INFINITE DIMENSIONAL HAMILTON-JACOBI EQUATIONS
AND DIRICHLET BOUNDARY CONTROL PROBLEMS
OF PARABOLIC TYPE

By

Piermarco Cannarsa

and

Maria Elisabetta Tessitore

IMA Preprint Series # 1217

March 1994
Infinite Dimensional Hamilton–Jacobi Equations and Dirichlet Boundary Control Problems of Parabolic Type

Piermarco Cannarsa & Maria Elisabetta Tessitore

Dipartimento di Matematica, Università di Roma "Tor Vergata"
Via O. Raimondo, 00173 Roma, Italy

Dipartimento di Matematica, Università di Roma "La Sapienza"
Piazzale A. Moro 2, 00185 Roma, Italy

Abstract

The paper is concerned with an infinite dimensional Hamilton–Jacobi equation. This equation is related to boundary control problems of Dirichlet type for semilinear parabolic systems.

The viscosity solution approach is adapted to the equation under consideration, using the properties of fractional powers of generators of analytic semigroups. An existence and uniqueness result for such problem is obtained.

Key words: Boundary control, viscosity solutions, Hamilton–Jacobi equation, parabolic equations, Dirichlet boundary conditions.

AMS (MOS) subject classifications: 49C20, 35K22, 35K55.

Abbreviated title: Hamilton–Jacobi equations & Dirichlet boundary control

*The research of this author was supported in part by the Institute for Mathematics and its Application with funds provided by the National Science Foundation and in part by the Italian National Project MURST 40% "Problemi nonlineari...".
Infinite Dimensional Hamilton–Jacobi Equations and Dirichlet Boundary Control Problems of Parabolic Type

Piermarco Cannarsa & Maria Elisabetta Tessitore

1 Introduction

In this paper we study the existence and uniqueness of viscosity solutions to the infinite dimensional Hamilton–Jacobi equation

$$\lambda u(x) + < Ax + \Phi(x), Du(x) > + H(A^\beta x, Du(x)) = 0, \quad x \in X,$$ \hfill (1.1)

where X is a real Hilbert space, $\lambda > 0$ and $H : X \times X \to \mathbb{R}$ is continuous. Moreover, $A : D(A) \subset X \to X$ is a closed linear operator with a compact and dense inclusion $D(A) \subset X$. Also, we assume A to be positive and self-adjoint. We denote by A^β the fractional power of A. Finally $\Phi : D(A^\beta) \to D(A^{-\beta})$ is Lipschitz continuous.

There is an increasing interest and a growing literature on Hamilton–Jacobi equations in infinite dimensions. These equations were first studied by V. Barbu & G. Da Prato (see e.g. [2]), setting the problem in classes of convex functions and using semigroup and perturbation methods.

The viscosity solution approach was then adapted to infinite dimensional equations by M. G. Crandall & P. L. Lions in a sequence of papers [9]. This approach was introduced in [8], (see also [7]), for finite dimensional problems. It allows to obtain uniqueness and comparison results for weak solutions of nonlinear first order PDEs. Additional contributions to the viscosity solution method were obtained by M. Soner [18], H. Ishii [14] and D. Tataru [19], [20]. The last two authors treated equations with a maximal monotone operator A, possibly multivalued. On the other hand, due to the presence of the unbounded term A^β inside the Hamiltonian H, the results proved in these papers do not apply to equation (1.1) except for the case of $\beta = 0$.

In this paper we study the above equation for $\beta \in \left(\frac{3}{4}, 1\right]$. We are interested in this problem because it is related to boundary control of parabolic equations under Dirichlet boundary conditions. We now briefly describe such a problem, more details being given in Section 2.

It is well known that an abstract formulation modelling parabolic systems controlled at the boundary is given by

$$\begin{cases}
x'(t) + Ax(t) + F(x(t)) = A^\beta B \gamma(t) \\
x(0) = x_0
\end{cases} \hfill (1.2)
$$

where $x_0 \in X$ and $\gamma : [0, +\infty) \to U$ is measurable, U being another Hilbert space. Moreover, $B : U \to X$ is a bounded operator, $F : X \to X$ is Lipschitz, and A is maximal accretive. Several kinds of boundary conditions are included in the above formulation: for example, Neumann type boundary conditions allow to take $\beta \in \left(\frac{1}{4}, 1\right]$ in (1.2), whereas Dirichlet data restrict the range of β to $\left(\frac{3}{4}, 1\right]$.

Denoting by $x(\cdot; x_0, \gamma)$ the mild solution of (1.2), one then seeks to minimize a suitable cost functional over all controls γ. In this paper, we consider the functional

$$J(x_0; \gamma) = \int_0^\infty e^{-\lambda t} L(x(t; x_0, \gamma), \gamma(t)) dt, \hfill (1.3)$$

where \(\lambda > 0\) and \(L : X \times U \to \mathbb{R}\) is a given running cost.

Boundary control plays a central role in the theory of distributed parameter systems. There is a vast literature dealing with Linear Quadratic problems, see for instance [1], [11], [15], [3]. In this theory, the main tool for constructing optimal boundary controls is represented by the Riccati equation. The technique used to study this equation for Neumann boundary conditions differs substantially from the one used for Dirichlet conditions. In particular, the way to solve Riccati equations for Neumann data does not apply to Dirichlet data, see for instance [12], [13], [10], [15]. In fact, the latter problem requires a much more careful choice of weighted norms and function spaces, see e.g. [3].

For boundary control problems that are not Linear Quadratic, the role of the Riccati equation is played by the Dynamic Programming equation

\[
\lambda u(x) + \langle Ax + F(x), Du(x) \rangle + H(x, A^\beta Du(x)) = 0, \quad x \in X, \tag{1.4}
\]

where \(H : X \times X \to \mathbb{R}\) is defined as

\[
H(x, p) = \sup_{\gamma \in U} \left\{ - \langle B\gamma, p \rangle - L(x, \gamma) \right\}. \tag{1.5}
\]

The value function of problem (1.3), defined as

\[
u(x_0) = \inf \left\{ \int_0^\infty e^{-\lambda t} L(x(t; x_0, \gamma), \gamma(t)) dt \mid \gamma : [0, +\infty) \to U \right\}, \tag{1.6}
\]

is characterized as the unique solution of equation (1.4).

In [5], the viscosity solution approach has been adapted to equation (1.4) for \(\beta \in \left(\frac{1}{4}, \frac{1}{2}\right)\). Therefore the results of [5] yield an existence and uniqueness theorem for the Dynamic Programming equation of boundary control problems of Neumann type. On the other hand, similarly to the Linear Quadratic case, the method of [5] does not apply to (1.4) if \(\beta \geq \frac{1}{2}\) and, in particular, to boundary conditions of Dirichlet type.

In this paper we transform the state equation (1.2) by the change of variable \(y = A^{-\beta}x\). In this way, we obtain a state equation with continuous trajectories. Accordingly, the Dynamic Programming equation (1.4) is transformed into equation (1.1) with \(H\) defined as in (1.5) and

\[
\Phi(x) = A^{-\beta} F(A^\beta x). \tag{1.7}
\]

Following the approach of [14], in Section 3 we give a definition of solution to (1.1) which requires the equation to be satisfied in a suitable viscosity sense only on \(D(A)\). Using this definition, we obtain a comparison result for Hölder continuous viscosity solutions of (1.1), see Theorem 3.2. In Section 4 we prove a Hölder continuity result for the function \(v(x) = u(A^\beta x)\). Moreover, we show that \(v\) is the unique viscosity solution of (1.1), see Corollary 4.3. In particular, our results characterize the value function \(u\) in (1.6) as well.

We conclude this introduction with some comments on possible extensions and applications of our approach. First, we note that the method proposed in this paper applies to both Dirichlet and Neumann boundary control problems. In fact, each of them can be written in the abstract formulation (1.2) with \(\beta \in \left(\frac{3}{4}, 1\right]\). Second, the assumption that \(A = A^*\) has been made just to simplify the exposition. Using similar ideas one can treat systems governed by operators that are not necessarily self-adjoint. On the other hand, to prove that the function \(v\) is a viscosity solution of (1.1), we need to assume that \(-A\) generates an analytic semigroup of compact
operators. Therefore, the results of this paper concerning existence, typically apply to parabolic boundary control problems in bounded space domains.

Finally, the techniques of this paper can also be used to study boundary control problems of Dirichlet type with finite horizon. In this case, the Dynamic Programming equation is an evolution equation. For the corresponding Cauchy problem one can prove existence and uniqueness results. The analogous equation for Neumann boundary control is treated in [6].

2 Preliminaries

Let X and U be two real Hilbert spaces and let $\tilde{U} \subset U$ be closed and bounded. We set $R = \sup_{\gamma \in \tilde{U}} |\gamma|.

Let $x_0 \in X$ and consider the problem of minimizing the functional

$$J(x_0; \gamma) = \int_0^\infty e^{-\lambda t} L(x(t; x_0, \gamma), \gamma(t)) dt$$

over all measurable functions $\gamma : [0, \infty) \to \tilde{U}$ (usually called controls). Here $x(\cdot; x_0, \gamma)$ is the mild solution of

$$\begin{cases}
x'(t) + Ax(t) + F(x(t)) = A^\beta B\gamma(t) \\
x(0) = x_0
\end{cases} \quad (2.2)$$

that is the solution of the integral equation

$$x(t) = e^{-tA}x_0 + \int_0^t e^{-(t-s)A} F(x(s)) ds + A^\beta \int_0^t e^{-(t-s)A} B\gamma(s) ds.$$ \quad (2.3)

In (2.2), A^β denotes the fractional powers of the operator A, see [17]. The discount factor λ is positive and L satisfies the following assumptions

$$(i) \quad L \in C(X \times \tilde{U}), \quad |L(x, \gamma)| \leq C_L, \quad \forall (x, \gamma) \in X \times \tilde{U};$$

$$\quad (ii) \quad |L(x, \gamma) - L(y, \gamma)| \leq K_L|x - y|, \quad \forall \gamma \in \tilde{U}, \quad x, y \in X,$$ \quad (2.4)

for some $C_L > 0$ and $K_L > 0$. Moreover we assume

$$(i) \quad A : D(A) \subset X \to X$ is a closed linear operator

such that $A = A^*$ and $<Ax, x> \geq \omega |x|$ for some $\omega > 0$ and all $x \in D(A)$;

$$(ii) \quad \text{the inclusion } D(A) \subset X \text{ is dense and compact};$$

$$(iii) \quad F : X \to X, \quad |F(x) - F(y)| \leq K_F|x - y|$, $|F(x)| \leq C_F$

$\forall x, y \in X;$$

$$(iv) \quad \beta \in \left(\frac{3}{4}, 1\right);$$

$$(v) \quad \text{there exists } \rho > 0, \text{ such that } B \in \mathcal{L}(U, D(A^\rho)).$$

for some constants $K_F, C_F > 0$.

3
We note that (i) and (ii) imply that $-A$ is the infinitesimal generator of an analytic semigroup satisfying $\|e^{-tA}\| \leq e^{-\omega t}$ for some $\omega > 0$ and all $t \geq 0$. In assumption (v) above, we have denoted by $\mathcal{L}(U, D(A^\delta))$ the Banach space of all bounded linear operator $B : U \to D(A^\delta)$, where $D(A^\delta)$ is equipped with the graph norm.

It is well known that, under the above assumptions, problem (2.3) has a unique solution in $L^2(0, T; X)$ for any $T > 0$. We define the value function of problem (2.1)–(2.2) as

$$u(x_0) = \inf \left\{ \int_0^\infty e^{-\lambda t} L(x(t); x_0, \gamma), \gamma(t))dt \mid \gamma : [0, +\infty) \to \tilde{U} \text{ measurable} \right\} \tag{2.6}$$

Control processes as above are very important for applications. In fact, (2.2) describes the evolution of a system which is governed by a parabolic PDE and controlled by Dirichlet type boundary data. We explain this fact below. Let $\Omega \subset \mathbb{R}^n$ be open and bounded with smooth boundary. Consider the following problem

$$
\begin{align*}
\frac{\partial x}{\partial t}(t, \xi) &= \Delta_\xi x(t, \xi) + f(x(t, \xi)) \quad \text{in } (0, \infty) \times \Omega \\
\gamma_0(t, \xi) &= x_0(\xi) \quad \text{on } \Omega \\
x(t, \xi) &= \gamma(t, \xi) \quad \text{on } (0, \infty) \times \partial \Omega
\end{align*}
\tag{2.7}
$$

where $x_0 \in L^2(\Omega)$, $\gamma \in L^2(0, \infty; L^2(\partial \Omega))$, and $f : \mathbb{R} \to \mathbb{R}$.

Problem (2.7) may be rewritten in abstract form as follows. Let $X = L^2(\Omega), U = L^2(\partial \Omega)$ and define an unbounded operator A in X by

$$
\begin{align*}
D(A) &= H^2(\Omega) \cap H_0^1(\Omega) \\
Ax &= -\Delta x
\end{align*}
$$

Next, we define the Dirichlet map $D : U \to X$ as

$$
D\gamma = x \iff \begin{cases}
\Delta x = 0 & \text{in } \Omega \\
x = \gamma & \text{on } \partial \Omega
\end{cases}
$$

Formally, equation (2.7) may be written as

$$
\begin{align*}
x'(t) + Ax(t) + F(x(t)) &= A\gamma(t) \\
x(t_0) &= x_0
\end{align*}
\tag{2.8}
$$

where

$$F(x)(\xi) = -f(x(\xi)), \quad \forall x \in X.$$

The right-hand side of equation (2.8) is not well defined because the range of D is not contained in $D(A)$. However, we note that D has some regularizing effect. Indeed, by classical results (see e.g. [16]), $D : L^2(\partial \Omega) \to H^\frac{1}{2}(\Omega)$, which may be expressed in abstract form using the fractional powers of A. In fact,

$$
D(A^\theta) = \begin{cases}
H^{2\theta}(\Omega) & \text{if } 0 \leq \theta < \frac{1}{4} \\
\{ x \in H^{2\theta}(\Omega) : x = 0 \text{ on } \partial \Omega \} & \text{if } \frac{1}{4} \leq \theta \leq 1.
\end{cases}
$$
Hence $D : U \rightarrow D(A^\alpha)$ for all $\alpha \in \left[0, \frac{1}{4}\right)$. Consequently, having fixed $\beta \in \left(\frac{3}{4}, 1\right]$ equation (2.8) can be written as

$$\begin{cases}
 x'(t) + Ax(t) + F(x(t)) = A^\beta D_\beta \gamma(t) \\
 x(t_0) = x_0
\end{cases}$$

(2.9)

where $D_\beta = A^{1-\beta} D \in \mathcal{L}(U, X)$. Moreover D_β satisfies (2.5) (v) for any $\rho < \beta - \frac{3}{4}$.

Using the same technique described above, one can show that Neumann type boundary control problems may be formulated in the same abstract form (2.2). In this case β may be taken in the interval $\left(\frac{1}{4}, 1\right]$.

We now return to the analysis of problem (2.6). We note that equation (2.2) has discontinuous trajectories. Therefore, we transform (2.2) by the change of variable

$$y(t) = A^{-\beta} x(t).$$

(2.10)

More precisely, let $y_0 \in X$ and denote by $y(\cdot; y_0, \gamma)$ the solution of

$$\begin{cases}
 y'(t) + A y(t) + A^{-\beta} F(A^\beta y(t)) = B \gamma(t) \\
 y(0) = y_0 \in X
\end{cases}$$

(2.11)

Again the above equation has to be understood in mild form

$$y(t) = e^{-tA} y_0 + A^{-\beta} \int_0^t e^{-(t-s)A} F(A^\beta y(s)) ds + \int_0^t e^{-(t-s)A} B \gamma(s) ds.$$

(2.12)

The solution of (2.12), turns out to be continuous, as we show below.

We recall that, since operator $-A$ is the generator of an analytic semigroup in X, for every $\theta \in [0, 1]$ there exists a constant $M_\theta > 0$ such that

$$|A^{\theta} e^{-tA} x| \leq \frac{M_\theta}{\theta^{|\theta|}} |x|, \quad \forall t > 0, \forall x \in X.$$

(2.13)

Moreover let $\gamma \in (0, 1]$ and $\alpha \in (0, \gamma)$. Then, a well known interpolation inequality, see e.g. [17], states that for every $\sigma > 0$ there exists $C_\sigma > 0$ such that

$$|A^{\alpha} x| \leq \sigma |A^{\gamma} x| + C_\sigma |x|, \quad \forall x \in D(A^n)$$

(2.14)

and there exists $C_{\alpha, \gamma} > 0$ such that

$$|A^{\alpha} x| \leq C_{\alpha, \gamma} |A^{\gamma} x|^{\frac{\alpha}{\gamma^n}} |x|^{1 - \frac{\alpha}{\gamma^n}}, \quad \forall x \in D(A^n).$$

(2.15)

Proposition 2.1 Assume that (2.5) holds. Let $\gamma : [0, \infty) \rightarrow \tilde{U}$ and fix $T > 0$. Then for any $y_0 \in X$ there exists a unique solution

$$y \in C([0, T]; X) \cap L^1(0, T; D(A^\beta)).$$

(2.16)

Moreover, if $y_0 \in D(A^{\frac{1}{2}})$, then

$$y \in C([0, T]; D(A^{\frac{1}{2}})) \cap L^2(0, T; D(A)) \cap W^{1,2}(0, T; X).$$

(2.17)

Finally, if $y_0 \in D(A)$ and $\gamma(\cdot)$ is constant, then

$$y \in C([0, T]; D(A)).$$

(2.18)
Proof – The argument is well known. We sketch the proof for the reader’s convenience. First we show that (2.12) has a unique solution \(y \in L^1(0,T;D(A^\beta)) \). Fix \(y_0 \in X \) and let \(T_1 = \frac{1}{2\beta K_F} \). Define the map \(\Phi \) on \(L^1(0,T_1;D(A^\beta)) \) by
\[
\Phi y(t) = e^{-tA}y_0 + A^{-\beta} \int_0^t e^{-(t-s)A} F(A^\beta y(s))ds + \int_0^t e^{-(t-s)A} B\gamma(s)ds
\]
for any \(0 \leq t \leq T_1 \). Let us prove that
\[
\Phi : L^1(0,T_1;D(A^\beta)) \to L^1(0,T_1;D(A^\beta)).
\]
Indeed, recalling (2.14), we have
\[
\int_0^{T_1} |A^\beta \Phi y(t)| dt \leq \int_0^{T_1} |A^\beta e^{-tA}y_0| dt
\]
\[
+ \int_0^{T_1} \left| \int_0^t e^{-(t-s)A} F(A^\beta y(s))ds \right| dt + \int_0^{T_1} \left| A^\beta \int_0^t e^{-(t-s)A} B\gamma(s)ds \right| dt
\]
\[
\leq M_\beta \int_0^{T_1} \frac{|y_0|}{t^{\beta}} dt + C_F \int_0^{T_1} \left(|A^\beta y(s)| + 1 \right) ds dt + M_\beta \int_0^{T_1} \int_0^t \frac{|B\gamma(s)|}{(t-s)^\beta} ds dt
\]
\[
\leq M_\beta |y_0| T_1^{1-\beta} + C_F T_1 ||y||_{L^1(0,T_1;D(A^\beta))} + C_F T_1^2 + M_\beta R ||B|| T_1^{1-\beta},
\]
recalling that \(|\gamma(s)| \leq R \). Hence \(\Phi y \in L^1(0,T_1;D(A^\beta)) \).

Next we prove that \(\Phi \) is a contraction. For any \(y, z \in L^1(0,T_1;D(A^\beta)) \) we have
\[
\int_0^{T_1} \left| A^\beta (\Phi y(s) - \Phi z(s)) \right| ds
\]
\[
\leq K_F \int_0^{T_1} \int_0^t \left| A^\beta (y(s) - z(s)) \right| ds dt = K_F T_1 ||y(s) - z(s)||_{L^1(0,T_1;D(A^\beta))}.
\]
By the Contraction Map Theorem it follows that equation (2.12) has a unique solution \(y \in L^1(0,T_1;D(A^\beta)) \). Then by classical results, (see e.g. [17]), \(y(t) \in C([0,T_1];X) \). Therefore, iterating this procedure, we can cover the interval \([0,T]\) with a finite number of steps.

As for (2.17), the maximal regularity result \(y \in L^2(0,T;D(A)) \cap W^{1,2}(0,T;X) \) is well known, see e.g. [3]. The fact that \(y \in C([0,T];D(A^{1/2})) \) is also a well known consequence of the maximal regularity result.

Finally, if \(y_0 \in D(A) \) and \(\gamma(\cdot) = \gamma_0 \) is constant, then writing \(y \) as
\[
y(t) = e^{-tA}y_0 + A^{-\beta} \int_0^t e^{-(t-s)A} F(A^\beta y(s))ds + \int_0^t e^{-(t-s)A} B\gamma_0 ds = y_1(t) + A^{-\beta} y_2(t) + y_3(t)
\]
we easily see that, since \(e^{-tA} \) is a strongly continuous semigroup, then \(A y_1 \) is continuous. In addition, \(A y_3(t) = (e^{-tA} - I) B\gamma \) is continuous and so is \(A^{1-\beta} y_2 \) since we know that \(y_2 \in C([0,T];D(A^{1/2})) \) and \(1 - \beta < \frac{1}{2} \).

By inserting the change of variable (2.10) in the cost functional (2.1), we obtain a new optimal control problem whose value function \(v \) is given by
\[
v(y_0) = \inf_{\gamma(t) \in U} \int_0^\infty e^{-\lambda t} L(A^\beta y(t; y_0, \gamma), \gamma(t)) dt.
\]
It is easy to realize that value functions \(v \) and \(u \) are related by the formula

\[
u(x) = v(A^{-\beta}x), \quad \forall x \in X. \tag{2.20} \]

In particular, \(u \) is uniquely determined once \(v \) has been characterized. Therefore, we will study problem (2.11)–(2.19) instead of (2.2)–(2.6).

We will show that \(v \) is the unique solution of the following Hamilton–Jacobi–Bellman equation

\[
\lambda v(x) + H(A^\beta x, Du(x)) + \left\langle Ax + A^{-\beta}F(A^\beta x), Du(x) \right\rangle = 0 \tag{2.21}
\]

where

\[
H(x, p) = \sup_{\gamma \in \mathcal{U}} [- < B\gamma, p > - L(x, \gamma)]. \tag{2.22}
\]

Clearly, one needs a suitable notion of weak solution of problem (2.21), since \(v \) is not everywhere differentiable and the coefficients of the equation are discontinuous. In the sequel, we use viscosity solutions to overcome these difficulties.

3 Definition of viscosity solution and comparison result

In this Section we study the Hamilton–Jacobi equation

\[
\lambda u(x) + H(A^\beta x, Du(x)) + \left\langle Ax + A^{-\beta}F(A^\beta x), Du(x) \right\rangle = 0. \tag{3.1}
\]

We assume that (2.5) holds and that \(H : X \times X \to \mathbb{R} \) is a function, not necessarily given by (2.22), satisfying

\[
|H(A^\beta x, p) - H(A^\beta y, q)| \leq K_H \left(|A^\beta(x - y)| + |p - q| \right) \text{ for some } K_H > 0. \tag{3.2}
\]

Let \(w, \varphi : D(A^{1/2}) \to \mathbb{R} \) be given. For any \(\delta > 0 \) we define \(M^+_\delta(w, \varphi) \) to be the set of all points \(x \in D(A^{1/2}) \) such that

\[
w(x) - \varphi(x) - \frac{\delta}{2}|A^{1/2}x|^2 \geq w(y) - \varphi(y) - \frac{\delta}{2}|A^{1/2}y|^2 \tag{3.3}
\]

for all \(y \in D(A^{1/2}) \). Similarly, we denote by \(M^-_\delta(w, \varphi) \) the set of all points \(x \in D(A^{1/2}) \) such that

\[
w(x) - \varphi(x) + \frac{\delta}{2}|A^{1/2}x|^2 \leq w(y) - \varphi(y) + \frac{\delta}{2}|A^{1/2}y|^2 \tag{3.4}
\]

for all \(y \in D(A^{1/2}) \).

Definition 3.1 We say that a bounded continuous function \(w : X \to \mathbb{R} \) is a viscosity subsolution of (3.1) if \(w \) is sequentially weakly upper semicontinuous, and, for every \(\varphi \in C^1(D(A^{1/2})) \) and \(\delta > 0 \),

(i) \(M^+_\delta(w, \varphi) \subset D(A) \);

(ii) \(\lambda w(x) + H(A^\beta x, D\varphi(x) + \delta Ax) + \left\langle Ax + A^{-\beta}F(A^\beta x), D\varphi(x) \right\rangle \)

\[\]

\[+ \delta |Ax|^2 + \delta \left\langle Ax, A^{-\beta}F(A^\beta x) \right\rangle \leq 0, \forall x \in M^+_\delta(w, \varphi). \tag{3.5}\]
We say that \(w \) is a viscosity supersolution of (3.1) if \(w \) is sequentially weakly lower semicontinuous, and, for every \(\varphi \in C^1(D(A^{\frac{1}{2}})) \) and \(\delta > 0 \),

\begin{align*}
\text{(i)} & \quad M^-(w, \varphi) \subseteq D(A); \\
\text{(ii)} & \quad \lambda w(x) + H(A^\beta x, D\varphi(x) - \delta A x) + \left\langle A x + A^{-\beta} F(A^\beta x), D\varphi(x) \right\rangle \\
& \quad - \delta |Ax|^2 - \delta \left\langle A x, A^{-\beta} F(A^\beta x) \right\rangle \geq 0, \forall x \in M^-(w, \varphi).
\end{align*}

We say that \(w \) is a viscosity solution of (3.1) if it is both a viscosity subsolution and a supersolution of (3.1).

Now we give a comparison result between viscosity subsolutions and supersolutions of (3.1).

Theorem 3.2 Assume that (2.5) and (3.2) hold true and define \(\alpha_\beta \in (0, 1) \) as

\[\alpha_\beta = \frac{4\beta - 3}{2\beta - 1}. \]

Let \(u \) and \(v \) be a viscosity subsolution and supersolution of the Hamilton–Jacobi equation (3.1) respectively. If \(u \) and \(v \) are Hölder continuous of exponent \(\alpha > \alpha_\beta \), then

\[u(x) \leq v(x), \quad \forall x \in X. \]

Proof – For simplicity we take \(\lambda = 1 \). For \(\varepsilon \) and \(\delta \) positive, we define a function \(\phi : D(A^{\frac{1}{2}}) \times D(A^{\frac{1}{2}}) \to \mathbb{R} \) as

\[\phi(x, y) = u(x) - v(y) - \frac{1}{2\varepsilon} < A^{\frac{1}{2}}(x - y), x - y > - \frac{\delta}{2} [< Ax, x > + < Ay, y >]. \]

Notice that \(\phi \) is weakly upper-semicontinuous. Let \((x_{\varepsilon, \delta}, y_{\varepsilon, \delta}) \in D(A^{\frac{1}{2}}) \times D(A^{\frac{1}{2}}) \) be such that

\[\phi(x_{\varepsilon, \delta}, y_{\varepsilon, \delta}) = \max_{D(A^{\frac{1}{2}}) \times D(A^{\frac{1}{2}})} \phi(x, y). \]

First of all we prove that

\[|x_{\varepsilon, \delta} - y_{\varepsilon, \delta}| \leq C_1 \varepsilon^{\frac{1}{2} - \alpha}, \]

where \(C_1 > 0 \) and \(\alpha \) is the Hölder exponent of \(u \) and \(v \). Since

\[\phi(x_{\varepsilon, \delta}, x_{\varepsilon, \delta}) + \phi(y_{\varepsilon, \delta}, y_{\varepsilon, \delta}) \leq 2\phi(x_{\varepsilon, \delta}, y_{\varepsilon, \delta}), \]

from the Hölder continuity of \(u \) and \(v \) we derive

\[\frac{1}{\varepsilon} |x_{\varepsilon, \delta} - y_{\varepsilon, \delta}|^2 \leq C|x_{\varepsilon, \delta} - y_{\varepsilon, \delta}|^{\alpha}, \]

for some positive constant \(C \). Therefore (3.10) holds.

Now let us consider

\[\varphi(x) = v(y_{\varepsilon, \delta}) + \frac{1}{2\varepsilon} < A^{\frac{1}{2}}(x - y_{\varepsilon, \delta}), x - y_{\varepsilon, \delta} > + \frac{\delta}{2} < Ay_{\varepsilon, \delta}, y_{\varepsilon, \delta} > \]

\[\psi(y) = u(x_{\varepsilon, \delta}) - \frac{1}{2\varepsilon} < A^{\frac{1}{2}}(x_{\varepsilon, \delta} - y), x_{\varepsilon, \delta} - y > - \frac{\delta}{2} < Ax_{\varepsilon, \delta}, x_{\varepsilon, \delta} > \]

\[- \delta |Ax|^2 - \delta \left\langle A x, A^{-\beta} F(A^\beta x) \right\rangle \geq 0, \forall x \in M^-(w, \varphi). \]
Notice that \(\varphi, \psi \in C^1(D(A^{\frac{1}{2}})) \). Also, \(x_{\varepsilon, \delta} \in M_0^+(u, \varphi) \) and \(y_{\varepsilon, \delta} \in M_0^-(v, \psi) \) by construction. Since \(u \) is a viscosity subsolution, using \(\varphi \) as a test function, we have

\[
u(x_{\varepsilon, \delta}) + H \left(A^\beta x_{\varepsilon, \delta}, \frac{A^{\frac{1}{2}}(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})}{\varepsilon} + \delta A x_{\varepsilon, \delta} \right) + \frac{1}{\varepsilon} |A^{\frac{3}{2}}(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})|^2
\]

\[
+ \delta \left(A x_{\varepsilon, \delta}, A^{-\beta} F(A^\beta x_{\varepsilon, \delta}) \right) + \left(A x_{\varepsilon, \delta} + A^{-\beta} F(A^\beta x_{\varepsilon, \delta}), \frac{A^{\frac{1}{2}}(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})}{\varepsilon} \right) \right) \leq 0
\]

(3.12)

Since \(v \) is a viscosity supersolution, using \(\psi \) as a test function, we have

\[
u(y_{\varepsilon, \delta}) + H \left(A^\beta y_{\varepsilon, \delta}, \frac{A^{\frac{1}{2}}(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})}{\varepsilon} - \delta A y_{\varepsilon, \delta} \right) - \frac{1}{\varepsilon} |A^{\frac{3}{2}}(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})|^2 \]

\[
- \delta \left(A y_{\varepsilon, \delta}, A^{-\beta} F(A^\beta y_{\varepsilon, \delta}) \right) + \left(A y_{\varepsilon, \delta} + A^{-\beta} F(A^\beta y_{\varepsilon, \delta}), \frac{A^{\frac{1}{2}}(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})}{\varepsilon} \right) \right) \geq 0
\]

(3.13)

Subtracting (3.13) from (3.12), we obtain

\[
u(x_{\varepsilon, \delta}) - \nu(y_{\varepsilon, \delta}) + \delta \left(|A x_{\varepsilon, \delta}|^2 + |A y_{\varepsilon, \delta}|^2 \right) + \frac{1}{\varepsilon} |A^{\frac{3}{2}}(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})|^2 \leq H \left(A^\beta y_{\varepsilon, \delta}, \frac{A^{\frac{1}{2}}(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})}{\varepsilon} - \delta A y_{\varepsilon, \delta} \right) - H \left(A^\beta x_{\varepsilon, \delta}, \frac{A^{\frac{1}{2}}(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})}{\varepsilon} + \delta A x_{\varepsilon, \delta} \right)
\]

\[
- \delta \left[\left(A x_{\varepsilon, \delta}, A^{-\beta} F(A^\beta x_{\varepsilon, \delta}) \right) + \left(A y_{\varepsilon, \delta}, A^{-\beta} F(A^\beta y_{\varepsilon, \delta}) \right) \right]
\]

\[
+ \left(A^{-\beta} \left[F(A^\beta y_{\varepsilon, \delta}) - F(A^\beta x_{\varepsilon, \delta}) \right], \frac{A^{\frac{1}{2}}(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})}{\varepsilon} \right) \right).
\]

(3.14)

Recalling assumption (3.2) on \(H \) and assumption (2.5) on \(F \), the above inequality yields

\[
u(x_{\varepsilon, \delta}) - \nu(y_{\varepsilon, \delta}) + \delta \left(|A x_{\varepsilon, \delta}|^2 + |A y_{\varepsilon, \delta}|^2 \right) + \frac{1}{\varepsilon} |A^{\frac{3}{2}}(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})|^2 \leq K_H \delta \left[|A x_{\varepsilon, \delta}| + |A y_{\varepsilon, \delta}| \right] + K_H |A^\beta(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})|
\]

\[
+ \delta C_F |A^{-\beta}|||A x_{\varepsilon, \delta}| + |A y_{\varepsilon, \delta}| + K_F |A^\beta(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})||A^{\frac{1}{2}}(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})|\varepsilon|.
\]

(3.15)

Now we estimate the right hand side of (3.15). Recalling the interpolation inequality (2.15), we get

\[
K_H |A^\beta(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})| \leq C_2 A(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})^{4\beta - 3}|A^{\frac{3}{2}}(x_{\varepsilon, \delta} - y_{\varepsilon, \delta})|^{4 - 4\beta},
\]

(3.16)

for some \(C_2 > 0 \). Moreover recall the following well known inequality

\[
ab \leq \frac{\sigma}{p} a^p + \frac{1}{\sigma^q} b^q
\]

(3.17)
for every \(a, b \in \mathbb{R}^+, \ p > 1, \ \frac{1}{p} + \frac{1}{q} = 1 \) and \(\sigma > 0 \). Choosing \(\sigma = \left(\frac{\delta}{8} \right)^{\frac{4-\beta}{2}} \) and \(p = \frac{2}{4\beta - 3} \) in (3.16) and applying it to (3.16) we derive

\[
C_2 |A(x, \delta - y, \delta)|^{4\beta - 3} |A^3(x, \delta - y, \delta)|^{4-4\beta}
\leq \frac{\delta}{8} |A(x, \delta - y, \delta)|^2 + \frac{C_3}{\delta^{\frac{4\beta-3}{4\beta}}} |A^3(x, \delta - y, \delta)|^{\frac{8-8\beta}{8-4\beta}},
\]

where \(C_3 \) is some positive constant. On the other hand, again applying (3.17) with \(p = \frac{5 - 4\beta}{4 - 4\beta} \) and \(\sigma = \left(\frac{1}{4\epsilon} \right)^{\frac{4-\beta}{4-4\beta}} \), we find

\[
\frac{C_3}{\delta^{\frac{4\beta-3}{4\beta}}} |A^3(x, \delta - y, \delta)|^{\frac{8-8\beta}{8-4\beta}} \leq \frac{1}{4\epsilon} |A^3(x, \delta - y, \delta)|^2 + \frac{C_4\epsilon^{4-4\beta}}{\delta^{4\beta-3}},
\]

for \(C_4 > 0 \). From estimates (3.18) and (3.19), inequality (3.16) can be rewritten as

\[
K_H |A^\beta(x, \delta - y, \delta)| \leq \frac{\delta}{8} \left[|Ax, \delta|^2 + |Ay, \delta|^2 \right] + \frac{1}{4\epsilon} |A^3(x, \delta - y, \delta)|^2 + \frac{C_4\epsilon^{4-4\beta}}{\delta^{4\beta-3}}.
\]

Moreover

\[
K_H \delta [||Ax, \delta|| + |Ay, \delta||] \leq \frac{\delta}{8} \left[|Ax, \delta|^2 + |Ay, \delta|^2 \right] + C_5\delta,
\]

where \(C_5 \) is a positive constant. On the other hand we get

\[
\delta C_F ||A^-\beta(\delta)||[||Ax, \delta|| + |Ay, \delta||] \leq \frac{\delta}{8} \left[|Ax, \delta|^2 + |Ay, \delta|^2 \right] + C_6\delta,
\]

for \(C_6 > 0 \). Finally from estimate (3.11), it follows

\[
K_F |A^\beta(x, \delta - y, \delta)| \frac{|A^{1-\beta}(x, \delta - y, \delta)|}{\epsilon} \leq \frac{C_7|A^\beta(x, \delta - y, \delta)|}{\epsilon^{\frac{1-a}{2-a}}},
\]

where \(C_7 > 0 \). Applying the interpolation inequality (2.15) and inequality (3.17) to (3.23) as we did in (3.16) we find

\[
\frac{C_7|A^\beta(x, \delta - y, \delta)|}{\epsilon^{\frac{1-a}{2-a}}} \leq \frac{\delta}{8} |A(x, \delta - y, \delta)|^2 + \frac{C_8|A^3(x, \delta - y, \delta)|^{\frac{8-8\beta}{8-4\beta}}}{\delta^{\frac{4\beta-3}{4\beta} \epsilon^{\frac{2-2a}{2-a}}}},
\]

for some positive constant \(C_8 \). Again, using (3.17) in the last term of the above inequality we rewrite (3.23) as

\[
K_F |A^\beta(x, \delta - y, \delta)| \frac{|A^{1-\beta}(x, \delta - y, \delta)|}{\epsilon} \leq \frac{\delta}{8} |A(x, \delta - y, \delta)|^2 + \frac{1}{4\epsilon} |A^3(x, \delta - y, \delta)|^2 + \frac{C_9\epsilon^{4-4\beta}}{\delta^{4\beta-3} \epsilon^{\frac{2-2a}{2-a}}},
\]

(3.24)
with C_9 positive constant. Substituting estimates (3.20), (3.21), (3.22) and (3.24) inequality (3.15) we get

$$u(x_{\delta}, \varepsilon) - v(y_{\delta}, \varepsilon) + \frac{\delta}{2} \left[|Ax_{\delta}|^2 + |Ay_{\delta}|^2 \right] + \frac{1}{2\varepsilon} |A^\beta(x_{\delta}, y_{\delta})|^2 \leq C_{10} \delta + \frac{C_9 \varepsilon^{\gamma}}{\delta^{4\beta - 3}}, \tag{3.25}$$

where $C_{10} > 0$ and $\gamma = 4 - 4\beta - \frac{2 - 2\alpha}{2 - \alpha}$ is positive as $\alpha > \alpha_\beta$. Therefore, if $x \in D(A^{\frac{1}{2}})$ we have

$$u(x) - v(x) = \phi(x, x) + \delta < Ax, x > \leq \phi(x_{\delta}, y_{\delta}) + \delta < Ax, x >$$

$$\leq u(x_{\delta}, \varepsilon) - v(y_{\delta}, \varepsilon) + \delta < Ax, x > \leq C_{10} \delta + \frac{C_9 \varepsilon^{\gamma}}{\delta^{4\beta - 3}} + \delta < Ax, x > .$$

Letting $\varepsilon \to 0$ and then $\delta \to 0$ we conclude that

$$u(x) \leq v(x), \forall x \in D(A^{\frac{1}{2}}).$$

Since $D(A^{\frac{1}{2}})$ is dense in X, we have $u(x) \leq v(x)$ for every $x \in X$. ■

4 Properties of the value function and existence results

In this Section we prove that the value function v of problem (2.11)-(2.19) is the unique viscosity solution of

$$\lambda v(x) + H(A^\beta x, Dv(x)) + \left< Ax + A^{-\beta} F(A^\beta x), Dv(x) \right> = 0 \tag{4.1}$$

where

$$H(x, p) = \sup_{\gamma \in \tilde{U}} \left[- \left< B\gamma, p \right> - L(x, \gamma) \right].$$

We first show a Hölder continuity result for v. We will exploit the technique of [5].

Proposition 4.1 Assume (2.5), (2.4). Then, the value function v defined in (2.19) is Hölder continuous in X with any exponent $\alpha \in (0, 1]$ satisfying $\alpha < \frac{\lambda}{K_F}$. Moreover for any $\theta \in [0, 1 - \beta)$ there exists a constant $C_{\alpha_\theta} > 0$ such that

$$|v(x) - v(y)| \leq C_{\alpha_\theta} |A^{-\theta}(x - y)|^\alpha \tag{4.2}$$

for all $x, y \in X$.

Proof Let $x_0, y_0 \in X$ and $\gamma(t) \in \tilde{U}$ be given. Let us set $x(\cdot) = x(\cdot; x_0, \gamma)$ and $y(\cdot) = y(\cdot; y_0, \gamma)$. Then

$$x(t) = e^{-tA} x_0 + A^{-\beta} \int_0^t e^{-(t-s)A} F(A^\beta x(s)) ds + \int_0^t e^{-(t-s)A} B\gamma(s) ds$$

and

$$y(t) = e^{-tA} y_0 + A^{-\beta} \int_0^t e^{-(t-s)A} F(A^\beta y(s)) ds + \int_0^t e^{-(t-s)A} B\gamma(s) ds$$

for any $t \geq 0$. Now we estimate $|A^\beta(x(t) - y(t))|^\alpha$. From assumption (2.5) and from inequality (2.13) we have

$$|A^\beta(x(t) - y(t))| \leq \frac{M_\theta}{t^{\beta + \theta}} |A^{-\theta}(x_0 - y_0)| + K_F \int_0^t |A^\beta(x(s) - y(s))| ds, \tag{4.3}$$

11
for any $\theta \in [0, 1 - \beta)$. Now set $\eta(t) = \int_0^t |A^\beta(x(s) - y(s))|ds$. Integrating the above inequality we get

$$\eta(t) \leq \frac{M_\theta}{1 - (\beta + \theta)} |A^{-\theta}(x_0 - y_0)| t^{1 - \beta - \theta} + K_F \int_0^t \eta(s) ds$$

By Gronwall's Lemma we obtain an estimate on $\eta(t)$. Applying this estimate to the right hand side of (4.3) we derive

$$|A^\beta(x(t) - y(t))| \leq \left(\frac{C}{t^{ \beta + \theta}} + C e^{K_F t(1 - \beta - \theta)} \right) |A^{-\theta}(x_0 - y_0)|$$

(4.4)

Then, for every $\alpha \in (0, \frac{1}{K_F})$, $\alpha \leq 1$, we have

$$|A^\beta(x(t) - y(t))|^\alpha \leq 2^\alpha \left(\frac{C}{t^{ \alpha(\beta + \theta)}} + C e^{K_F t(1 - \beta - \theta)} \right)^\alpha |A^{-\theta}(x_0 - y_0)|$$

(4.5)

Moreover, by (2.4),

$$\left| L(A^\beta x(t), \gamma(t)) - L(A^\beta y(t), \gamma(t)) \right|$$

$$\leq (2C_L)^{1 - \alpha} \left| L(A^\beta x(t), \gamma(t)) - L(A^\beta y(t), \gamma(t)) \right|^\alpha \leq \tilde{L}|A^\beta(x(t) - y(t))|^\alpha$$

(4.6)

where $\tilde{L} = (2C_L)^{1 - \alpha} K_F^\alpha$. Now choose T such that

$$\frac{2e^{-\lambda T}C_L}{\lambda} \leq |A^{-\theta}(x_0 - y_0)|^\alpha$$

From the definition of value function and from the Dynamic Programming Principle it follows that there exists a control $\gamma(\cdot)$ such that

$$v(y_0) > \int_0^T e^{-\lambda t} L(A^\beta y(t), \gamma(t)) dt + e^{-\lambda T} v(y(T)) - |A^{-\theta}(x_0 - y_0)|^\alpha .$$

Here, we may suppose that $|A^{-\theta}(x_0 - y_0)|^\alpha > 0$, as (4.2) is trivial if $|A^{-\theta}(x_0 - y_0)|^\alpha = 0$.

From the Dynamic Programming Principle and from the above estimate it follows

$$v(x_0) - v(y_0) \leq |A^{-\theta}(x_0 - y_0)|^\alpha$$

$$+ \int_0^T e^{-\lambda t} \left| L(A^\beta x(t), \gamma(t)) - L(A^\beta y(t), \gamma(t)) \right| dt + e^{-\lambda T}[v(x(T)) - v(y(T))]$$

$$\leq 2|A^{-\theta}(x_0 - y_0)|^\alpha + \tilde{L} \int_0^T e^{-\lambda t}|A^\beta(x(t) - y(t))|^\alpha dt .$$

(4.7)

Substituting (4.5) in (4.7), we get

$$v(x_0) - v(y_0) \leq 2|A^{-\theta}(x_0 - y_0)|^\alpha$$

$$+ \tilde{L} 2^\alpha |A^{-\theta}(x_0 - y_0)|^\alpha \int_0^T \left(\frac{C e^{-\lambda t}}{t^{ \alpha(\beta + \theta)}} + C e^{(K_F \alpha - \lambda) t(1 - \beta - \theta) \alpha} \right) dt .$$

The result follows since $\alpha < \frac{1}{K_F}$ and $\theta \in [0, 1 - \beta)$. \blacksquare

We now give an existence result for (4.1).
Theorem 4.2 Assume that (2.5) and (2.4) hold true. Then the value function v is a viscosity solution of (2.21) in the sense of Definition 3.1.

Proof – Recalling the compactness assumption (2.5) (ii), from (4.2) we conclude that v is sequentially weakly continuous in X. It remains to prove that v satisfies (3.5) and (3.6). We show this fact in the next two steps.

Step I – Proof of (3.5).
Let $\gamma \in \hat{U}$ be a constant control, $\varphi \in C^1(D(A^{1/2}))$ and $x \in M^+_\delta(v, \varphi)$. Moreover let $y(\cdot) = y(\cdot; x, \gamma)$. Then, recalling Proposition 2.1, we obtain

$$v(x) - \varphi(x) - \frac{\delta}{2} < Ax, x > \geq v(y(t)) - \varphi(y(t)) - \frac{\delta}{2} < Ay(t), y(t) > \quad (4.8)$$

for every $t \geq 0$. From (4.8) and from the Dynamic Programming Principle it follows

$$\frac{\varphi(x) - \varphi(y(t))}{t} + \frac{\delta}{2} < Ax, x > - < Ay(t), y(t) > \leq \frac{1}{t} \int_0^t e^{-\lambda s} L(A^\alpha y(s), \gamma) ds + \frac{e^{-\lambda t} - 1}{t} v(y(t)). \quad (4.9)$$

Notice that, since by Proposition 2.1 $y \in L^2(0, T; D(A))$, we get

$$\varphi(x) - \varphi(y(t)) = - \int_0^t \left< D\varphi(y(s)), -Ay(s) - A^{-\beta} F(A^\beta y(s)) + B\gamma \right> ds \quad (4.10)$$

and

$$\frac{1}{2} \left< Ax, x > - < Ay(t), y(t) > \right> = - \int_0^t \left< Ay(s), -Ay(s) - A^{-\beta} F(A^\beta y(s)) + B\gamma \right> ds$$

$$= \int_0^t \left(|Ay(s)|^2 + \left< Ay(s), A^{-\beta} F(A^\beta y(s)) - B\gamma \right> \right) ds. \quad (4.11)$$

Therefore, exploiting (4.10) and (4.11), (4.9) can be rewritten as

$$\frac{1}{t} \int_0^t \left< D\varphi(y(s)), Ay(s) + A^{-\beta} F(A^\beta y(s)) - B\gamma \right> ds$$

$$+ \frac{\delta}{t} \int_0^t \left[|Ay(s)|^2 + \left< Ay(s), A^{-\beta} F(A^\beta y(s)) - B\gamma \right> \right] ds \leq \frac{1}{t} \int_0^t e^{-\lambda s} L(A^\alpha y(s), \gamma) ds + \frac{e^{-\lambda t} - 1}{t} v(y(t)). \quad (4.12)$$

By Proposition 2.1 $y \in L^2(0, T; D(A))$ and so

$$\frac{1}{t} \int_0^t \left< D\varphi(y(s)), Ay(s) + A^{-\beta} F(A^\beta y(s)) - B\gamma \right> ds \leq \frac{\delta}{4t} \int_0^t |Ay(s)|^2 ds + C_\delta \quad (4.13)$$

and

$$\frac{\delta}{t} \int_0^t \left< Ay(s), A^{-\beta} F(A^\beta y(s)) - B\gamma \right> ds$$

$$\leq \frac{\delta}{t} \int_0^t ||A^{-\beta}|| C_F |Ay(s)| ds + \frac{\delta}{t} \int_0^t |Ay(s)||B||Rds \leq \frac{\delta}{4t} \int_0^t |Ay(s)|^2 ds + C_\delta \quad (4.14)$$
for some positive C_δ.

From (4.12), (4.13) and (4.14), since v and L are bounded it follows

$$\frac{1}{t} \int_0^t |Ay(s)|^2 ds \leq C_\delta$$

for C_δ positive. Hence, there exists a sequence $\{t_n\}$, $t_n \downarrow 0$ such that

$$|Ay(t_n)| \leq C_\delta.$$

Taking a subsequence we have that $Ay(t_n) \to z$ and $y(t_n) \to x$. Therefore we get $y(t_n) = A^{-1}Ay(t_n) \to A^{-1}z = x$ and so $x \in D(A)$. This proves (3.5) (i).

In order to show that (ii) holds, we recall that if $x \in D(A)$ and $\gamma(\cdot) = \gamma$, then $y \in C([0,T];D(A))$, see Proposition 2.1. Then, passing to the limit as $t \downarrow 0$ in (4.12), we derive

$$\left\langle D\varphi(x), Ax + A^{-\beta}F(A^\beta x) \right\rangle + \left[-\left\langle D\varphi(x), B\gamma \right\rangle \right]$$

$$+ \delta |Ax|^2 + \delta \left\langle Ax, A^{-\beta}F(A^\beta x) \right\rangle + \lambda v(x) \leq 0.$$

Taking the supremum over $\gamma \in \bar{U}$ we obtain (3.5) (ii).

Step II – Proof of (3.6).

Let $\varphi \in C^1(D(A^{1/2}))$ and $x \in M^-_\delta(v, \varphi)$. For every $n \in \mathbb{N}$ there exists a control $\gamma_n(\cdot)$ such that

$$v(x) + \frac{1}{n^2} \geq \int_0^1 e^{-\lambda s} L(A^\beta y_n(s), \gamma_n(s)) ds + e^{-\lambda} v \left(y_n \left(\frac{1}{n} \right) \right),$$

where $y_n(\cdot) = y_n(\cdot ; x, \gamma_n)$. Moreover we get

$$v(x) - \varphi(x) + \frac{\delta}{2} < Ax, x > \leq v \left(y_n \left(\frac{1}{n} \right) \right) - \varphi \left(y_n \left(\frac{1}{n} \right) \right) + \frac{\delta}{2} \left\langle Ay_n \left(\frac{1}{n} \right), y_n \left(\frac{1}{n} \right) \right\rangle.$$

From (4.15) and from the above inequality we obtain

$$n \left[\varphi(x) - \varphi \left(y_n \left(\frac{1}{n} \right) \right) \right] + \frac{\delta n}{2} \left\langle Ay_n \left(\frac{1}{n} \right), y_n \left(\frac{1}{n} \right) \right\rangle - < Ax, x > \geq n \int_0^1 e^{-\lambda s} L(A^\beta y_n(s), \gamma_n(s)) ds + n(e^{-\lambda} - 1)v \left(y_n \left(\frac{1}{n} \right) \right) + \omega \left(\frac{1}{n} \right).$$

Here and in the sequel of the proof we denote by $\omega(t)$ a function such that $\omega(t) \downarrow 0$ as $t \downarrow 0$. Similarly to Step I we have

$$\varphi(x) - \varphi \left(y_n \left(\frac{1}{n} \right) \right) = \int_0^1 \left\langle D\varphi(y_n(s)), Ay_n(s) + A^{-\beta}F(A^\beta y_n(s)) - B\gamma_n(s) \right\rangle ds$$

and

$$\frac{1}{2} \left[\left\langle Ay_n \left(\frac{1}{n} \right), y_n \left(\frac{1}{n} \right) \right\rangle - < Ax, x > \right]$$

$$= \int_0^1 \left\langle Ay_n(s), -Ay_n(s) - A^{-\beta}F(A^\beta y_n(s)) + B\gamma_n(s) \right\rangle ds$$

$$= \int_0^1 \left[-|Ay_n(s)|^2 - \left\langle Ay_n(s), A^{-\beta}F(A^\beta y_n(s)) \right\rangle \right] ds.$$
Therefore inequality (4.16) can be rewritten as
\[
\begin{align*}
n \int_0^{\frac{1}{n}} \left(D\varphi(y_n(s)), Ay_n(s) + A^{-\beta} F(A^\beta y_n(s)) - B\gamma_n(s) \right) ds \\
+ n\delta \int_0^{\frac{1}{n}} \left[-|Ay_n(s)|^2 - \left(Ay_n(s), A^{-\beta} F(A^\beta y_n(s)) \right) + (Ay_n(s), B\gamma_n(s)) \right] ds \\
\geq n \int_0^{\frac{1}{n}} e^{-\lambda s} L(A^\beta y_n(s), \gamma_n(s)) ds + n(e^{-\frac{1}{n}} - 1)v \left(y_n \left(\frac{1}{n} \right) \right) + \omega \left(\frac{1}{n} \right)
\end{align*}
\]
(4.19)
Again, reasoning as in Step I, from the above estimate we derive
\[
n \int_0^{\frac{1}{n}} |Ay_n(s)|^2 ds \leq C_\delta,
\]
hence, there exists a sequence \(\{s_n\}, s_n \downarrow 0\), such that
\[
|Ay_n(s_n)| \leq C, \quad y_n(s_n) \to x \quad \text{and} \quad Ay_n(s_n) \to z.
\]
(4.20)
As in Step I we conclude, that \(x \in D(A)\). Therefore (3.6) (i) holds.
In order to show that (ii) is verified, we have to estimate the terms contained in (4.19). First we note that, by easy computations exploiting estimate (2.13), as \(x \in D(A)\)
\[
\lim_{n \to \infty} \sup_{0 \leq t \leq \frac{1}{n}} |A^\alpha(y_n(t) - x)| = 0,
\]
(4.21)
where \(\alpha \in [0, 1]\). Since \(\varphi \in C^1(D(A^{\frac{1}{2}}))\) and \(x \in D(A)\), by (4.21) we obtain
\[
-n \int_0^{\frac{1}{n}} < D\varphi(y_n(s)), B\gamma_n(s) > ds = -n \int_0^{\frac{1}{n}} < D\varphi(x), B\gamma_n(s) > ds + \omega \left(\frac{1}{n} \right).
\]
(4.22)
Moreover, by (4.21)
\[
n \int_0^{\frac{1}{n}} < D\varphi(y_n(s)), A^{-\beta} F(A^\beta y_n(s)) > ds = < D\varphi(x), A^{-\beta} F(A^\beta x) > + \omega \left(\frac{1}{n} \right).
\]
(4.23)
On the other hand we recall that by assumption (2.5) (v), there exists \(\rho\) such that \(A^\rho B\), is bounded. Hence, (4.21) yields
\[
n \int_0^{\frac{1}{n}} < Ay_n(s), B\gamma_n(s) > ds = n \int_0^{\frac{1}{n}} \left(A^{1-\rho} x, A^\rho B\gamma_n(s) ds \right) + \omega \left(\frac{1}{n} \right)
\]
= \[
= n \int_0^{\frac{1}{n}} < Ax, B\gamma_n(s) > ds + \omega \left(\frac{1}{n} \right).
\]
(4.24)
In addition, from (4.21) we have
\[
-n \int_0^{\frac{1}{n}} \left(Ay_n(s), A^{-\beta} F(A^\beta y_n(s)) \right) ds = -\left(Ax, A^{-\beta} F(A^\beta x) \right) + \omega \left(\frac{1}{n} \right).
\]
(4.25)
Finally, again from (4.21)
\[n \int_0^{\frac{1}{n}} e^{-\lambda s} L(A^\beta y_n(s), \gamma_n(s)) ds = n \int_0^{\frac{1}{n}} L(A^\beta x, \gamma_n(s)) ds + \omega \left(\frac{1}{n} \right). \]

(4.26)

Since \(v \) is continuous, substituting estimates (4.22), (4.23), (4.24), (4.25) and (4.26) in (4.19), we derive
\[\lambda v(x) + n \int_0^{\frac{1}{n}} \left[-\langle D\varphi(x) - \delta Ax, B\gamma_n(s) \rangle - L(A^\beta x, \gamma_n(s)) \right] ds + \langle A^{-\beta} F(A^\beta x), D\varphi(x) \rangle \]
\[+ n \int_0^{\frac{1}{n}} \left[< D\varphi(y_n(s)), A\gamma_n(s) > - \delta |A\gamma_n(s)|^2 \right] ds - \delta \langle Ax, A^{-\beta} F(A^\beta x) \rangle \geq \omega \left(\frac{1}{n} \right). \]

On the other hand, recalling the definition of the Hamiltonian (2.22),
\[n \int_0^{\frac{1}{n}} \left[-\langle D\varphi(x) - \delta Ax, B\gamma_n(s) \rangle - L(A^\beta x, \gamma_n(s)) \right] ds \leq H(A^\beta x, D\varphi(x) - \delta Ax). \]

Therefore, for some sequence \(\{s_n\} \), \(0 \leq s_n \leq \frac{1}{n} \), as in (4.20) it follows that
\[\lambda v(x) + H(A^\beta x, D\varphi(x) - \delta Ax) + < A^{-\beta} F(A^\beta x), D\varphi(x) > - \delta < Ax, A^{-\beta} F(A^\beta x) > \]
\[\geq < D\varphi(y_n(s_n)), A\gamma_n(s_n) > + \delta |A\gamma_n(s_n)|^2 + \omega \left(\frac{1}{n} \right). \]

By (4.20), taking the \(\liminf_{n \to \infty} \) of the right hand side of the above inequality, we derive that
(3.6) (ii) holds.

Combining Theorem 4.2 with Theorem 3.2 we obtain the following existence and uniqueness result for the Hamilton–Jacobi equation (4.1).

Corollary 4.3 Assume that (2.5) and (2.4) hold true and let \(\lambda_F = \min \left\{ 1, \frac{\lambda}{K_F} \right\} \).

Fix
\[\beta \in \left(\frac{3}{4}, \frac{3 - \lambda_F}{4 - 2\lambda_F} \right). \]

(4.27)

Then the value function \(v \) defined in (2.19) is the unique viscosity solution of the Hamilton–Jacobi equation (4.1) satisfying a Hölder condition with exponent \(\alpha \in (\alpha_\beta, 1) \), where \(\alpha_\beta \) is defined in (3.7).

Proof – Applying Theorem 4.2, we obtain that \(v \) is a viscosity solution of equation (4.1). From Proposition 4.1 it follows that \(v \) is Hölder continuous of exponent \(\alpha \) for any \(0 < \alpha < \lambda_F \). From (4.27) it is easily seen that \(\lambda_F > \alpha_\beta \). The proof of existence is thus complete. As for uniqueness we note that assumption (2.4) implies that the Hamiltonian (2.22) satisfies hypothesis (3.2). Therefore uniqueness follows from Theorem 3.2.
References

Part VI: *Nonlinear A and Tataru’s method refined*, pre-print.
Part VII: *The HJB equation is not always satisfied*, pre-print.

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1135</td>
<td>Avner Friedman & J.L. Velázquez</td>
<td>The analysis of coating flows in a strip</td>
</tr>
<tr>
<td>1136</td>
<td>Eduardo D. Sontag</td>
<td>Control of systems without drift via generic loops</td>
</tr>
<tr>
<td>1137</td>
<td>Yuan Wang & Eduardo D. Sontag</td>
<td>Orders of input/output differential equations and state space dimensions</td>
</tr>
<tr>
<td>1138</td>
<td>Scott W. Hansen</td>
<td>Boundary control of a one-dimensional, linear, thermoelastic rod</td>
</tr>
<tr>
<td>1139</td>
<td>Robert Lipton & Bogdan Vernescu</td>
<td>Homogenization of two phase emulsions with surface tension effects</td>
</tr>
<tr>
<td>1140</td>
<td>Scott Hansen & Enrique Zuazua</td>
<td>Exact controllability and stabilization of a vibrating string with an interior point mass</td>
</tr>
<tr>
<td>1141</td>
<td>Bei Hu & Jiongmin Yong</td>
<td>Pontryagin Maximum principle for semilinear and quasilinear parabolic equations with pointwise state constraints</td>
</tr>
<tr>
<td>1142</td>
<td>Mark H.A. Davis</td>
<td>A deterministic approach to optimal stopping with application to a prophet inequality</td>
</tr>
<tr>
<td>1143</td>
<td>M.H.A. Davis & M. Zervos</td>
<td>A problem of singular stochastic control with discretionery stopping</td>
</tr>
<tr>
<td>1144</td>
<td>Bernardo Cockburn & Pierre-Alain Gremaud</td>
<td>An error estimate for finite element methods for scalar conservation laws</td>
</tr>
<tr>
<td>1145</td>
<td>David C. Dobson & Fadil Santosa</td>
<td>An image enhancement technique for electrical impedance tomography</td>
</tr>
<tr>
<td>1146</td>
<td>Jin Ma, Philip Protter, & Jiongmin Yong</td>
<td>Solving forward-backward stochastic differential equations explicitly — a four step scheme</td>
</tr>
<tr>
<td>1147</td>
<td>Yong Liu</td>
<td>The equilibrium plasma subject to skin effect</td>
</tr>
<tr>
<td>1148</td>
<td>Ulrich Hornung</td>
<td>Models for flow and transport through porous media derived by homogenization</td>
</tr>
<tr>
<td>1149</td>
<td>Avner Friedman, Chaoceng Huang, & Jiongmin Yong</td>
<td>Effective permeability of the boundary of a domain</td>
</tr>
<tr>
<td>1150</td>
<td>Gang Bao</td>
<td>A uniqueness theorem for an inverse problem in periodic diffractive optics</td>
</tr>
<tr>
<td>1151</td>
<td>Angelo Favini, Mary Ann Horn,& Irena Lasiacka</td>
<td>Global existence and uniqueness of regular solutions to the dynamic von Kármán system with nonlinear boundary dissipation</td>
</tr>
<tr>
<td>1152</td>
<td>E.G. Kalnins & Willard Miller, Jr.</td>
<td>Models of q-algebra representations: q-integral transforms and “addition theorems”</td>
</tr>
<tr>
<td>1153</td>
<td>E.G. Kalnins, V.B. Kuznetso & Willard Miller, Jr.</td>
<td>Quadrics on complex Riemannian spaces of constant curvature, separation of variables and the Gaudin magnet</td>
</tr>
<tr>
<td>1154</td>
<td>A. Kersch, W. Morokov & Chr. Werner</td>
<td>Selfconsistent simulation of sputtering with the DSMC method</td>
</tr>
<tr>
<td>1155</td>
<td>Bing-Yu Zhang</td>
<td>A remark on the Cauchy problem for the Korteweg-de Vries equation on a periodic domain</td>
</tr>
<tr>
<td>1156</td>
<td>Gang Bao</td>
<td>Finite element approximation of time harmonic waves in periodic structures</td>
</tr>
<tr>
<td>1157</td>
<td>Tao Lin & Hong Wang</td>
<td>Recovering the gradients of the solutions of second-order hyperbolic equations by interpolating the finite element solutions</td>
</tr>
<tr>
<td>1158</td>
<td>Zhangxin Chen</td>
<td>L^p-posteriori error analysis of mixed methods for linear and quasilinear elliptic problems</td>
</tr>
<tr>
<td>1159</td>
<td>Todd Arbogast & Zhangxin Chen</td>
<td>Homogenization of compositional flow in fractured porous media</td>
</tr>
<tr>
<td>1160</td>
<td>L. Qiu, B. Bernhardsson, A. Rantzser, E.J. Davison, P.M. Young & J.C. Doyle</td>
<td>A formula for computation of the real stability radius</td>
</tr>
<tr>
<td>1161</td>
<td>Maria Inés Troparevsky</td>
<td>Adaptive control of linear discrete time systems with external disturbances under inaccurate modelling: A case study</td>
</tr>
<tr>
<td>1162</td>
<td>Petr Klouček & Franz S. Rys</td>
<td>Stability of the fractional step Θ-scheme for the nonstationary Navier-Stokes equations</td>
</tr>
<tr>
<td>1163</td>
<td>Eduardo Casas, Luis A. Fernández & Jiongmin Yong</td>
<td>Optimal control of quasilinear parabolic equations</td>
</tr>
<tr>
<td>1164</td>
<td>Darrell Duffie, Jin Ma & Jiongmin Yong</td>
<td>Black’s consol rate conjecture</td>
</tr>
<tr>
<td>1165</td>
<td>D.G. Aronson & J.L. Vazquez</td>
<td>Anomalous exponents in nonlinear diffusion</td>
</tr>
<tr>
<td>1166</td>
<td>Ruben D. Spies</td>
<td>Local existence and regularity of solutions for a mathematical model of thermomechanical phase transitions in shape memory materials with Landau-Ginzburg free energy</td>
</tr>
<tr>
<td>1167</td>
<td>Pu Sun</td>
<td>On circular pipe Poiseuille flow instabilities</td>
</tr>
<tr>
<td>1168</td>
<td>Angelo Favini, Mary Ann Horn, Irena Lasiecka & Daniel Tataru</td>
<td>Global existence, uniqueness and regularity of solutions to a Von Kármán system with nonlinear boundary dissipation</td>
</tr>
<tr>
<td>1169</td>
<td>A. Dontchev, Tz. Donchev & I. Slavov</td>
<td>On the upper semicontinuity of the set of solutions of differential inclusions with a small parameter in the derivative</td>
</tr>
<tr>
<td>1170</td>
<td>Jin Ma & Jiongmin Yong</td>
<td>Regular-singular stochastic controls for higher dimensional diffusions — dynamic programming approach</td>
</tr>
<tr>
<td>1171</td>
<td>Alex Solomonoff</td>
<td>Bayes finite difference schemes</td>
</tr>
<tr>
<td>1172</td>
<td>Todd Arbogast & Zhangxin Chen</td>
<td>On the implementation of mixed methods as nonconforming methods for second order elliptic problems</td>
</tr>
<tr>
<td>1173</td>
<td>Zhangxin Chen & Bernardo Cockburn</td>
<td>Convergence of a finite element method for the drift-diffusion semiconductor device equations: The multidimensional case</td>
</tr>
<tr>
<td>1174</td>
<td>Boris Mordukhovich</td>
<td>Optimization and finite difference approximations of nonconvex differential inclusions with free time</td>
</tr>
</tbody>
</table>
Avner Friedman, David S. Ross, and Jianhua Zhang, A Stefan problem for reaction-diffusion system

Alex Solomonoff, Fast algorithms for micromagnetic computations

Nikan B. Firoozaye, Homogenization on lattices: Small parameter limits, H-measures, and discrete Wigner measures

G. Yin, Adaptive filtering with averaging

Wlodzimierz Bryc and Amir Dembo, Large deviations for quadratic functionals of Gaussian processes

Ilja Schmelzer, 3D anisotropic grid generation with intersection-based geometry interface

Alex Solomonoff, Application of multipole methods to two matrix eigenproblems

A.M. Latypov, Numerical solution of steady euler equations in streamline-aligned orthogonal coordinates

Bei Hu & Hong-Ming Yin, Semilinear parabolic equations with prescribed energy

Bei Hu & Jianhua Zhang, Global existence for a class of Non-Fickian polymer-penetrant systems

Rongze Zhao & Thomas A. Posbergh, Robust stabilization of a uniformly rotating rigid body

Mary Ann Horn & Irena Lasiecka, Uniform decay of weak solutions to a von Kármán plate with nonlinear boundary dissipation

Mary Ann Horn, Irena Lasiecka & Daniel Tataru, Well-posedness and uniform decay rates for weak solutions to a von Kármán system with nonlinear dissipative boundary conditions

Mary Ann Horn, Nonlinear boundary stabilization of a von Kármán plate via bending moments only

Frank H. Shaw & Charles J. Geyer, Constrained covariance component models

Tomasz Luczaka, A greedy algorithm estimating the height of random trees

Timo Seppäläinen, Maximum entropy principles for disordered spins

Yuandan Lin, Eduardo D. Sontag & Yuan Wang, Recent results on Lyapunov-theoretic techniques for nonlinear stability

Svante Janson, Random regular graphs: Asymptotic distributions and contiguity

Rachid Ababou, Random porous media flow on large 3-D grids: Numerics, performance, & application to homogenization

Moshe Fridman, Hidden Markov model regression

Petr Klouček, Bo Li & Mitchell Luskin, Analysis of a class of nonconforming finite elements for Crystalline microstructures

Steven P. Lalley, Random series in inverse Pisot powers

Rudy Yaksic, Expected optimal exercise time of a perpetual American option: A closed-form solution

Rudy Yaksic, Valuation of an American put catastrophe insurance futures option: A Martingale approach

János Pach, Farhad Shahrokhi & Mario Szegedy, Application of the crossing number

Avner Friedman & Chaocheng Huang, Averaged motion of charged particles under their self-induced electric field

Joel Spencer, The Erdős-Hanani conjecture via Talagrand’s inequality

Zhangxin Chen, Superconvergence results for Galerkin methods for wave propagation in various porous media

Russell Lyons, Robin Pemantle & Yuval Peres, When does a branching process grow like its mean? Conceptual proofs of $L \log L$ criteria

Robin Pemantle, Maximum variation of total risk

Robin Pemantle & Yuval Peres, Galton-Watson trees with the same mean have the same polar sets

Robin Pemantle, A shuffle that mixes sets of any fixed size much faster than it mixes the whole deck

Itai Benjamini, Robin Pemantle & Yuval Peres, Martin capacity for Markov chains and random walks in varying dimensions

Wlodzimierz Bryc & Amir Dembo, On large deviations of empirical measures for stationary Gaussian processes

Martin Hildebrand, Some random processes related to affine random walks

Alexander E. Mazel & Yuriii M. Suhov, Ground states of a Boson quantum lattice model

Roger L. Fosdick & Darren E. Mason, Single phase energy minimizers for materials with nonlocal spatial dependence

Bruce Hajek, Load balancing in infinite networks

Petr Klouček, The transonic flow problems stability analysis and numerical results

Petr Klouček, On the existence of the entropic solutions for the transonic flow problem

David A. Schmidt & Chjan C. Lim, Full sign-invertibility and symplectic matrices

Piermarco Cannarsa & Maria Elisabetta Tessitore, Infinite dimensional Hamilton-Jacobi equations and Dirichlet boundary control problems of parabolic type

Zhangxin Chen, Multigrid algorithms for mixed methods for second order elliptic problems

Zhangxin Chen, Expanded mixed finite element methods for linear second order elliptic problems

Gang Bao, A note on the uniqueness for an inverse diffraction problem

Moshe Fridman, A two state capital asset pricing model

Paolo Baldi, Exact asymptotics for the probability of exit from a domain and applications to simulation

Carl Dou & Martin Hildebrand, Enumeration and random random walks on finite groups

Jaksa Cvitanic & Ioannis Karatzas, On portfolio optimization under “drawdown” constraints

Avner Friedman & Yong Liu, A free boundary problem arising in magnetohydrodynamic system