ON THE UNIQUENESS OF SOLUTIONS OF SOME SECOND ORDER DIFFERENTIAL EQUATIONS

By

Chao-Nien Chen

IMA Preprint Series # 791
March 1991
ON THE UNIQUENESS OF SOLUTIONS OF SOME SECOND ORDER DIFFERENTIAL EQUATIONS

CHAO–NIEN CHEN*

§1 Introduction. In [1] we proved a uniqueness result for the solutions of

\begin{align*}
(I)_a & \quad -u'' = \lambda u - \psi(w(x)|u|)u \quad , \quad a < x < \infty \ , \\
& \quad u(a) \cos \theta - u'(a) \sin \theta = 0 \ , \quad u \in L^2[a, \infty) ,
\end{align*}

where $\lambda > 0$ and $\theta \in [0, \frac{\pi}{2}]$. For notational convenience, let $S^+_{a,n}$ denote the set of $u \in C^2[a, \infty) \cap H^1[a, \infty)$ such that u satisfies $(I)_a$, $u > 0$ in a deleted neighborhood of $x = a$, and u has exactly $n - 1$ simple zeros in (a, ∞), where $a \geq 0$ and $n \in \mathbb{N}$. Similarly $S^-_{a,n}$ denotes the set $u < 0$ in a deleted neighborhood of $x = a$. It has been shown in [1] that problem $(I)_a$ has at most one solution in each nodal class $S^\pm_{a,n}$ provided that the functions ψ and w are continuously differentiable and satisfy the following conditions:

(\psi 1) $\psi(0) = 0$ and for $t > 0$, $\psi'(t) > 0$ and $\psi(t) \geq p \cdot t^q$ for some $p, q > 0$.

(w 1) $w > 0$, $w'(0) \geq 0$ and $\frac{w'}{w}$ is nondecreasing on $[0, \infty)$.

The method we used in [1] was shooting with the aid of comparison. Our aim in this note is to describe a new proof which makes use of comparison arguments only. This proof is more concise and requires less smoothness on the functions ψ and w; we can treat problem $(I)_a$ when ψ and w are continuous, but not C^1 as in the preceding proof. Moreover, the new proof reveals more information about the locations of the nodes of the solutions (see Lemma 1 and Remark 4). For the existence of solutions of $(I)_a$, we refer to [2–6] and the references therein.

*Department of Mathematics, Indiana University, Bloomington, IN 47405
There are some generalizations about utilizing such comparison arguments for showing uniqueness of solutions of certain boundary value problems. They will be discussed in the final section.

§2 A new proof for uniqueness. Throughout this section, the functions \(\psi \) and \(w \) are assumed to satisfy the following conditions.

\((\psi 2)\) \(\psi(0) = 0 \), \(\psi \) is locally Lipschitz continuous and strictly increasing on \([0, \infty)\).

\((w 2)\) \(w \) is a positive continuous function and for any \(\delta > 0 \), the function \(g_\delta(x) = \frac{w(x+\delta)}{w(x)} \)

is a nondecreasing function of \(x \) for \(x \in [0, \infty) \).

Remark 1. If \(w \) is positive and \(\frac{w'}{w} \) is nondecreasing on \([0, \infty)\), it is easy to check that \((w2)\) is satisfied by invoking the identity \(\frac{w(x+\delta)}{w(x)} = \exp \left(\int_0^{x+\delta} \frac{w'(t)}{w(t)} \, dt \right) \).

Theorem 1. Let \(\theta = 0 \) and \(\lambda \) be a fixed positive number. If \((\psi 2)\) and \((w 2)\) are satisfied, then for every \(a \geq 0 \) and \(n \in \mathbb{N} \), \(S_{a,n}^\pm \) contains at most one element.

Theorem 2. Let \(\theta \in (0, \frac{\pi}{2}] \) and \(\lambda > 0 \) be fixed. In addition to \((\psi 2)\) and \((w 2)\), if \(w \) is a nondecreasing function on \([0, \infty)\), then for every \(a \geq 0 \) and \(n \in \mathbb{N} \), \(S_{a,n}^\pm \) contains at most one element.

Remark 2. (a) It is known that \(u \equiv 0 \) is the only solution of \((I)_a\) if \(\lambda \leq 0 \).

(b) In case \(0 < \theta \leq \frac{\pi}{2} \), the need for the extra assumption has been indicated in [1, Remark 1.2.(a)]. The key point is that Lemma 1.30(iii) of [2] rests on the same sort of assumption and will be used in the proof.

(c) In fact, Theorems 1 and 2 are valid for an equation having a more general nonlinear
term than that of Eq (1); that is, instead of \(\psi(w(x)|u|)u \), we can consider

\[
F(x, u)u = \begin{cases}
\psi_1(w(x)|u|)u \quad \text{if} \quad u \geq 0 \\
\psi_2(w(x)|u|)u \quad \text{if} \quad u < 0
\end{cases}
\]

with both \(\psi_1 \) and \(\psi_2 \) satisfying (\(\psi_2 \)). For simplicity we will carry out the proof for the case \(\psi_1 = \psi_2 \) only since there is no essential difference in the proof when \(\psi_1 \neq \psi_2 \).

(d) In [1] the nonlinear term of Eq (1) was written in the form \(\psi(w(x)|u|^\sigma)u \), where \(\sigma \) is a positive number. However, one can rewrite \(\psi(w(x)|u|^\sigma) \) in a simpler form \(\tilde{\psi}(\tilde{w}(x)|u|) \) with \(\tilde{w}(x) = (w(x))^{1/\sigma} \) and \(\tilde{\psi} = \psi \circ h \), where \(h(t) = t^\sigma \), since \(\psi \) and \(w \) satisfy (\(\psi_2 \)) and (\(w_2 \)) if and only if \(\tilde{\psi} \) and \(\tilde{w} \) do.

(e) With slight modifications in the proofs of Theorems 1 and 2, one can show the same sort of uniqueness results for the solutions of Eq. (1) on the bounded intervals under the boundary conditions \(u(a) \cos \theta - u'(a) \sin \theta = 0 \) and \(u(b) = 0 \).

(f) The new proof covers the case \(n \geq 2 \) only. We recall that the uniqueness of positive and negative solutions of \((I)_a \) as well as its counterpart on the bounded interval case has already been established in [2, Theorem 1.5].

Since the proofs of Theorem 1 and Theorem 2 are similar, only the former will be carried out. The proof of Theorem 1 rests on the following two preliminary lemmas.

Lemma 1. Let \(n \) be a fixed positive integer. Suppose for \(1 \leq l \leq n \) that \(S_{a,l}^\pm \) contains at most one element for every \(a \geq 0 \). For any \(\beta > b \geq 0 \), if \(u \in S_{b,n}^+ \) and \(v \in S_{\beta,n}^+ \) then

\[
|u'(b)| \geq \frac{w(\beta)}{w(b)} |v'(\beta)| .
\]
Moreover, if z_k is the k-th zero of u in (b, ∞) and \tilde{z}_k is the k-th zero of \tilde{v} in (β, ∞) then

$$z_k - z_{k-1} \geq \tilde{z}_k - \tilde{z}_{k-1} \quad (4)$$

for $1 \leq k \leq n - 1$, where $z_0 = b$ and $\tilde{z}_0 = \beta$. The same result holds if $u \in S_{b,n}^-$ and $v \in S_{\beta,n}^-$.

For what follows in this section, we let $V_+(a,b,\cdot)$ denote the unique positive solution of

$$(I)_{a,b} \quad -u'' = \lambda u - \psi(w(x)|u|)u \quad , \quad a < x < b \quad , \quad u(a) = u(b) = 0$$

if the positive solution exists.

Lemma 2. Let $\beta > b > 0$. If $V_+(a,b,\cdot)$ and $V_+(a,\beta,\cdot)$ exist then

$$|V'_+(a,b,b)| < \frac{w(\beta)}{w(b)} \frac{|V'_+(a,\beta,\beta)|}{|V'_+(a,b,b)|} \quad . \quad (5)$$

Proof of Theorem 1. We proceed the proof by induction. Since $n = 1$ is true by Remark 2 (f), it suffices to show that

if for every $a > 0$ and $1 \leq l \leq n$, $S_{a,l}^\pm$ contains at most one element

$$\text{then so does } S_{a,n+1}^\pm \quad . \quad (6)$$

We prove (6) indirectly. Suppose that $u, \tilde{u} \in S_{a,n+1}^+$. Let b and β be the first zero of u and \tilde{u} in (a, ∞) respectively. Let $u_1(x) = u(x)$ for $x \in [b, \infty)$ and $\tilde{u}_1(x) = \tilde{u}(x)$ for $x \in [\beta, \infty)$. It is clear that $u_1 \in S_{b,n}^-$ and $\tilde{u}_1 \in S_{\beta,n}^-$. By the induction hypothesis we know that $b \neq \beta$. Without loss of generality, we may assume that $\beta > b$. It follows from Lemma 1 that

$$|u'_1(b)| \geq \frac{w(\beta)}{w(b)} |\tilde{u}'_1(\beta)| \quad . \quad (7)$$
By the uniqueness of positive solution of \((I)_{a,b}\) we know that \(u(x) = V_+(a, b, x)\) if \(x \in [a, b]\).

Similarly \(\tilde{u}(x) = V_+(a, \beta, x)\) for \(x \in [a, \beta]\). Invoking Lemma 2 yields

\[
\frac{w(\beta)}{w(b)} |V'_+(a, \beta, \beta)| > |V'_+(a, b, b)|. \tag{8}
\]

Combining (7) with (8) gives

\[
|u'(b)| = |u'_1(b)| \geq \frac{w(\beta)}{w(b)} |\tilde{u}'_1(\beta)| = \frac{w(\beta)}{w(b)} |\tilde{u}'(\beta)| = \frac{w(\beta)}{w(b)} |V'_+(a, \beta, \beta)| > |V'_+(a, b, b)| = |u'(b)|,
\]

which is absurd. Thus \(S^+_{a,n+1}\) contains at most one element.

The proof of \(S^-_{a,n+1}\) is similar.

We are now going to prove Lemma 1 and Lemma 2. We first prove the following lemma which contains a partial result of Lemma 1.

Lemma 3. For any \(\beta > b \geq 0\), if \(u \in S^+_{b,1}\) and \(v \in S^+_{\beta,1}\) then

\[
|u'(b)| \geq \frac{w(\beta)}{w(b)} |v'(\beta)|. \tag{9}
\]

The same result holds if \(u \in S^-_{b,1}\) and \(v \in S^-_{\beta,1}\).

Proof of Lemma 3. We prove the case \(u \in S^+_{b,1}\) and \(v \in S^+_{\beta,1}\) only. Let \(\delta = \beta - b\) and \(\eta(x) = v(x + \delta)\) for \(x \in [b, \infty)\). Then by direct computation, we get

\[
-\eta''(x) = \lambda \eta(x) - \psi \left(\frac{w(x + \delta)}{w(x)} w(x) |\eta(x)| \right) \eta(x) \\
\leq \lambda \eta(x) - \psi \left(\frac{w(\beta)}{w(b)} w(x) |\eta(x)| \right) \eta(x),
\]

5
the last inequality follows from the assumptions (w2) and (ψ2). Let ζ(x) be the unique positive solution of

\[-ζ'' = λζ - ψ \left(\frac{w(β)}{w(β)} w(x)|ζ| \right) ζ , \]
\[ζ(b) = 0 , ζ \in L^2[b, \infty) . \]

It follows from [2, Lemma 1.8] that

\[|η'(b)| ≤ |ζ'(b)| . \quad (10) \]

Invoking [1, Lemma 2.2], we know that \(u'(b) = \frac{w(β)}{w(β)} ζ'(b) \). This together with (10) yields

\[|u'(b)| ≥ \frac{w(β)}{w(β)} |η'(b)| = \frac{w(β)}{w(β)} |v'(β)| \]

which completes the proof.

We are now in the position to prove Lemma 1 and Lemma 2. We prove Lemma 2 first.

Proof of Lemma 2. Let \(δ = β - b \) and \(η(x) = V_+(a, b, x - δ) \) for \(x \in [a + δ, β] \). Arguing like in obtaining (10), we have

\[-η'' ≤ λη - ψ \left(\frac{w(β)}{w(β)} w(x)|η| \right) η \]

and hence

\[|η'(β)| ≤ |ζ'(β)| \quad (11) \]

by making use of [2, Lemma 1.8], where ζ is the unique positive solution of

\[-ζ'' = λζ - ψ \left(\frac{w(β)}{w(β)} w(x)|ζ| \right) ζ , \]
\[ζ(a + δ) = ζ(β) = 0 . \]
Invoking [2, Lemma 1.30] and [1, Lemma 2.2], we get

\[|V'_+(a, \beta, \beta)| > |V'_+(a + \delta, \beta, \beta)| = \frac{w(b)}{w(\beta)} |\zeta'(\beta)| . \] (12)

This together with (11) and the fact that \(\eta'(\beta) = V'_+(a, b, b) \) yields (5).

Remark 3. In applying [2, Lemma 1.30], the inequality appeared in (12) should be in the strict sense since the function \(\psi \) is assumed to be locally Lipschitz continuous. Also the part of results we invoked in this lemma need not the assumption (F2) imposed there.

In the proof of Lemma 1, the uniqueness of positive or negative solution of \((I)_a\) or \((I)_{a,b}\), and the fact just mentioned in Remark 3 will be used without further comment. We let \(V_+(a, \infty, \cdot) \) denote the unique positive solution of \((I)_a\). The fact \(V_- = -V_+ \) will be used in the proof only for the sake of simplicity but making no essential difference in case \(\psi_1 \neq \psi_2 \), where \(V_- \) is the unique negative solution of \((I)_a\) or \((I)_{a,b}\).

Proof of Lemma 1. We proceed the proof by induction. For \(n = 1 \), (4) is void and (3) is true by Lemma 3. We now prove (4) for \(n = 2 \). We first prove \(\tilde{z}_1 > z_1 \) by arguing indirectly. Suppose that \(z_1 \geq \tilde{z}_1 \). It follows from Lemma 3 that

\[|V'_+(\tilde{z}_1, \infty, \tilde{z}_1)| \geq \frac{w(z_1)}{w(\tilde{z}_1)} |V'_+(z_1, \infty, z_1)| . \] (13)

Invoking [2, Lemma 1.30] and Lemma 2 yields

\[|V'_+(\beta, \tilde{z}_1, \tilde{z}_1)| < |V'_+(b, \tilde{z}_1, \tilde{z}_1)| \leq \frac{w(z_1)}{w(\tilde{z}_1)} |V'_+(b, z_1, z_1)| . \] (14)

Since \(u \in S^{+}_{b,2} \), we know that \(|V'_+(b, z_1, z_1)| = |u'(z_1)| = |V'_-(z_1, \infty, z_1)| = |V'_+(z_1, \infty, z_1)| \). This together with (13) and (14) yields

\[|V'_+(\beta, \tilde{z}_1, \tilde{z}_1)| < |V'_+(\tilde{z}_1, \infty, \tilde{z}_1)| = |V'_-(\tilde{z}_1, \infty, \tilde{z}_1)| \]

which contradicts the fact that \(v \in S^{+}_{\beta,2} \). Thus we have \(\tilde{z}_1 > z_1 \).
Suppose that \(z_1 - z_0 < \tilde{z}_1 - \tilde{z}_0 \). Let \(\delta = \tilde{z}_1 - z_1 \). It follows that \(\delta > \tilde{z}_0 - z_0 = \beta - b \). Let \(\eta(x) = V_+(b, z_1, x - \delta) \) for \(x \in [\beta, \tilde{z}_1] \). Then it follows from the argument used in proving Lemma 2 that

\[
|\eta'(\tilde{z}_1)| \leq \frac{w(\tilde{z}_1)}{w(z_1)} |V'_+(b + \delta, \tilde{z}_1, \tilde{z}_1)| .
\]

(15)

Since \(b + \delta > \beta \), we know from [2, Lemma 1.30] that

\[
|V'_+(b + \delta, \tilde{z}_1, \tilde{z}_1)| < |V'_+(\beta, \tilde{z}_1, \tilde{z}_1)| .
\]

(16)

Combining (15) with (16) and using the fact that \(\eta'(\tilde{z}_1) = V'_+(b, z_1, z_1) \) yield

\[
|V'_+(b, z_1, z_1)| < \frac{w(\tilde{z}_1)}{w(z_1)} |V'_+(\beta, \tilde{z}_1, \tilde{z}_1)| .
\]

(17)

On the other hand, since \(\tilde{z}_1 > z_1 \), it follows from Lemma 3 that

\[
|V'_+(z_1, \infty, z_1)| \geq \frac{w(\tilde{z}_1)}{w(z_1)} |V'_+(\tilde{z}_1, \infty, \tilde{z}_1)| .
\]

This together with \(|V'_+(b, z_1, z_1)| = |V'_+(z_1, \infty, z_1)| \) and \(|V'_+(\beta, \tilde{z}_1, \tilde{z}_1)| = |V'_+(\tilde{z}_1, \infty, \tilde{z}_1)| \)
leads to

\[
|V'_+(b, z_1, z_1)| \geq \frac{w(\tilde{z}_1)}{w(z_1)} |V'_+(\beta, \tilde{z}_1, \tilde{z}_1)| ,
\]

which is incompatible with (17). Therefore \(z_1 - z_0 \geq \tilde{z}_1 - \tilde{z}_0 \) must be true and the proof of (4) for \(n = 2 \) is complete.

To proceed with the proof by induction, we need to show the following:

If (3) is true for \(n = j - 1 \) and (4) is true for \(n = j \) then (3) is true for \(n = j \)
and (4) is true for \(n = j + 1 \).
Let \(u \in S_{b,j}^+ \), \(v \in S_{\beta,j}^+ \) and \(\beta > b \geq 0 \). By the induction hypothesis, we know that \(z_1 - b \geq \tilde{z}_1 - \beta \). Let \(\delta = \beta - b \) and \(\eta(x) = v(x + \delta) \) for \(x \in [b, \tilde{z}_1 - \delta] \). Arguing like in the beginning of the proof of Lemma 2, we get

\[
\frac{w(\beta)}{w(b)} \eta'(b) \leq |V'_+(b, \tilde{z}_1 - \delta, b)|. \tag{18}
\]

Since \(\tilde{z}_1 - \delta \leq z_1 \), it follows from [2, Lemma 1.30] that

\[
|V'_+(b, \tilde{z}_1 - \delta, b)| \leq |V'_+(b, z_1, b)|. \tag{19}
\]

Combining (18) with (19) and using the facts that \(\eta'(b) = v'(\beta) \) and \(|u'(b)| = |V'_+(b, z_1, b)|\), we conclude that (3) is true for \(n = j \).

It remains to show that (4) is true for \(n = j + 1 \). This only requires slight modifications in the proof of \(n = 2 \). Let \(u \in S_{b,j+1}^+ \), \(v \in S_{\beta,j+1}^+ \) and \(\beta > b \geq 0 \). We first prove \(\tilde{z}_1 > z_1 \).

Suppose that \(z_1 \geq \tilde{z}_1 \). Letting \(u_1(x) = u(x) \) for \(x \in (z_1, \infty) \) and \(v_1(x) = v(x) \) for \(x \in (\tilde{z}_1, \infty) \), we conclude from (3) for \(n = j \) that

\[
|v'_1(\tilde{z}_1)| \geq \frac{w(z_1)}{w(\tilde{z}_1)} |u'_1(z_1)|,
\]

since \(u_1 \in S_{z_1,j}^+ \) and \(v_1 \in S_{\tilde{z}_1,j}^+ \). By the same reasoning we have (14). Then an argument similar to that of \(n = 2 \) shows that the same kind of contradiction occurs. Therefore \(z_1 < \tilde{z}_1 \). From the induction hypothesis, we know that

\[
z_k - z_{k-1} \geq \tilde{z}_k - \tilde{z}_{k-1}
\]

for \(2 \leq k \leq j \). It remains to show that \(z_1 - b \geq \tilde{z}_1 - \beta \). This follows from the same lines of reasoning as that of \(n = 2 \) with only \(V_+(z_1, \infty, \cdot) \) and \(V_+(\tilde{z}_1, \infty, \cdot) \) changed to \(u_1 \) and \(v_1 \) respectively. Thus the proof is complete.
Remark 4. In view of [2, Lemma 1.8] and the proof of Lemma 1, it is not difficult to show that inequalities (3) and (4) are strict if the function \(g_b \) is strictly increasing.

§3 Final remarks. The assumption \(\psi(0) = 0 \) is not required in Theorems 1 and 2. In fact, the uniqueness results stated in the previous section is applicable to the solutions of the problem

\[
-u'' = \phi(w(x)|u|)u, \quad a < x < \infty, \tag{20}
\]

\[
u(a) \cos \theta - u'(a) \sin \theta = 0, \quad u \in L^2[a, \infty).
\]

Here the function \(w \) satisfies the same hypothesis as in section 2 and the function \(\phi \) is assumed to be locally Lipschitz continuous and strictly decreasing on \([0, \infty)\). In particular, letting \(\phi = \lambda - \psi \) in Eq. (20) leads to Eq. (1). However, it is clear that the uniqueness results proved in [1] do not cover equation like

\[-u'' = \lambda u + e^{-x}|u|^{-\tau}u\]

with \(\tau \in (0, 1] \) and \(\lambda \in \mathbb{R} \). The generalization noted above also holds for the bounded interval case.

In closing, we look at a differential equation

\[-u'' = G(x, u)u \tag{21}\]

on the real line. Here the function \(G \) is defined by

\[
G(x, y) = \begin{cases}
\phi_1(w_1(x)|y|) & \text{if } y \geq 0 \\
\phi_2(w_2(-x)|y|) & \text{if } y < 0.
\end{cases}
\]

Assumed that \(\phi_1(0) = \phi_2(0) \) and \(\phi_1, \phi_2 \) are locally Lipschitz continuous and strictly decreasing on \([0, \infty)\), and \(w_1, w_2 \) satisfy \((w2)\). We have the following uniqueness result.
Theorem 3. Suppose that \(w_1(x)w_2(-x) \neq w_1(x + \delta)w_2(-x - \delta) \) for all \(\delta > 0 \) and \(x \in \mathbb{R} \). Then there is at most one function \(u \in L^2(\mathbb{R}) \) such that \(u \) satisfies (21) and changes sign exactly once, \(u > 0 \) for \(x \) near \(\infty \) and \(u < 0 \) for \(x \) near \(-\infty \).

Remark 5. The hypothesis of Theorem 3 is satisfied if \(w_1 \) is strictly increasing and \(w_2 \) is strictly decreasing.

Proof. Suppose that there is another function \(v \) which satisfies the same properties as \(u \) does. Applying a result of Wintner and Hartman [9], we know that \(u, v \in H^1(\mathbb{R}) \) and

\[
\lim_{|x| \to \infty} |u(x)| + |u'(x)| = \lim_{|x| \to \infty} |v(x)| + |v'(x)| = 0.
\]

Letting \(b \) be the zero of \(u \) and \(\beta \) be the zero of \(v \), we see that \(b \neq \beta \) by the uniqueness of positive solutions of Eq. (21) under the boundary conditions \(u(b) = 0 \) and \(u \in L^2[b, \infty) \). Without loss of generality, we may assume \(\beta - b = \delta > 0 \). It follows from a modified version of Lemma 3 that

\[
|u'(b)| \geq \frac{w_1(\beta)}{w_1(b)} |v'(\beta)| \quad (22)
\]

and

\[
|v'(\beta)| \geq \frac{w_2(-b)}{w_2(-\beta)} |u'(b)| \quad (23)
\]

However (22) is incompatible with (23) unless

\[
\frac{w_1(\beta)}{w_1(b)} \cdot \frac{w_2(-b)}{w_2(-\beta)} = 1. \quad (24)
\]

This completes the proof of the theorem since (24) violates our hypothesis.
REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>David Kinderlehrer and Pablo Pedregal</td>
<td>Weak convergence of integrands and the Young measure representation</td>
</tr>
<tr>
<td>701</td>
<td>Bo Deng</td>
<td>Symbolic dynamics for chaotic systems</td>
</tr>
<tr>
<td>703</td>
<td>Charles Collins and Mitchell Luskin</td>
<td>Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem</td>
</tr>
<tr>
<td>704</td>
<td>Peter Gritzmann and Victor Klee</td>
<td>Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces</td>
</tr>
<tr>
<td>705</td>
<td>A. Ronald Gallant and George Tauchen</td>
<td>A nonparametric approach to nonlinear time series analysis: estimation and simulation</td>
</tr>
<tr>
<td>706</td>
<td>H.S. Dumas, J.A. Ellison and A.W. Sáenz</td>
<td>Axial channeling in perfect crystals, the continuum model and the method of averaging</td>
</tr>
<tr>
<td>707</td>
<td>M.A. Kaashoek and S.M. Verduyn Lunel</td>
<td>Characteristic matrices and spectral properties of evolutionary systems</td>
</tr>
<tr>
<td>708</td>
<td>Xinfu Chen</td>
<td>Generation and Propagation of interfaces in reaction diffusion systems</td>
</tr>
<tr>
<td>709</td>
<td>Avner Friedman and Bei Hu</td>
<td>Homogenization approach to light scattering from polymer-dispersed liquid crystal films</td>
</tr>
<tr>
<td>710</td>
<td>Yoshihisa Morita and Shuichi Jimbo</td>
<td>ODEs on inertial manifolds for reaction-diffusion systems in a singularly perturbed domain with several thin channels</td>
</tr>
<tr>
<td>711</td>
<td>Wenxiong Liu</td>
<td>Blow-up behavior for semilinear heat equations: multi-dimensional case</td>
</tr>
<tr>
<td>712</td>
<td>Hi Jun Choe</td>
<td>Hölder continuity for solutions of certain degenerate parabolic systems</td>
</tr>
<tr>
<td>713</td>
<td>Hi Jun Choe</td>
<td>Regularity for certain degenerate elliptic double obstacle problems</td>
</tr>
<tr>
<td>714</td>
<td>Fernando Reitich</td>
<td>On the slow motion of the interface of layered solutions to the scalar Ginzburg–Landau equation</td>
</tr>
<tr>
<td>715</td>
<td>Xinfu Chen and Fernando Reitich</td>
<td>Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling</td>
</tr>
<tr>
<td>716</td>
<td>C.C. Lim, J.M. Pimbley, C. Schmeiser and D.W. Schwendeman</td>
<td>Rotating waves for semiconductor inverter rings</td>
</tr>
<tr>
<td>717</td>
<td>W. Balser, B.L.J. Braaksma, J.-P. Ramis and Y. Sibuya</td>
<td>Multisummability of formal power series solutions of linear ordinary differential equations</td>
</tr>
<tr>
<td>718</td>
<td>Peter J. Olver and Chehrzad Shakiban</td>
<td>Dissipative decomposition of partial differential equations</td>
</tr>
<tr>
<td>719</td>
<td>Clark Robinson</td>
<td>Homoclinic bifurcation to a transitive attractor of Lorenz type, II</td>
</tr>
<tr>
<td>720</td>
<td>Michelle Schatzman</td>
<td>A simple proof of convergence of the QR algorithm for normal matrices without shifts</td>
</tr>
<tr>
<td>721</td>
<td>Ian M. Anderson, Niky Kamran and Peter J. Olver</td>
<td>Internal, external and generalized symmetries</td>
</tr>
<tr>
<td>722</td>
<td>C. Foias and J.C. Saut</td>
<td>Asymptotic integration of Navier–Stokes equations with potential forces. I</td>
</tr>
<tr>
<td>723</td>
<td>Ling Ma</td>
<td>The convergence of semi-discrete methods for a system of reaction-diffusion equations</td>
</tr>
<tr>
<td>724</td>
<td>Adelina Georgescu</td>
<td>Models of asymptotic approximation</td>
</tr>
<tr>
<td>725</td>
<td>A. Makagon and H. Salehi</td>
<td>On bounded and harmonizable solutions on infinite order arma conservation</td>
</tr>
<tr>
<td>726</td>
<td>San-Yih Lin and Yan-Shin Chin</td>
<td>An upwind finite-volume scheme with a triangular mesh for conservation laws</td>
</tr>
<tr>
<td>727</td>
<td>J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego & P.J. Swart</td>
<td>On the dynamics of fine structure</td>
</tr>
<tr>
<td>728</td>
<td>KangPing Chen and Daniel D. Joseph</td>
<td>Lubrication theory and long waves</td>
</tr>
<tr>
<td>729</td>
<td>J.L. Ericksen</td>
<td>Local bifurcation theory for thermoelastic Bravais lattices</td>
</tr>
<tr>
<td>730</td>
<td>Mario Taboada and Yuncheng You</td>
<td>Some stability results for perturbed semilinear parabolic equations</td>
</tr>
<tr>
<td>731</td>
<td>A.J. Lawrence</td>
<td>Local and deletion influence</td>
</tr>
<tr>
<td>732</td>
<td>Bogdan Vernescu</td>
<td>Convergence results for the homogenization of flow in fractured porous media</td>
</tr>
<tr>
<td>733</td>
<td>Xinfu Chen and Avner Friedman</td>
<td>Mathematical modeling of semiconductor lasers</td>
</tr>
<tr>
<td>734</td>
<td>Yongzhi Xu</td>
<td>Scattering of acoustic wave by obstacle in stratified medium</td>
</tr>
<tr>
<td>735</td>
<td>Songmu Zheng</td>
<td>Global existence for a thermodynamically consistent model of phase field type</td>
</tr>
<tr>
<td>736</td>
<td>Heinrich Freistühler and E. Bruce Pitman</td>
<td>A numerical study of a rotationally degenerate hyperbolic system part I: the Riemann problem</td>
</tr>
<tr>
<td>737</td>
<td>Epifanio G. Virga</td>
<td>New variational problems in the statics of liquid crystals</td>
</tr>
<tr>
<td>738</td>
<td>Yoshikazu Giga and Shun'ichi Goto</td>
<td>Geometric evolution of phase-boundaries</td>
</tr>
<tr>
<td>739</td>
<td>Ling Ma</td>
<td>Large time study of finite element methods for 2D Navier–Stokes equations</td>
</tr>
<tr>
<td>740</td>
<td>Mitchell Luskin and Ling Ma</td>
<td>Analysis of the finite element approximation of microstructure in micromagnetics</td>
</tr>
<tr>
<td>741</td>
<td>M. Chipot</td>
<td>Numerical analysis of oscillations in nonconvex problems</td>
</tr>
<tr>
<td>742</td>
<td>J. Carrillo and M. Chipot</td>
<td>The dam problem with leaky boundary conditions</td>
</tr>
<tr>
<td>743</td>
<td>Eduard Harabetian and Robert Pego</td>
<td>Efficient hybrid shock capturing schemes</td>
</tr>
<tr>
<td>744</td>
<td>B.L.J. Braaksma</td>
<td>Multisummability and Stokes multipliers of linear meromorphic differential equations</td>
</tr>
<tr>
<td>745</td>
<td>Tae Il Jeon and Tze-Chien Sun</td>
<td>A central limit theorem for non-linear vector functionals of vector</td>
</tr>
</tbody>
</table>
Chris Grant, Solutions to evolution equations with near-equilibrium initial values
Mario Taboada and Yuncheng You, Invariant manifolds for retarded semilinear wave equations
Peter Rejto and Mario Taboada, Unique solvability of nonlinear Volterra equations in weighted spaces
Hi Jun Choe, Holder regularity for the gradient of solutions of certain singular parabolic equations
Jack D. Dockery, Existence of standing pulse solutions for an excitable activator-inhibitory system
Jack D. Dockery and Roger Lui, Existence of travelling wave solutions for a bistable evolutionary ecology model
Giovanni Alberti, Luigi Ambrosio and Giuseppe Buttazzo, Singular perturbation problems with a compact support semilinear term
Emad A. Fatemi, Numerical schemes for constrained minimization problems
Y. Kuang and H.L. Smith, Slowly oscillating periodic solutions of autonomous state-dependent delay equations
Emad A. Fatemi, A new splitting method for scaler conservation laws with stiff source terms
Hi Jun Choe, A regularity theory for a more general class of quasilinear parabolic partial differential equations and variational inequalities
Haitao Fan, A vanishing viscosity approach on the dynamics of phase transitions in Van Der Waals fluids
Avner Friedman and Bei Hu, A free boundary problem arising in superconductor modeling
Avner Friedman and Wenxiong Liu, An augmented drift-diffusion model in semiconductor device
Avner Friedman and Miguel A. Herrero, Extinction and positivity for a system of semilinear parabolic variational inequalities
David Dobson and Avner Friedman, The time-harmonic Maxwell equations in a doubly periodic structure
Hi Jun Choe, Interior behaviour of minimizers for certain functionals with nonstandard growth
Vincenzo M. Tortorelli and Epifanio G. Virga, Axis-symmetric boundary-value problems for nematic liquid crystals with variable degree of orientation
Nikan B. Firoozje and Robert V. Kohn, Geometric parameters and the relaxation of multiwell energies
Joseph D. Fehribach, Analysis and application of a continuation method for a self-similar coupled Stefan system
C. Foias, M.S. Jolly, I.G. Kevrekidis and E.S. Titi, Dissipativity of numerical schemes
D.D. Joseph, T.Y.J. Liao and J.-C. Saut, Kelvin–Helmholtz mechanism for side branching in the displacement of light with heavy fluid under gravity
Chris Grant, Solutions to evolution equations with near-equilibrium initial values
B. Cockburn, F. Coquel, Ph. LeFloch and C.W. Shu, Convergence of finite volume methods
N.G. Lloyd and J.M. Pearson, Computing centre conditions for certain cubic systems
João Palhoto Matos, Young measures and the absence of fine microstructures in the $\alpha - \beta$ quartz phase transition
L.A. Peletier & W.C. Troy, Self-similar solutions for infiltration of dopant into semiconductors
H. Scott Dumas and James A. Ellison, Nekhoroshev’s theorem, ergodicity, and the motion of energetic charged particles in crystals
Stathis Filippas and Robert V. Kohn, Refined asymptotics for the blowup of $u_t - \Delta u = u^p$.
Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity
Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximal smoothness of solutions to certain Euler–Lagrange equations from nonlinear elasticity
Jack Carr and Robert Pego, Self-similarity in a coarsening model in one dimension
J.M. Greenberg, The shock generation problem for a discrete gas with short range repulsive forces
George R. Sell and Mario Taboada, Local dissipativity and attractors for the Kuramoto–Sivashinsky equation in thin 2D domains
T. Subba Rao, Analysis of nonlinear time series (and chaos) by bispectral methods
Nicholas Baumann, Daniel D. Joseph, Paul Mohr and Yuriko Renardy, Vortex rings of one fluid in another free fall
Oscar Bruno, Avner Friedman and Fernando Reitich, Asymptotic behavior for a coalescence problem
Johannes C.C. Nitsche, Periodic surfaces which are extremal for energy functionals containing curvature functions
F. Abergel and J.L. Bona, A mathematical theory for viscous, free-surface flows over a perturbed plane
Gunduz Caginalp and Xinfu Chen, Phase field equations in the singular limit of sharp interface problems
Robert P. Gilbert and Yongzhi Xu, An inverse problem for harmonic acoustics in stratified oceans
Roger Fosdick and Eric Volkmann, Normality and convexity of the yield surface in nonlinear plasticity
H.S. Brown, I.G. Kevrekidis and M.S. Jolly, A minimal model for spatio-temporal patterns in thin film flow
Chao–Nien Chen, On the uniqueness of solutions of some second order differential equations
ON THE UNIQUENESS OF SOLUTIONS OF SOME SECOND ORDER DIFFERENTIAL EQUATIONS

By

Chao–Nien Chen

IMA Preprint Series # 791
March 1991
ON THE UNIQUENESS OF SOLUTIONS OF SOME SECOND ORDER DIFFERENTIAL EQUATIONS

CHAO–NIEN CHEN*

§1 Introduction. In [1] we proved a uniqueness result for the solutions of

\[(I)_a \begin{align*}
-u'' &= \lambda u - \psi(w(x)|u|)u, \quad a < x < \infty, \\
u(a)\cos \theta - u'(a)\sin \theta &= 0, \quad u \in L^2[a, \infty),
\end{align*} \tag{1}
\]

where \(\lambda > 0 \) and \(\theta \in [0, \frac{\pi}{2}] \). For notational convenience, let \(S^+_a, n \) denote the set of \(u \in C^2[a, \infty) \cap H^1[a, \infty) \) such that \(u \) satisfies \((I)_a\), \(u > 0 \) in a deleted neighborhood of \(x = a \) and \(u \) has exactly \(n - 1 \) simple zeros in \((a, \infty)\), where \(a \geq 0 \) and \(n \in \mathbb{N} \). Similarly \(S^-_{a, n} \) denotes the set \(u < 0 \) in a deleted neighborhood of \(x = a \). It has been shown in [1] that problem \((I)_a\) has at most one solution in each nodal class \(S^\pm_{a, n} \) provided that the functions \(\psi \) and \(w \) are continuously differentiable and satisfy the following conditions:

\((\psi 1)\) \(\psi(0) = 0 \) and for \(t > 0 \), \(\psi'(t) > 0 \) and \(\psi(t) \geq p \cdot t^q \) for some \(p, q > 0 \).

\((w 1)\) \(w > 0, w'(0) \geq 0 \) and \(\frac{w'}{w} \) is nondecreasing on \([0, \infty)\).

The method we used in [1] was shooting with the aid of comparison. Our aim in this note is to describe a new proof which makes use of comparison arguments only. This proof is more concise and requires less smoothness on the functions \(\psi \) and \(w \); we can treat problem \((I)_a\) when \(\psi \) and \(w \) are continuous, but not \(C^1 \) as in the preceding proof. Moreover, the new proof reveals more information about the locations of the nodes of the solutions (see Lemma 1 and Remark 4). For the existence of solutions of \((I)_a\), we refer to [2–6] and the references therein.

*Department of Mathematics, Indiana University, Bloomington, IN 47405
There are some generalizations about utilizing such comparison arguments for showing
uniqueness of solutions of certain boundary value problems. They will be discussed in the
final section.

§2 A new proof for uniqueness. Throughout this section, the functions ψ and w
are assumed to satisfy the following conditions.

$(\psi 2)$ $\psi(0) = 0$, ψ is locally Lipschitz continuous and strictly increasing on $[0, \infty)$.

$(w 2)$ w is a positive continuous function and for any $\delta > 0$, the function $g_\delta(x) = \frac{w(x+\delta)}{w(x)}$
is a nondecreasing function of x for $x \in [0, \infty)$.

Remark 1. If w is positive and $\frac{w'}{w}$ is nondecreasing on $[0, \infty)$, it is easy to check that
$(w 2)$ is satisfied by invoking the identity $\frac{w(x+\delta)}{w(x)} = \exp \left(\int_0^\delta \frac{w'(t)}{w(t)} \, dt \right)$.

Theorem 1. Let $\theta = 0$ and λ be a fixed positive number. If $(\psi 2)$ and $(w 2)$ are
satisfied, then for every $a \geq 0$ and $n \in \mathbb{N}$, $S^\pm_{a,n}$ contains at most one element.

Theorem 2. Let $\theta \in (0, \frac{\pi}{2})$ and $\lambda > 0$ be fixed. In addition to $(\psi 2)$ and $(w 2)$, if w
is a nondecreasing function on $[0, \infty)$, then for every $a \geq 0$ and $n \in \mathbb{N}$, $S^\pm_{a,n}$ contains at
most one element.

Remark 2. (a) It is known that $u \equiv 0$ is the only solution of $(I)_a$ if $\lambda \leq 0$.
(b) In case $0 < \theta \leq \frac{\pi}{2}$, the need for the extra assumption has been indicated in [1, Remark 1.2.(a)]. The key point is that Lemma 1.30(iii) of [2] rests on the same sort of assumption and will be used in the proof.

(c) In fact, Theorems 1 and 2 are valid for an equation having a more general nonlinear
term than that of Eq (1); that is, instead of \(\psi(w(x)|u|)u \), we can consider

\[
F(x, u)u = \begin{cases}
\psi_1(w(x)|u|)u & \text{if } u \geq 0 \\
\psi_2(w(x)|u|)u & \text{if } u < 0
\end{cases}
\]

with both \(\psi_1 \) and \(\psi_2 \) satisfying \((\psi2)\). For simplicity we will carry out the proof for the case \(\psi_1 = \psi_2 \) only since there is no essential difference in the proof when \(\psi_1 \neq \psi_2 \).

(d) In [1] the nonlinear term of Eq (1) was written in the form \(\psi(w(x)|u|^\sigma)u \), where \(\sigma \) is a positive number. However, one can rewrite \(\psi(w(x)|u|^\sigma) \) in a simpler form \(\tilde{\psi}(\tilde{w}(x)|u|) \) with \(\tilde{w}(x) = (w(x))^{1/\sigma} \) and \(\tilde{\psi} = \psi \circ h \), where \(h(t) = t^\sigma \), since \(\psi \) and \(w \) satisfy \((\psi2)\) and \((w2)\) if and only if \(\tilde{\psi} \) and \(\tilde{w} \) do.

(e) With slight modifications in the proofs of Theorems 1 and 2, one can show the same sort of uniqueness results for the solutions of Eq.(1) on the bounded intervals under the boundary conditions \(u(a) \cos \theta - u'(a) \sin \theta = 0 \) and \(u(b) = 0 \).

(f) The new proof covers the case \(n \geq 2 \) only. We recall that the uniqueness of positive and negative solutions of \((I)_a\) as well as its counterpart on the bounded interval case has already been established in [2, Theorem 1.5].

Since the proofs of Theorem 1 and Theorem 2 are similar, only the former will be carried out. The proof of Theorem 1 rests on the following two preliminary lemmas.

Lemma 1. Let \(n \) be a fixed positive integer. Suppose for \(1 \leq l \leq n \) that \(S^\pm_{a,l} \) contains at most one element for every \(a \geq 0 \). For any \(\beta > b \geq 0 \), if \(u \in S^+_b,n \) and \(v \in S^+_\beta,n \) then

\[
|u'(b)| \geq \frac{w(\beta)}{w(b)} |v'(\beta)| .
\]

(3)
Moreover, if \(z_k \) is the \(k \)-th zero of \(u \) in \((b, \infty)\) and \(\tilde{z}_k \) is the \(k \)-th zero of \(v \) in \((\beta, \infty)\) then
\[
z_k - z_{k-1} \geq \tilde{z}_k - \tilde{z}_{k-1}
\]
(4)

for \(1 \leq k \leq n - 1 \), where \(z_0 = b \) and \(\tilde{z}_0 = \beta \). The same result holds if \(u \in S_{b,n}^- \) and \(v \in S_{\beta,n}^- \).

For what follows in this section, we let \(V_+(a, b, \cdot) \) denote the unique positive solution of
\[
(I)_{a,b} \quad -u'' = \lambda u - \psi(w(x)|u|)u \quad , \quad a < x < b ,
\]
\[
u(a) = u(b) = 0 ,
\]
if the positive solution exists.

Lemma 2. Let \(\beta > b > 0 \). If \(V_+(a, b, \cdot) \) and \(V_+(a, \beta, \cdot) \) exist then
\[
|V_+'(a, b, b)| < \frac{w(\beta)}{w(b)} |V_+'(a, \beta, \beta)| .
\]
(5)

Proof of Theorem 1. We proceed the proof by induction. Since \(n = 1 \) is true by Remark 2 (f), it suffices to show that

if for every \(a > 0 \) and \(1 \leq l \leq n \), \(S_{a,l}^\pm \) contains at most one element

then so does \(S_{a,n+1}^\pm \).

(6)

We prove (6) indirectly. Suppose that \(u, \tilde{u} \in S_{a,n+1}^+ \). Let \(b \) and \(\beta \) be the first zero of \(u \) and \(\tilde{u} \) in \((a, \infty)\) respectively. Let \(u_1(x) = u(x) \) for \(x \in [b, \infty) \) and \(\tilde{u}_1(x) = \tilde{u}(x) \) for \(x \in [\beta, \infty) \). It is clear that \(u_1 \in S_{b,n}^- \) and \(\tilde{u}_1 \in S_{\beta,n}^- \). By the induction hypothesis we know that \(b \neq \beta \). Without loss of generality, we may assume that \(\beta > b \). It follows from Lemma 1 that
\[
|u_1'(b)| \geq \frac{w(\beta)}{w(b)} |\tilde{u}_1'(\beta)| .
\]
(7)
By the uniqueness of positive solution of \((I)_{a,b}\) we know that \(u(x) = V_+(a, b, x)\) if \(x \in [a, b]\).

Similarly \(\tilde{u}(x) = V_+(a, \beta, x)\) for \(x \in [a, \beta]\). Invoking Lemma 2 yields

\[
\frac{w(\beta)}{w(b)} |V_+'(a, \beta, \beta)| > |V_+'(a, b, b)| .
\] (8)

Combining (7) with (8) gives

\[
|u'(b)| = |u_1'(b)| \geq \frac{w(\beta)}{w(b)} |\tilde{u}'_1(\beta)| = \frac{w(\beta)}{w(b)} |\tilde{u}'(\beta)| = \frac{w(\beta)}{w(b)} |V_+''(a, \beta, \beta)|
\]

\[
> |V_+(a, b, b)| = |u'(b)| ,
\]

which is absurd. Thus \(S_{a,n+1}^+\) contains at most one element.

The proof of \(S_{a,n+1}^-\) is similar.

We are now going to prove Lemma 1 and Lemma 2. We first prove the following lemma which contains a partial result of Lemma 1.

Lemma 3. For any \(\beta > b \geq 0\), if \(u \in S_{b,1}^+\) and \(v \in S_{\beta,1}^+\) then

\[
|u'(b)| \geq \frac{w(\beta)}{w(b)} |v'(\beta)| .
\] (9)

The same result holds if \(u \in S_{b,1}^-\) and \(v \in S_{\beta,1}^-\).

Proof of Lemma 3. We prove the case \(u \in S_{b,1}^+\) and \(v \in S_{\beta,1}^+\) only. Let \(\delta = \beta - b\) and \(\eta(x) = v(x + \delta)\) for \(x \in [b, \infty)\). Then by direct computation, we get

\[
-\eta''(x) = \lambda \eta(x) - \psi \left(\frac{w(x + \delta)}{w(x)} w(x)|\eta(x)| \right) \eta(x)
\]

\[
\leq \lambda \eta(x) - \psi \left(\frac{w(\beta)}{w(b)} w(x)|\eta(x)| \right) \eta(x) ,
\]
the last inequality follows from the assumptions \((w2)\) and \((\psi2)\). Let \(\zeta(x)\) be the unique positive solution of

\[
-\zeta'' = \lambda \zeta - \psi \left(\frac{w(\beta)}{w(b)} w(x)|\zeta| \right) \zeta , \\
\zeta(b) = 0 , \ z \in L^2[b, \infty) .
\]

It follows from [2, Lemma 1.8] that

\[
|\eta'(b)| \leq |\zeta'(b)| .
\] \hspace{1cm} (10)

Invoking [1, Lemma 2.2], we know that \(u'(b) = \frac{w(\beta)}{w(b)} \zeta'(b)\). This together with (10) yields

\[
|u'(b)| \geq \frac{w(\beta)}{w(b)} |\eta'(b)| = \frac{w(\beta)}{w(b)} |u'(\beta)|
\]

which completes the proof.

We are now in the position to prove Lemma 1 and Lemma 2. We prove Lemma 2 first.

Proof of Lemma 2. Let \(\delta = \beta - b\) and \(\eta(x) = V_+(a, b, x - \delta)\) for \(x \in [a + \delta, \beta]\). Arguing like in obtaining (10), we have

\[
-\eta'' \leq \lambda \eta - \psi \left(\frac{w(b)}{w(\beta)} w(x)|\eta| \right) \eta
\]

and hence

\[
|\eta'(\beta)| \leq |\zeta'(\beta)|
\] \hspace{1cm} (11)

by making use of [2, Lemma 1.8], where \(\zeta\) is the unique positive solution of

\[
-\zeta'' = \lambda \zeta - \psi \left(\frac{w(b)}{w(\beta)} w(x)|\zeta| \right) \zeta , \\
\zeta(a + \delta) = \zeta(\beta) = 0 .
\]
Invoking [2, Lemma 1.30] and [1, Lemma 2.2], we get

\[|V_+^\prime(a, \beta, \beta)| > |V_+^\prime(a + \delta, \beta, \beta)| = \frac{w(b)}{w(\beta)} |\zeta^\prime(\beta)|. \quad (12) \]

This together with (11) and the fact that \(\eta^\prime(\beta) = V_+^\prime(a, b, b) \) yields (5).

Remark 3. In applying [2, Lemma 1.30], the inequality appeared in (12) should be in the strict sense since the function \(\psi \) is assumed to be locally Lipschitz continuous. Also the part of results we invoked in this lemma need not the assumption (F2) imposed there.

In the proof of Lemma 1, the uniqueness of positive or negative solution of \((I)_a\) or \((I)_{a,b}\), and the fact just mentioned in Remark 3 will be used without further comment.

We let \(V_+(a, \infty, \cdot) \) denote the unique positive solution of \((I)_a\). The fact \(V_- = -V_+ \) will be used in the proof only for the sake of simplicity but making no essential difference in case \(\psi_1 \neq \psi_2 \), where \(V_- \) is the unique negative solution of \((I)_a\) or \((I)_{a,b}\).

Proof of Lemma 1. We proceed the proof by induction. For \(n = 1 \), (4) is void and (3) is true by Lemma 3. We now prove (4) for \(n = 2 \). We first prove \(\tilde{z}_1 > z_1 \) by arguing indirectly. Suppose that \(z_1 \geq \tilde{z}_1 \). It follows from Lemma 3 that

\[|V_+^\prime(\tilde{z}_1, \infty, \tilde{z}_1)| \geq \frac{w(z_1)}{w(\tilde{z}_1)} |V_+^\prime(z_1, \infty, z_1)|. \quad (13) \]

Invoking [2, Lemma 1.30] and Lemma 2 yields

\[|V_+^\prime(\beta, \tilde{z}_1, \tilde{z}_1)| < |V_+^\prime(b, \tilde{z}_1, \tilde{z}_1)| \leq \frac{w(z_1)}{w(\tilde{z}_1)} |V_+^\prime(b, z_1, z_1)|. \quad (14) \]

Since \(u \in S_{b,2}^+ \), we know that \(|V_+(b, z_1, z_1)| = |u'(z_1)| = |V_-(z_1, \infty, z_1)| = |V_+(z_1, \infty, z_1)|. \)

This together with (13) and (14) yields \(|V_+^\prime(\beta, \tilde{z}_1, \tilde{z}_1)| < |V_+^\prime(\tilde{z}_1, \infty, \tilde{z}_1)| = |V_-(\tilde{z}_1, \infty, \tilde{z}_1)| \) which contradicts the fact that \(v \in S_{\beta,2}^+ \). Thus we have \(\tilde{z}_1 > z_1 \).
Suppose that $z_1 - z_0 < \tilde{z}_1 - \tilde{z}_0$. Let $\delta = \tilde{z}_1 - z_1$. It follows that $\delta > \tilde{z}_0 - z_0 = \beta - b$. Let $\eta(x) = V_+(b, z_1, x - \delta)$ for $x \in [\beta, \tilde{z}_1]$. Then it follows from the argument used in proving Lemma 2 that

$$|\eta'(\tilde{z}_1)| \leq \frac{w(\tilde{z}_1)}{w(z_1)} |V_+'(b + \delta, \tilde{z}_1, \tilde{z}_1)|. \quad (15)$$

Since $b + \delta > \beta$, we know from [2, Lemma 1.30] that

$$|V_+'(b + \delta, \tilde{z}_1, \tilde{z}_1)| < |V_+'(\beta, \tilde{z}_1, \tilde{z}_1)|. \quad (16)$$

Combining (15) with (16) and using the fact that $\eta'(\tilde{z}_1) = V_+'(b, z_1, z_1)$ yield

$$|V_+'(b, z_1, z_1)| < \frac{w(\tilde{z}_1)}{w(z_1)} |V_+'(\beta, \tilde{z}_1, \tilde{z}_1)|. \quad (17)$$

On the other hand, since $\tilde{z}_1 > z_1$, it follows from Lemma 3 that

$$|V_+'(z_1, \infty, z_1)| \geq \frac{w(\tilde{z}_1)}{w(z_1)} |V_+'(\tilde{z}_1, \infty, \tilde{z}_1)|.$$

This together with $|V_+'(b, z_1, z_1)| = |V_+'(z_1, \infty, z_1)|$ and $|V_+'(\beta, \tilde{z}_1, \tilde{z}_1)| = |V_+'(\tilde{z}_1, \infty, \tilde{z}_1)|$ leads to

$$|V_+'(b, z_1, z_1)| \geq \frac{w(\tilde{z}_1)}{w(z_1)} |V_+'(\beta, \tilde{z}_1, \tilde{z}_1)|,$$

which is incompatible with (17). Therefore $z_1 - z_0 \geq \tilde{z}_1 - \tilde{z}_0$ must be true and the proof of (4) for $n = 2$ is complete.

To proceed with the proof by induction, we need to show the following:

If (3) is true for $n = j - 1$ and (4) is true for $n = j$ then (3) is true for $n = j$ and (4) is true for $n = j + 1$.

8
Let \(u \in S_{b,j}^+ \), \(v \in S_{\beta,j}^+ \) and \(\beta > b \geq 0 \). By the induction hypothesis, we know that \(z_1 - b \geq \tilde{z}_1 - \beta \). Let \(\delta = \beta - b \) and \(\eta(x) = v(x + \delta) \) for \(x \in [b, \tilde{z}_1 - \delta] \). Arguing like in the beginning of the proof of Lemma 2, we get

\[
\frac{w(\beta)}{w(b)} |\eta'(b)| \leq |V_+^I(b, \tilde{z}_1 - \delta, b)|. \tag{18}
\]

Since \(\tilde{z}_1 - \delta \leq z_1 \), it follows from [2, Lemma 1.30] that

\[
|V_+^I(b, \tilde{z}_1 - \delta, b)| \leq |V_+^I(b, z_1, b)|. \tag{19}
\]

Combining (18) with (19) and using the facts that \(\eta'(b) = v'(\beta) \) and \(|u'(b)| = |V_+^I(b, z_1, b)| \), we conclude that (3) is true for \(n = j \).

It remains to show that (4) is true for \(n = j + 1 \). This only requires slight modifications in the proof of \(n = 2 \). Let \(u \in S_{b,j+1}^+ \), \(v \in S_{\beta,j+1}^+ \) and \(\beta > b \geq 0 \). We first prove \(\tilde{z}_1 > z_1 \).

Suppose that \(z_1 \geq \tilde{z}_1 \). Letting \(u_1(x) = u(x) \) for \(x \in (z_1, \infty) \) and \(v_1(x) = v(x) \) for \(x \in (\tilde{z}_1, \infty) \), we conclude from (3) for \(n = j \) that

\[
|v'_1(\tilde{z}_1)| \geq \frac{w(z_1)}{w(\tilde{z}_1)} |u'_1(z_1)|,
\]

since \(u_1 \in S_{z_1,j}^+ \) and \(v_1 \in S_{\tilde{z}_1,j}^+ \). By the same reasoning we have (14). Then an argument similar to that of \(n = 2 \) shows that the same kind of contradiction occurs. Therefore \(z_1 < \tilde{z}_1 \). From the induction hypothesis, we know that

\[
z_k - z_{k-1} \geq \tilde{z}_k - \tilde{z}_{k-1}
\]

for \(2 \leq k \leq j \). It remains to show that \(z_1 - b \geq \tilde{z}_1 - \beta \). This follows from the same lines of reasoning as that of \(n = 2 \) with only \(V_+(z_1, \infty, \cdot) \) and \(V_+(\tilde{z}_1, \infty, \cdot) \) changed to \(u_1 \) and \(v_1 \) respectively. Thus the proof is complete.
Remark 4. In view of [2, Lemma 1.8] and the proof of Lemma 1, it is not difficult to show that inequalities (3) and (4) are strict if the function g_δ is strictly increasing.

§3 Final remarks. The assumption $\psi(0) = 0$ is not required in Theorems 1 and 2. In fact, the uniqueness results stated in the previous section is applicable to the solutions of the problem

$$-u'' = \phi(w(x)|u|)u , \quad a < x < \infty ,$$

$$u(a) \cos \theta - u'(a) \sin \theta = 0 , \quad u \in L^2[a, \infty) .$$

Here the function w satisfies the same hypothesis as in section 2 and the function ϕ is assumed to be locally Lipschitz continuous and strictly decreasing on $[0, \infty)$. In particular, letting $\phi = \lambda - \psi$ in Eq. (20) leads to Eq. (1). However, it is clear that the uniqueness results proved in [1] do not cover equation like

$$-u'' = \lambda u + e^{-\tau |u|^\tau} u$$

with $\tau \in (0,1]$ and $\lambda \in \mathbb{R}$. The generalization noted above also holds for the bounded interval case.

In closing, we look at a differential equation

$$-u'' = G(x, u)u$$

on the real line. Here the function G is defined by

$$G(x, y) = \begin{cases}
\phi_1(w_1(x)|y|) & \text{if } y \geq 0 \\
\phi_2(w_2(-x)|y|) & \text{if } y < 0 .
\end{cases}$$

Assumed that $\phi_1(0) = \phi_2(0)$ and ϕ_1, ϕ_2 are locally Lipschitz continuous and strictly decreasing on $[0, \infty)$, and w_1, w_2 satisfy (w2). We have the following uniqueness result.
Theorem 3. Suppose that \(w_1(x)w_2(-x) \neq w_1(x + \delta)w_2(-x - \delta) \) for all \(\delta > 0 \) and \(x \in \mathbb{R} \). Then there is at most one function \(u \in L^2(\mathbb{R}) \) such that \(u \) satisfies (21) and changes sign exactly once, \(u > 0 \) for \(x \) near \(\infty \) and \(u < 0 \) for \(x \) near \(-\infty \).

Remark 5. The hypothesis of Theorem 3 is satisfied if \(w_1 \) is strictly increasing and \(w_2 \) is strictly decreasing.

Proof. Suppose that there is another function \(v \) which satisfies the same properties as \(u \) does. Applying a result of Wintner and Hartman [9], we know that \(u, v \in H^1(\mathbb{R}) \) and

\[
\lim_{|x| \to \infty} |u(x)| + |u'(x)| = \lim_{|x| \to \infty} |v(x)| + |v'(x)| = 0 .
\]

Letting \(b \) be the zero of \(u \) and \(\beta \) be the zero of \(v \), we see that \(b \neq \beta \) by the uniqueness of positive solutions of Eq. (21) under the boundary conditions \(u(b) = 0 \) and \(u \in L^2[b, \infty) \).

Without loss of generality, we may assume \(\beta - b = \delta > 0 \). It follows from a modified version of Lemma 3 that

\[
|u'(b)| \geq \frac{w_1(\beta)}{w_1(b)} |v'(\beta)| .
\]

and

\[
|v'(\beta)| \geq \frac{w_2(-b)}{w_2(-\beta)} |u'(b)| .
\]

However (22) is incompatible with (23) unless

\[
\frac{w_1(\beta)}{w_1(b)} \cdot \frac{w_2(-b)}{w_2(-\beta)} = 1 .
\]

This completes the proof of the theorem since (24) violates our hypothesis.
REFERENCES

Recent IMA Preprints

Author/s Title
700 David Kinderlehrer and Pablo Pedregal, Weak convergence of integrands and the Young measure representation
701 Bo Deng, Symbolic dynamics for chaotic systems
703 Charles Collins and Mitchell Luskin, Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem
704 Peter Gritzmann and Victor Klee, Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces
705 A. Ronald Gallant and George Tauchen, A nonparametric approach to nonlinear time series analysis: estimation and simulation
706 H.S. Dumas, J.A. Ellison and A.W. Sáenz, Axial channeling in perfect crystals, the continuum model and the method of averaging
707 M.A. Kaashoek and S.M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems
708 Xinfu Chen, Generation and Propagation of interfaces in reaction diffusion systems
709 Avner Friedman and Bei Hu, Homogenization approach to light scattering from polymer-dispersed liquid crystal films
710 Yoshitaka Saito and Shuichi Jimbo, ODEs on inertial manifolds for reaction-diffusion systems in a singularly perturbed domain with several thin channels
711 Wenxiong Liu, Blow-up behavior for semilinear heat equations: multi-dimensional case
712 Hi Jun Choe, Hölder continuity for solutions of certain degenerate parabolic systems
713 Hi Jun Choe, Regularity for certain degenerate elliptic double obstacle problems
714 Fernando Reitich, On the slow motion of the interface of layered solutions to the scalar Ginzburg–Landau equation
715 Xinfu Chen and Fernando Reitich, Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling
716 C.C. Lim, J.M. Pimbley, C. Schmeiser and D.W. Schwendeman, Rotating waves for semiconductor inverter rings
717 W. Balser, B.L.J. Braaksma, J.-P. Ramis and Y. Sibuya, Multisummability of formal power series solutions of linear ordinary differential equations
718 Peter J. Olver and Chehrzad Shakiban, Dissipative decomposition of partial differential equations
719 Clark Robinson, Homoclinic bifurcation to a transitive attractor of Lorenz type, II
720 Michelle Schatzman, A simple proof of convergence of the QR algorithm for normal matrices without shifts
721 Ian M. Anderson, Niky Kamran and Peter J. Olver, Internal, external and generalized symmetries
722 C. Foias and J.C. Saut, Asymptotic integration of Navier–Stokes equations with potential forces. I
723 Ling Ma, The convergence of semidiscrete methods for a system of reaction-diffusion equations
724 Adelina Georgescu, Models of asymptotic approximation
725 A. Makagon and H. Salehi, On bounded and harmonizable solutions on infinite order arma systems
726 San-Yih Lin and Yan-Shin Chin, An upwind finite-volume scheme with a triangular mesh for conservation laws
727 J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego & P.J. Swart, On the dynamics of fine structure
728 KangPing Chen and Daniel D. Joseph, Lubrication theory and long waves
729 J.L. Ericksen, Local bifurcation theory for thermoelastic Bravais lattices
730 Mario Tamba and Yuncheng You, Some stability results for perturbed semilinear parabolic equations
731 A.J. Lawrence, Local and deletion influence
732 Bogdan Vernescu, Convergence results for the homogenization of flow in fractured porous media
733 Xinfu Chen and Avner Friedman, Mathematical modeling of semiconductor lasers
734 Yongzhg Xu, Scattering of acoustic wave by obstacle in stratified medium
735 Songmu Zheng, Global existence for a thermodynamically consistent model of phase field type
736 Heinrich Freistühler and E. Bruce Pitman, A numerical study of a rotationally degenerate hyperbolic system part I: the Riemann problem
737 Epifanio G. Virga, New variational problems in the statics of liquid crystals
738 Yoshihiko Giga and Shun'ichi Goto, Geometric evolution of phase-boundaries
739 Ling Ma, Large time study of finite element methods for 2D Navier–Stokes equations
740 Mitchell Luskin and Ling Ma, Analysis of the finite element approximation of microstructure in micromagnetics
741 M. Chipot, Numerical analysis of oscillations in nonconvex problems
742 J. Carrillo and M. Chipot, The dam problem with leaky boundary conditions
743 Eduard Harabetian and Robert Pego, Efficient hybrid shock capturing schemes
744 B.L.J. Braaksma, Multisummability and Stokes multipliers of linear meromorphic differential equations
745 Tae Il Jeon and Tze-Chien Sun, A central limit theorem for non-linear vector functionals of vector
Gaussian processes

Chris Grant, Solutions to evolution equations with near-equilibrium initial values

Mario Taboada and Yuncheng You, Invariant manifolds for retarded semilinear wave equations

Peter Rejto and Mario Taboada, Unique solvability of nonlinear Volterra equations in weighted spaces

Hi Jun Choe, Holder regularity for the gradient of solutions of certain singular parabolic equations

Jack D. Dockery, Existence of standing pulse solutions for an excitable activator-inhibitory system

Jack D. Dockery and Roger Lui, Existence of travelling wave solutions for a bistable evolutionary ecology model

Giovanni Alberti, Luigi Ambrosio and Giuseppe Buttazzo, Singular perturbation problems with a compact support semilinear term

Emad A. Fatemi, Numerical schemes for constrained minimization problems

Y. Kuang and H.L. Smith, Slowly oscillating periodic solutions of autonomous state-dependent delay equations

Emad A. Fatemi, A new splitting method for scaler conservation laws with stiff source terms

Hi Jun Choe, A regularity theory for a more general class of quasilinear parabolic partial differential equations and variational inequalities

Haitao Fan, A vanishing viscosity approach on the dynamics of phase transitions in Van Der Waals fluids

Avner Friedman and Bei Hu, A free boundary problem arising in superconductor modeling

Avner Friedman and Wenxiong Liu, An augmented drift-diffusion model in semiconductor device

Avner Friedman and Miguel A. Herrero, Extinction and positivity for a system of semilinear parabolic variational inequalities

David Dobson and Avner Friedman, The time-harmonic Maxwell equations in a doubly periodic structure

Hi Jun Choe, Interior behaviour of minimizers for certain functionals with nonstandard growth

Vincenzo M. Tortorelli and Epifanio G. Virga, Axisymmetric boundary-value problems for nematic liquid crystals with variable degree of orientation

Nikan B. Firoozye and Robert V. Kohn, Geometric parameters and the relaxation of multiwell energies

Joseph D. Fehribach, Analysis and application of a continuation method for a self-similar coupled Stefan system

C. Foias, M.S. Jolly, I.G. Kevrekidis and E.S. Titi, Dissipativity of numerical schemes

D.D. Joseph, T.Y.J. Liao and J.-C. Saut, Kelvin–Helmholtz mechanism for side branching in the displacement of light with heavy fluid under gravity

Chris Grant, Solutions to evolution equations with near-equilibrium initial values

B. Cockburn, F. Coquel, Ph. LeFloch and C.W. Shu, Convergence of finite volume methods

N.G. Lloyd and J.M. Pearson, Computing centre conditions for certain cubic systems

João Palhoto Matos, Young measures and the absence of fine microstructures in the $\alpha - \beta$ quartz phase transition

L.A. Peletier & W.C. Troy, Self-similar solutions for infiltration of dopant into semiconductors

H. Scott Dumas and James A. Ellison, Nekhoroshev's theorem, ergodicity, and the motion of energetic charged particles in crystals

Statthis Filippas and Robert V. Kohn, Refined asymptotics for the blowup of $u_t - \Delta u = u^p$.

Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity

Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximal smoothness of solutions to certain Euler–Lagrange equations from nonlinear elasticity

Jack Carr and Robert Pego, Self-similarity in a coarsening model in one dimension

J.M. Greenberg, The shock generation problem for a discrete gas with short range repulsive forces

George R. Sell and Mario Taboada, Local dissipativity and attractors for the Kuramoto–Sivashinsky equation in thin 2D domains

T. Subba Rao, Analysis of nonlinear time series (and chaos) by bispectral methods

Nicholas Baumann, Daniel D. Joseph, Paul Mohr and Yuriko Renardy, Vortex rings of one fluid in another free fall

Oscar Bruno, Avner Friedman and Fernando Reitich, Asymptotic behavior for a coalescence problem

Johannes C.C. Nitsche, Periodic surfaces which are extremal for energy functionals containing curvature functions

F. Abergell and J.L. Bona, A mathematical theory for viscous, free-surface flows over a perturbed plane

Gunduz Caginalp and Xinfu Chen, Phase field equations in the singular limit of sharp interface problems

Robert P. Gilbert and Yongzhi Xu, An inverse problem for harmonic acoustics in stratified oceans

Roger Fosdick and Eric Volkmann, Normality and convexity of the yield surface in nonlinear plasticity

H.S. Brown, I.G. Kevrekidis and M.S. Jolly, A minimal model for spatio–temporal patterns in thin film flow

Chao–Nien Chen, On the uniqueness of solutions of some second order differential equations