_{\{z_1 = 0\}} \zeta^2 |z|^{-\alpha} \psi^{p-1} \, dS
&= 2 \int_\Omega \frac{\zeta}{\psi} \nabla \zeta \nabla \psi \, dz \\
&\leq \frac{1}{2} \int_\Omega \zeta^2 \frac{|\nabla \psi|^2}{|\psi|^2} \, dz + 2 \int_\Omega |\nabla \zeta|^2 \, dz.
\end{align*}
\]
Hence
\[
\int_{\{z_1=0\}} \zeta^2 |z|^{-\alpha} \psi^{p-1} dS \leq 2 \int_{\Omega} |\nabla \zeta|^2 dz,
\]
which implies that
\[
\varepsilon^{n-1} \varepsilon^{-\alpha} \leq C \varepsilon^{n-1} \frac{1}{\varepsilon^2}.
\]
Noticing that $\alpha > 1$, we obtain a contradiction if ε is small enough. \square

Remark 6.1. The restriction on p in Lemma 6.2 may not be optimal. We conjecture that the uniqueness holds for $1 < p < \frac{n}{n-2}$ if $n > 2$.

References

22. P. Quittner, *On global existence and stationary solutions for two classes of semilinear parabolic problems*, Preprint 9208 (1992), Centre de recherche de Mathematiques de la decision, Univerite Paris IX.

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556

E-mail address: Bei.Hu@nd.edu

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556

E-mail address: Hong-Ming.Yin@nd.edu
<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1041</td>
<td>Neerchal K. Nagaraj and Wayne A. Fuller</td>
<td>Least squares estimation of the linear model with autoregressive errors</td>
</tr>
<tr>
<td>1042</td>
<td>H.J. Sussmann & W. Liu</td>
<td>A characterization of continuous dependence of trajectories with respect to the input for control-affine systems</td>
</tr>
<tr>
<td>1043</td>
<td>Karen Rudie & W. Murray Wonham</td>
<td>Protocol verification using discrete-event systems</td>
</tr>
<tr>
<td>1044</td>
<td>Rohan Abeyaratne & James K. Knowles</td>
<td>Nucleation, kinetics and admissibility criteria for propagating phase boundaries</td>
</tr>
<tr>
<td>1045</td>
<td>Gang Bao & William W. Symes</td>
<td>Computation of pseudo-differential operators</td>
</tr>
<tr>
<td>1046</td>
<td>Srdjan Stojanovic</td>
<td>Nonsmooth analysis and shape optimization in flow problem</td>
</tr>
<tr>
<td>1047</td>
<td>Miroslav Tuma</td>
<td>Row ordering in sparse QR decomposition</td>
</tr>
<tr>
<td>1048</td>
<td>Onur Toker & Hitay Özbay</td>
<td>On the computation of suboptimal H^∞ controllers for unstable infinite dimensional systems</td>
</tr>
<tr>
<td>1049</td>
<td>Hitay Özbay</td>
<td>H^∞ optimal controller design for a class of distributed parameter systems</td>
</tr>
<tr>
<td>1050</td>
<td>J.E. Dunn & Roger Fodick</td>
<td>The Weierstrass condition for a special class of elastic materials</td>
</tr>
<tr>
<td>1051</td>
<td>Bei Hu & Jianhua Zhang</td>
<td>A free boundary problem arising in the modeling of internal oxidation of binary alloys</td>
</tr>
<tr>
<td>1052</td>
<td>Eduard Feireisl & Enrique Zuazua</td>
<td>Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent</td>
</tr>
<tr>
<td>1053</td>
<td>I-Heng McComb & Chjan C. Lim</td>
<td>Stability of equilibria for a class of time-reversible, $D_n\times O(2)$-symmetric homogeneous vector fields</td>
</tr>
<tr>
<td>1054</td>
<td>Ruben D. Spies</td>
<td>A state-space approach to a one-dimensional mathematical model for the dynamics of phase transitions in pseudoelastic materials</td>
</tr>
<tr>
<td>1055</td>
<td>H.S. Dumas, F. Golse, and P. Lochak</td>
<td>Multiphase averaging for generalized flows on manifolds</td>
</tr>
<tr>
<td>1056</td>
<td>Bei Hu & Hong-Ming Yin</td>
<td>Global solutions and quenching to a class of quasilinear parabolic equations</td>
</tr>
<tr>
<td>1057</td>
<td>Zhangxin Chen</td>
<td>Projection finite element methods for semiconductor device equations</td>
</tr>
<tr>
<td>1058</td>
<td>Peter Guttorp</td>
<td>Statistical analysis of biological monitoring data</td>
</tr>
<tr>
<td>1059</td>
<td>Wensheng Liu & Héctor J. Sussmann</td>
<td>Abnormal sub-Riemannian minimizers</td>
</tr>
<tr>
<td>1060</td>
<td>Chjan C. Lim</td>
<td>A combinatorial perturbation method and Arnold’s whiskered Tori in vortex dynamics</td>
</tr>
<tr>
<td>1061</td>
<td>Yong Liu</td>
<td>Axially symmetric jet flows arising from high speed fiber coating</td>
</tr>
<tr>
<td>1062</td>
<td>Li Qiu & Tongwen Chen</td>
<td>H_2 and H_∞ designs of multirate sampled-data systems</td>
</tr>
<tr>
<td>1063</td>
<td>Eduardo Casas & Jiongmin Yong</td>
<td>Maximum principle for state-constrained optimal control problems governed by quasilinear elliptic equations</td>
</tr>
<tr>
<td>1064</td>
<td>Suzanne M. Lenhart & Jiongmin Yong</td>
<td>Optimal control for degenerate parabolic equations with logistic growth</td>
</tr>
<tr>
<td>1065</td>
<td>Suzanne Lenhart</td>
<td>Optimal control of a convective-diffusive fluid problem</td>
</tr>
<tr>
<td>1066</td>
<td>Enrique Zuazua</td>
<td>Weakly nonlinear large time behavior in scalar convection-diffusion equations</td>
</tr>
<tr>
<td>1067</td>
<td>Caroline Fabre, Jean-Pierre Puel & Enrike Zuazua</td>
<td>Approximate controllability of the semilinear heat equation</td>
</tr>
<tr>
<td>1068</td>
<td>M. Escobedo, J.L. Vazquez & Enrike Zuazua</td>
<td>Entropy solutions for diffusion-convection equations with partial diffusivity</td>
</tr>
<tr>
<td>1069</td>
<td>M. Escobedo, J.L. Vazquez & Enrike Zuazua</td>
<td>A diffusion-convection equation in several space dimensions</td>
</tr>
<tr>
<td>1070</td>
<td>F. Fagnani & J.C. Willems</td>
<td>Symmetries of differential systems</td>
</tr>
<tr>
<td>1071</td>
<td>Zhangxin Chen, Bernardo Cockburn, Joseph W. Jerome & Chi-Wang Shu</td>
<td>Mixed-RKDG finite element methods for the 2-D hydrodynamic model for semiconductor device simulation</td>
</tr>
<tr>
<td>1072</td>
<td>M.E. Bradley & Suzanne Lenhart</td>
<td>Bilinear optimal control of a Kirchhoff plate</td>
</tr>
<tr>
<td>1073</td>
<td>Héctor J. Sussmann</td>
<td>A cornucopia of abnormal subriemannian minimizers. Part I: The four-dimensional case</td>
</tr>
<tr>
<td>1074</td>
<td>Marek Rakowski</td>
<td>Transfer function approach to disturbance decoupling problem</td>
</tr>
<tr>
<td>1075</td>
<td>Yuncheng You</td>
<td>Optimal control of Ginzburg-Landau equation for superconductivity</td>
</tr>
<tr>
<td>1076</td>
<td>Yuncheng You</td>
<td>Global dynamics of dissipative modified Korteweg-de Vries equations</td>
</tr>
<tr>
<td>1077</td>
<td>Mario Taboada & Yuncheng You</td>
<td>Nonuniformly attracting inertial manifolds and stabilization of beam equations with structural and Balakrishnan-Taylor damping</td>
</tr>
<tr>
<td>1078</td>
<td>Michael Böhm & Mario Taboada</td>
<td>Global existence and regularity of solutions of the nonlinear string equation</td>
</tr>
<tr>
<td>1079</td>
<td>Zhangxin Chen</td>
<td>BDM mixed methods for a nonlinear elliptic problem</td>
</tr>
<tr>
<td>1080</td>
<td>J.J.L. Velázquez</td>
<td>On the dynamics of a closed thermosyphon</td>
</tr>
<tr>
<td>1081</td>
<td>Frédéric Bonnans & Eduardo Casas</td>
<td>Some stability concepts and their applications in optimal control problems</td>
</tr>
<tr>
<td>1082</td>
<td>Hong-Ming Yin, $L^2_w(Q)$-estimates for parabolic equations and applications</td>
<td></td>
</tr>
<tr>
<td>1083</td>
<td>David L. Russell & Bing-Yu Zhang</td>
<td>Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation</td>
</tr>
<tr>
<td>1084</td>
<td>J.E. Dunn & K.R. Rajagopal</td>
<td>Fluids of differential type: Critical review and thermodynamic analysis</td>
</tr>
<tr>
<td>1085</td>
<td>Mary Elizabeth Bradley & Mary Ann Horn</td>
<td>Global stabilization of the von Kármán plate with boundary</td>
</tr>
</tbody>
</table>
feedback acting via bending moments only

Mary Ann Horn & Irena Lasiecka, Global stabilization of a dynamic von Kármán plate with nonlinear boundary feedback

Vilmos Komornik, Decay estimates for a petrovski system with a nonlinear distributed feedback

Jesse L. Barlow, Perturbation results for nearly uncoupled Markov chains with applications to iterative methods

Jong-Shenq Guo, Large time behavior of solutions of a fast diffusion equation with source

Tongwen Chen & Li Qiu, H_{∞} design of general multirate sampled-data control systems

Satyanad Kichenassamy & Walter Littman, Blow-up surfaces for nonlinear wave equations, I

Nahum Shimkin, Asymptotically efficient adaptive strategies in repeated games, Part I: certainty equivalence strategies

Caroline Fabre, Jean-Pierre Puel & Enrique Zuazua, On the density of the range of the semigroup for semilinear heat equations

Robert F. Stengel, Laura R. Ray & Christopher I. Marrison, Probabilistic evaluation of control system robustness

H.O. Fattorini & S.S. Sritharan, Optimal chattering controls for viscous flow

Kathryn E. Lenz, Properties of certain optimal weighted sensitivity and weighted mixed sensitivity designs

Gang Bao & David C. Dobson, Second harmonic generation in nonlinear optical films

Avner Friedman & Chaocheng Huang, Diffusion in network

Xinfu Chen, Avner Friedman & Tsuyoshi Kimura, Nonstationary filtration in partially saturated porous media

Walter Littman & Baisheng Yan, Rellich type decay theorems for equations $P(D)u = f$ with f having support in a cylinder

Satyanad Kichenassamy & Walter Littman, Blow-up surfaces for nonlinear wave equations, II

Nahum Shimkin, Extremal large deviations in controlled I.I.D. processes with applications to hypothesis testing

A. Narain, Interfacial shear modeling and flow predictions for internal flows of pure vapor experiencing film condensation

Andrew Teel & Laurent Praly, Global stabilizability and observability imply semi-global stabilizability by output feedback

Karen Rudie & Jan C. Willems, The computational complexity of decentralized discrete-event control problems

John A. Burns & Ruben D. Spies, A numerical study of parameter sensitivities in Landau-Ginzburg models of phase transitions in shape memory alloys

Gang Bao & William W. Symes, Time like trace regularity of the wave equation with a nonsmooth principal part

Lawrence Markus, A brief history of control

Richard A. Brualdi, Keith L. Chavey & Bryan L. Shader, Bipartite graphs and inverse sign patterns of strong sign-nonsingular matrices

A. Kersch, W. Morokoff & A. Schuster, Radiative heat transfer with quasi-monte carlo methods

Jianhua Zhang, A free boundary problem arising from swelling-controlled release processes

Walter Littman & Stephen Taylor, Local smoothing and energy decay for a semi-infinite beam pinned at several points and applications to boundary control

Srdjan Stojanovic & Thomas Svobodny, A free boundary problem for the Stokes equation via nonsmooth analysis

Bronislaw Jakubczyk, Filtered differential algebras are complete invariants of static feedback

Boris Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions

Bei Hu & Hong-Ming Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition

Jin Ma & Jiongmin Yong, Solvability of forward-backward SDEs and the nodal set of Hamilton-Jacobi-Bellman Equations

Chaocheng Huang & Jiongmin Yong, Coupled parabolic and hyperbolic equations modeling age-dependent epidemic dynamics with nonlinear diffusion

Jiongmin Yong, Necessary conditions for minimax control problems of second order elliptic partial differential equations

Eitan Altman & Nahum Shimkin, Worst-case and Nash routing policies in parallel queues with uncertain service allocations

Nahum Shimkin & Adam Shwartz, Asymptotically efficient adaptive strategies in repeated games, part II: Asymptotic optimality

M.E. Bradley, Well-posedness and regularity results for a dynamic Von Kármán plate

Zhangxin Chen, Finite element analysis of the 1D full drift diffusion semiconductor model

Gang Bao & David C. Dobson, Diffraction optics in nonlinear media with periodic structure

Steven Cox & Enrique Zuazua, The rate at which energy decays in a damped string

Anthony W. Leung, Optimal control for nonlinear systems of partial differential equations related to ecology

H.J. Sussmann, A continuation method for nonholonomic path-finding problems