PRECONDITIONING IN $H(\text{div})$ AND APPLICATIONS

By

Douglas N. Arnold
Richard S. Falk
and
Ragnar Winther

IMA Preprint Series # 1384
March 1996

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455
PRECONDITIONING IN $H(\text{div})$ AND APPLICATIONS*

DOUGLAS N. ARNOLD†, RICHARD S. FALK‡, AND RAGNAR WINThER§

Abstract. We consider the solution of the system of linear algebraic equations which arises from the finite element discretization of boundary value problems associated to the differential operator $I - \text{grad} \cdot \text{div}$. The natural setting for such problems is in the Hilbert space $H(\text{div})$ and the variational formulation is based on the inner product in $H(\text{div})$. We show how to construct preconditioners for these equations using both domain decomposition and multigrid techniques. These preconditioners are shown to be spectrally equivalent to the inverse of the operator. As a consequence, they may be used to precondition iterative methods so that any given error reduction may be achieved in a finite number of iterations, with the number independent of the mesh discretization. We describe applications of these results to the efficient solution of mixed and least squares finite element approximations of elliptic boundary value problems.

Key words. preconditioner, mixed method, least squares, finite element, multigrid, domain decomposition

AMS(MOS) subject classifications (1991 revision). 65N55, 65N30

1. Introduction. The Hilbert space $H(\text{div})$ consists of square-integrable vectorfields on a domain Ω with square integrable divergence. This space arises naturally in the variational formulation of a variety of systems of partial differential equations. The inner product in $H(\text{div})$ is given by

$$\Lambda(u, v) = (u, v) + (\text{div} u, \text{div} v),$$

where (\cdot, \cdot) is used to denote the inner product in L^2. Associated to the inner product Λ is a linear operator Λ mapping $H(\text{div})$ isometrically onto its dual space, given by the equations

$$(\Lambda u, v) = \Lambda(u, v) \quad \text{for all } v \in H(\text{div}).$$

Just as the corresponding operator for the inner product in the Sobolev space H^1 may be considered as a realization of the differential operator $I - \Delta$ together with a homogeneous natural boundary condition, Λ may be thought of as a realization of the operator $I - \text{grad} \cdot \text{div}$ with an appropriate boundary condition. More precisely, if $f \in L^2$, then the operator equation $\Lambda u = f$ is equivalent to the differential equation

$$u - \text{grad} \cdot \text{div} u = f \text{ in } \Omega$$

*The first author was supported NSF grants DMS-9205300 and DMS-9500672 and by the Institute for Mathematics and its Applications. The second author was supported by NSF grant DMS-9403552. The third author was supported by The Norwegian Research Council under grants 100331/431 and STP.29643.

†Department of Mathematics, Penn State, University Park, PA 16802. dna@math.psu.edu

‡Department of Mathematics, Rutgers University, New Brunswick, NJ 08903. falk@math.rutgers.edu

§Department of Informatics, University of Oslo, Oslo, Norway. ragnar@ifi.uio.no

Typeset by \LaTeX
together with the natural boundary condition

$$\text{div } u = 0 \text{ on } \partial \Omega.$$

Note that this is not an elliptic boundary value problem. When restricted to the subspace of gradient fields in \(H(\text{div}) \), \(\Lambda \) coincides with the second order elliptic operator \(I - \Delta \), while when restricted to the subspace of curl fields, \(\Lambda \) coincides with the identity.

Given a finite element subspace \(V_h \) of \(H(\text{div}) \), we determine a positive-definite symmetric operator \(\Lambda_h : V_h \rightarrow V_h \) by

\[
(\Lambda_h u, v) = \Lambda(u, v) \quad \text{for all } v \in V_h.
\]

Then for any \(f \in V_h \), the equation

\[
\Lambda_h u = f
\]

admits a unique solution \(u \in V_h \). Once a basis for \(V_h \) has been selected, this equation may be realized on a computer as a matrix equation. Our goal in this paper is the specification and theoretical justification of fast algorithms for solving this matrix equation. Specifically we shall show how either domain decomposition or multigrid techniques can be used to efficiently construct an \(L^2 \)-symmetric operator \(\Theta_h : V_h \rightarrow V_h \) which is spectrally equivalent to the inverse of \(\Lambda_h \), i.e., such that the spectrum of \(\Theta_h \Lambda_h \) is bounded above and below by positive constants independent of the mesh discretization parameter \(h \). It follows that the operator equation (1.2) can be solved efficiently by the conjugate gradient or other iterative methods using \(\Theta_h \) as a preconditioner. More precisely, the number of iterations needed to achieve a given order of accuracy will depend only on the spectral bounds, and so will not increase as the mesh is refined.

Our interest in the efficient solution of (1.2) is motivated by its applications to numerous problems of practical import. As a very simple example, consider the computation of \(u = \text{grad } p \) where \(p \) is determined by the Dirichlet problem \(-\Delta p + p = g \) in \(\Omega \), \(p = 0 \) on \(\partial \Omega \). Then \(u \in H(\text{div}) \) satisfies \(\Lambda(u, v) = -(g, \text{div } v) \) for all \(v \in H(\text{div}) \). Approximating \(u \) by \(u_h \in V_h \) and restricting \(v \) to the same space gives (1.2) where \((f, v) = -(g, \text{div } v) \). (We also remark that \(p \) can be computed from \(u \) as \(g + \text{div } u \).)

In § 7 we will consider some more significant applications of (1.2). One such application is the solution of the linear algebraic system arising from a mixed finite element discretization of a scalar second order elliptic problem. Mixed finite element methods for such problems have been widely studied and applied, but the solution of the linear algebraic systems they engender is not straightforward. As we shall show in § 7, this indefinite algebraic system has the same mapping properties as the block diagonal system whose blocks are \(\Lambda_h \) and the identity. (More precisely, the spectrum of the product of the inverse of this block diagonal operator and the indefinite operator arising from the mixed system
is bounded above and below and bounded away from zero uniformly in h. It then follows easily that if the system is preconditioned with a block diagonal preconditioner with blocks Θ_h and the identity, then appropriate preconditioned iterative methods converge, with the number of iterations needed to achieve a given error reduction independent of the mesh size.

Another direct application of our results which will be discussed in § 7 is the preconditioning of first order least-squares formulations of second order elliptic problems. The simplest such formulation, as discussed for example, in [25] and [13], leads to a system which has the same mapping properties as the block diagonal operator where the blocks may now be taken to be Λ_h and a discrete Laplacian. Hence a simple combination of our preconditioner with a standard preconditioner for the Laplacian will result in an efficient numerical method.

We mention several other applications of our results which will not be discussed below. One is to the implementation of the sequential regularization method for the nonstationary incompressible Navier–Stokes system, introduced in [23]. As discussed in § 1 of [23], the SRM iterative method requires the solution of an equation of the form (1.2) at each timestep. There are also connections between our results and iterative solvers for the Reissner–Mindlin plate [1] and with the construction of fictitious domain preconditioners for the mixed finite element method [30].

Our construction and analysis of the preconditioner Θ_h is guided by the modern theory of multilevel and domain decomposition methods, as presented, for example, in [3] and [34]. However the operator Λ lacks a number of properties possessed by standard elliptic operators, and this necessitates a number of modifications to the theory. For example, in multigrid analysis it is often required that the eigenfunctions corresponding to the lowest eigenvalues of the operator can be well represented on a coarse mesh. This property is not true for Λ (since the curl of a highly oscillatory function is an eigenfunction associated to the minimum eigenvalue). One consequence is that many of the simplest smoothers (e.g., the scalar smoother) do not work for multigrid solutions to (1.2). In fact, other investigators have noticed this failure, either through analysis or computation, and have concluded that multigrid is not suitable for the problem (1.2). See, for example, [12]. However our analysis, which takes account of the special properties of the problem, shows that this conclusion is unjustified: with an appropriate smoother, multigrid is as efficient for the operator Λ as it is for a standard elliptic operator.

As indicated above, the operator Λ behaves very differently when applied to gradient fields than it does when applied to curl fields. This observation suggests that the Helmholtz decomposition of an arbitrary vectorfield into a gradient and a curl will provide insight. Particularly important in our analysis will be a discrete version of the Helmholtz decomposition that applies to functions in V_h. However it is important to note that we use the discrete Helmholtz decomposition only as a theoretical tool: it is not necessary to compute it when applying our algorithms. In this respect our approach differs significantly
from that of Vassilevski and Wang [33]. They also study multilevel preconditioners for the equation (1.2). However, their methods require the use of projections into spaces of curl fields at all levels, and this leads to algorithms with more complex structures.

After some preliminaries in § 2, in § 3 we introduce the finite element spaces we shall consider, namely the Raviart–Thomas spaces, and establish some new approximation properties for them. These results, which are intimately related to the discrete Helmholtz decomposition, will be crucial to the later analysis. § 4 and § 5 are devoted to the construction of domain decomposition and multigrid preconditioners for the discrete approximations of the operator \(\Lambda \), respectively. In § 6, we consider the extension of these results to related problems, namely when the space \(\mathbf{H}(\text{div}) \) is replaced by the subspace

\[
\mathbf{H}(\text{div}) = \{ \mathbf{v} \in \mathbf{H}(\text{div}) : \mathbf{v} \cdot \mathbf{n} = 0 \text{ on } \partial \Omega \},
\]

and also when the inner product in \(\mathbf{H}(\text{div}) \) is replaced by a parameter dependent inner product given by

\[
\Lambda(\mathbf{u}, \mathbf{v}) = (\mathbf{u}, \mathbf{v}) + k^2 (\text{div } \mathbf{u}, \text{div } \mathbf{v}),
\]

where \(k \in (0, 1] \). The applications of these results to mixed and least squares systems is given in § 7 and the results of some numerical computations are presented in § 8. In an appendix, we sketch the additional arguments that are needed to extend some of the results to the case of non-convex \(\Omega \), and in a second appendix we give the proofs of some basic lemmas from the theory of multigrid and domain decomposition.

2. Preliminaries. We suppose that the domain \(\Omega \) is a convex polygon. For \(S \subset \mathbb{R}^2 \), we shall use the usual Sobolev spaces \(\mathbf{H}^m(S) \) with norm \(\| \cdot \|_{m,S} \). The notation \(\mathbf{H}^1(S) \) is used for the subspace of functions in \(\mathbf{H}^1(S) \) which vanish on the boundary of \(S \). When the set \(S \) coincides with \(\Omega \), we shall usually suppress it from the notation, and when the index \(m \) is zero, we shall usually suppress it. We use boldface type for vectors in \(\mathbb{R}^2 \), vector-valued functions, spaces of such functions, and operators with range in such spaces. Thus, for example, \(\mathbf{L}^2 \) denotes the space of 2-vector-valued functions on \(\Omega \) for which both components are square integrable.

We shall use the standard differential operators

\[
\text{grad} = \begin{pmatrix} \partial / \partial x \\ \partial / \partial y \end{pmatrix}, \quad \text{curl} = \begin{pmatrix} -\partial / \partial y \\ \partial / \partial x \end{pmatrix}, \quad \text{div} = (\partial / \partial x \quad \partial / \partial y).
\]

We shall study an additive Schwarz preconditioner in § 4 and an additive Schwarz smoother in § 5. Here we briefly recall the definition of the additive Schwarz operator in a general setting and some properties of it which we will need. For this purpose let \(V \) be a Hilbert space which can be decomposed into a finite (but not necessarily direct) sum of closed subspaces: \(V = \sum_j V_j \). Let \(B : V \to V \) be a symmetric positive definite operator and let \(P_j : V \to V_j \) denote the orthogonal projection with respect to the norm
\(v \mapsto (Bv, v)^{1/2} \). The additive Schwarz operator may be written as \(\Theta = \sum_j P_j B^{-1} \). It is easy to see that \(\Theta \) is \(L^2 \)-symmetric and positive definite. Moreover, for all \(v \in V \),

\[
(\Theta^{-1} v, v) = \inf_{v_j \in V_j} \sum_j (Bv_j, v_j).
\]

For the convenience of the reader, we include a proof of this result in Appendix B.

3. **Finite element discretizations.** In this section we introduce the Raviart–Thomas finite element spaces. Let \(\mathcal{T}_h \) be a quasiuniform family of triangulations of \(\Omega \), where \(h > 0 \) is a parameter representative of the diameter of the elements. For each non-negative integer \(r \) the Raviart–Thomas space of index \(r \) is given by

\[
V_h = \{ v \in H(\text{div}) : v|_T \in P_r(T) + (x, y)P_r(T) \quad \text{for all} T \in \mathcal{T}_h \}.
\]

Here \(P_r(T) \) denotes the set of polynomial functions of degree at most \(r \) on \(T \). A vectorfield in \(V_h \) is uniquely specified by giving its value at a triangular array of \(r(r + 1)/2 \) points in each triangle and the value of its normal component at \(r + 1 \) points on each edge of the triangulation. Figure 1 shows the element diagram for \(V_h \) in the three lowest order cases.

\[
\text{FIG. 1. Degrees of freedom for the Raviart–Thomas spaces of indices 0, 1, and 2 approximating } H(\text{div}). \text{ The arrows indicate the value of the normal component and the double dots the value of both components.}
\]

We shall also introduce two other finite element spaces:

\[
W_h = \{ s \in H^1 : s|_T \in P_{r+1}(T) \}
\]

is the usual space of continuous piecewise polynomials of degree \(r + 1 \) and

\[
S_h = \{ q \in L^2 : q|_T \in P_r(T) \}
\]

the space of arbitrary piecewise polynomials of degree \(r \). It is easy to see that \(\text{div} V_h \subset S_h \) and that \(\text{curl} W_h \) is precisely the subspace of divergence free vector-fields in \(V_h \) (cf. [10]):

\[
\{ v \in V_h : \text{div} v = 0 \} = \{ \text{curl} s : s \in W_h \}.
\]
Defining the discrete gradient operator $\text{grad}_h : S_h \rightarrow V_h$ by the equation

$$
(\text{grad}_h q, v) = -(q, \text{div} v), \quad \text{for all } v \in V_h,
$$

we immediately deduce the discrete Helmholtz decomposition (cf. [11])

$$
V_h = \text{grad}_h S_h \oplus \text{curl} W_h,
$$

where the decomposition is orthogonal with respect to both the L^2 and the $H(\text{div})$ inner products. Note that the two summand spaces $\text{grad}_h S_h$ and $\text{curl} W_h$ are invariant under the action of A_h.

It is also well known (cf. [10] or [26]) that the pair of spaces (V_h, S_h) satisfies the inf-sup condition

$$
\inf_{q \in S_h} \sup_{v \in V_h} \frac{\left(\text{div} v, q\right)}{\|v\|_{H(\text{div})}\|q\|} \geq \gamma > 0,
$$

with the constant γ independent of h. The inf-sup condition follows from the existence of the interpolation operator $\Pi_h : H^1 \rightarrow V_h$ having the commutativity property

$$
\text{div} \Pi_h = Q_h \text{div},
$$

and the approximation property

$$
\|u - \Pi_h u\| \leq c_h \|u\|_1, \quad \text{for all } u \in H^1.
$$

Here $Q_h : L^2(\Omega) \rightarrow S_h$ is the L^2-projection onto S_h. In fact, the standard construction of Π_h determines it triangle by triangle from moments of $u \cdot n$ on the triangle edges and moments of u on the triangles. Therefore $\Pi_h u$ is defined for all $u \in H(\text{div})$ for which $u|_T \in H^1(T)$ for all $T \in \mathcal{T}$, and for such u,

$$
\|u - \Pi_h u\|_{0,T} \leq c_h \|u\|_{1,T}.
$$

Observe that (3.3) implies that grad_h is injective on S_h.

The Raviart–Thomas mixed method to approximate the solution of the Dirichlet problem

$$
\Delta p = f \text{ on } \Omega, \quad p = 0 \text{ on } \partial \Omega,
$$

determines $(u_h, p_h) \in V_h \times S_h$ by the equations

$$
(u_h, v) + (\text{div} v, p_h) = 0 \quad \text{for all } v \in V_h,
$$

$$
(\text{div} u_h, q) = (f, q) \quad \text{for all } q \in S_h.
$$
An equivalent formulation is

\[u_h = \text{grad}_h p_h, \quad \text{div} u_h = Q_h f. \]

The inf-sup condition implies that this is a stable numerical method in the sense that

\[\| u_h \|_{H(\text{div})} + \| p_h \| \leq C \| f \| \]

for some constant \(C \) independent of \(h \) and \(f \). Moreover the following estimates are known for this method (see, e.g., [21]):

\[
\begin{align*}
\| u - u_h \| & \leq \| u - \Pi_h u \| \leq c h^k \| u \|_k, \quad k = 1, 2, \ldots, r + 1, \\
\| p - p_h \| & \leq c h^k \| p \|_k, \quad k = 2, 3, \ldots, r + 1, \\
\| p - p_h \| & \leq c (h \| p \|_1 + h^2 \| p \|_2).
\end{align*}
\]

To close this section we consider the following situation. Suppose that a second quasiuniform mesh \(T_H \) of \(\Omega \) with mesh size \(H > h \) is given and define corresponding spaces \(V_H, S_H, \) and \(W_H \). The following results, which will be crucial to the analysis in §§ 4 and 5, concerns the approximation of functions in \(S_h \) and \(V_h \) by those in \(S_H \) and \(V_H \).

Lemma 3.1. Let \(p_h \in S_h, \ v_h = \text{grad}_h p_h \in V_h \). Define \(p_H \in S_H \) and \(v_H \in V_H \) by

\[v_H = \text{grad}_H p_H, \quad \text{div} v_H = Q_H \text{div} v_h. \]

Then

\[
\begin{align*}
\| p_h - Q_H p_h \| & \leq c H \| \text{grad}_h p_h \|, \\
\| v_h - v_H \| & \leq c H \| \text{div} v_h \|, \\
\| v_h - v_H \|_{H(\text{div})} & \leq c H \| \Lambda_h v_h \|,
\end{align*}
\]

where the constant \(c \) is independent of \(h \) and \(H \).

Proof. Define \(p \in H^1(\Omega) \) by \(\Delta p = \text{div} \text{grad}_h p_h \) and \(v = \text{grad} p \). Then

\[\| p \|_1 \leq c \| \text{grad}_h p_h \|, \quad \| p \|_2 \leq c \| \text{div} \text{grad}_h p_h \| \leq c h^{-1} \| \text{grad}_h p_h \|. \]

Moreover \((p_h, v_h) \) is the mixed method approximation to \((p, v) \) in the space \(S_h \times V_h \) and \((p_H, v_H) \) is the mixed method approximation to \((p, v) \) is \(S_H \times V_H \).

To establish the first inequality, we apply the triangle inequality, (3.7), the standard approximation property of \(Q_H \), and the a priori estimates for \(p \) to write

\[
\begin{align*}
\| p_h - Q_H p_h \| & \leq \| p_h - p \| + \| Q_H (p - p_h) \| + \| p - Q_H p \| \\
& \leq c (h \| p \|_1 + h^2 \| p \|_2 + H \| p \|_1) \leq c H \| \text{grad}_h p_h \|.
\end{align*}
\]

7
Applying (3.5) and noting that $\|v\|_1 \leq \|p\|_2 \leq c\|\text{div } v_h\|$ gives
$$\|v - v_h\| \leq cH\|\text{div } v_h\|,$$$$
$$\|v - v_H\| \leq cH\|\text{div } v_h\|,$$
and another application of the triangle inequality gives the second estimate.

Substituting $\text{div } v_h$ for p_h in the first estimate then gives
$$\|\text{div } v_h - \text{div } v_H\| \leq cH\|\text{grad}_h \text{ div } v_h\|.$$
Combining this with the previous estimate gives
$$\|v_h - v_H\|_{H(\text{div})} \leq cH(\|\text{div } v_h\| + \|\text{grad}_h \text{ div } v_h\|).$$
Since
$$\|\Lambda_h v_h\|^2 = \|v_h\|^2 + 2\|\text{div } v_h\|^2 + \|\text{grad}_h \text{ div } v_h\|^2,$$
this establishes the third estimate. \qed

The key point in the next lemma is the gain of a power of H without bringing in the
full H^1 norm of $u - P_H u$.

Lemma 3.2. Suppose $u \in V_h$ and that $u - P_H u \in V_h$ has the discrete Helmholtz decomposition
$$u - P_H u = \text{grad}_h p + \text{curl } s,$$
for some $p \in S_h$ and $s \in W_h$. Then
$$\|\text{grad}_h p\| + \|s\| \leq cH\|u - P_H u\|_{H(\text{div})},$$
where c is independent of H.

Proof. Clearly
\begin{equation}
(3.11) \quad \|\text{grad}_h p\|^2 = \Lambda(\text{grad}_h p, v_h),
\end{equation}
where $v_h = \Lambda_h^{-1} \text{grad}_h p$. Since Λ_h maps $\text{grad}_h S_h$ onto itself, we have $v_h \in \text{grad}_h S_h$, so
\begin{equation}
(3.12) \quad \Lambda(\text{grad}_h p, v_h) = \Lambda(u - P_H u, v_h).
\end{equation}
Defining $v_H \in V_H$ as in the previous lemma then gives
$$\|v_h - v_H\|_{H(\text{div})} \leq cH\|\Lambda_h v_h\| = cH\|\text{grad}_h p\|,$$
so
\begin{equation}
(3.13) \quad \Lambda(u - P_H u, v_h) = \Lambda(u - P_H u, v_h - v_H) \leq \|u - P_H u\|_{H(\text{div})}\|v_h - v_H\|_{H(\text{div})} \\
\leq cH\|u - P_H u\|_{H(\text{div})}\|\text{grad}_h p\|.
\end{equation}
The desired bound for $\|\text{grad}_h p\|$ follows directly from (3.11), (3.12), and (3.13). Observe also that
$$(\text{curl } s, \text{curl } \psi) = \Lambda(u - P_H u, \text{curl } \psi) = 0 \quad \text{for all } \psi \in W_H.$$ Therefore, by a standard duality argument,
$$\|s\| \leq cH\|\text{curl } s\| \leq cH\|u - P_H u\|_{H(\text{div})}. \quad \square$$
4. Domain decomposition methods. In this section we shall construct domain decomposition preconditioners for the operator \(\Lambda_h \) given by (1.1). We first define the additive Schwarz operator and show that it is an effective preconditioner by bounding its spectrum above and below. At the end of the section we define a multiplicative Schwarz operator and derive bounds on its spectrum from those for the additive operator. To the extent possible, we follow the standard analysis for second order elliptic operators (cf., for example, Dryja and Widlund [18], [19] or Xu [34]), but some modifications are required in order to handle the degeneracy of the operator.

Let \(T_H = \{ \Omega_j \}_{j=1}^J \) be a coarse quasiuniform triangulation of \(\Omega \) with characteristic grid size \(H \), and let \(T_h \) be a quasiuniform refinement of \(T_H \) with characteristic grid size \(h < H \). Furthermore, let \(\{ \Omega'_j \}_{j=1}^J \) be a covering of \(\Omega \) such that for each \(j \), \(\partial \Omega'_j \) is a union of triangles in \(T_h \) and \(\Omega_j \subset \Omega'_j \). It is also useful to set \(\Omega_0 = \Omega'_0 = \Omega \) and \(\Gamma'_j = \partial \Omega'_j \setminus \partial \Omega \). We shall make the standard assumptions of bounded but sufficient overlap:

(A1) There is a constant \(\beta_1 \) such that each point of \(\Omega \) is contained in at most \(\beta_1 \) of the sets \(\Omega'_j \).

(A2) There is a constant \(\beta_2 > 0 \) such that \(\text{dist}(\Gamma'_j, \Omega_j) \geq \beta_2 H \).

Let \(V_h, W_h, \) and \(S_h \) be the finite element spaces introduced in § 3, so that \(V_h \) is the Raviart–Thomas space of index \(r \) with respect to the triangulation \(T_h \) and the discrete Helmholtz decomposition (3.2) is satisfied. The same spaces formed with respect to the coarse mesh \(T_H \) will be denoted \(V_0, W_0, \) and \(S_0 \). (It is also possible to use instead the Raviart–Thomas spaces of index 0 on the coarse level mesh without affecting any of the results we are about to establish.)

For \(j = 1, 2, \ldots, J \) set

\[
V_j = \{ v \in V : v \equiv 0 \text{ on } \Omega \setminus \Omega'_j \},
\]

\[
W_j = \{ w \in W : w \equiv 0 \text{ on } \Omega \setminus \Omega'_j \},
\]

\[
S_j = \{ q \in S : w \equiv 0 \text{ on } \Omega \setminus \Omega'_j \}.
\]

Consider the domain \(\Omega'_j \) with the triangulation induced by \(T_h \), and the Raviart–Thomas space of index \(r \) approximating \(H(\text{div}, \Omega'_j) \). Imposing the essential boundary condition \(v \cdot n = 0 \) on \(\Gamma'_j \) determines a subspace in which the degrees of freedom corresponding to nodes on \(\Gamma'_j \) are set equal to zero. We may imbed this subspace in \(V_h \subset H(\text{div}) \) via extension by zero from \(\Omega'_j \) to \(\Omega \) and this is the space \(V_j \). Similarly, identifying functions on \(\Omega'_j \) with their extension by zero to \(\Omega \), \(W_j \) is the usual Lagrangian finite element space of degree \(r + 1 \) approximating the \(H^1(\Omega'_j) \) functions which vanish on \(\Gamma'_j \) and \(S_j \) is the usual space of discontinuous piecewise polynomials of degree \(r \) approximating \(L^2(\Omega'_j) \). We may then define a discrete gradient operator \(\text{grad}_j : S_j \to V_j \) as in (3.1) and the discrete Helmholtz decomposition \(V_j = \text{grad}_j S_j + \text{curl} W_j \) holds.

We use the decomposition \(V_h = \sum_{j=0}^J V_j \) to define an additive Schwarz preconditioner, \(\Theta_h : V_h \to V_h \), as described in § 2. That is, \(\Theta_h = \sum_{j=0}^J P_j \Lambda_h^{-1} \), where \(P_j : V_h \to V_j \).
is the $H(\text{div})$-orthogonal projection, or, in other words, $\Theta_h f = \sum_{j=0}^{J} u_j$ where $u_j \in V_j$ solves the subdomain ($j > 0$) or coarse mesh ($j = 0$) problem

$$
\Lambda(u_j, v) = (f, v) \quad \text{for all } v \in V_j.
$$

To establish the effectiveness of this preconditioner, we need to provide bounds from above and below on the spectrum of

$$
P := \Theta_h \Lambda_h = \sum_{j=0}^{J} P_j.
$$

Such bounds are a direct consequence of the following theorem.

Theorem 4.1. There is a positive constant c (depending on the domain Ω, the overlap constants β_1 and β_2, and the shape and quasiuniformity constants for the meshes T_h and T_H, but otherwise independent of h and H), such that

$$
c^{-1} \Lambda(u, u) \leq \Lambda(Pu, u) \leq c \Lambda(u, u) \quad \text{for all } u \in V_h.
$$

Proof. First we shall establish the second inequality with $c = \beta_1$. By the Cauchy-Schwarz inequality, it is enough to show that

\begin{equation}
\Lambda(Pu, Pu) \leq \beta_1 \Lambda(Pu, u).
\end{equation}

Let χ_j be the characteristic function of Ω_j' so $\|\sum_{j=0}^{J} \chi_j^2\|_{L^\infty} = \|\sum_{j=0}^{J} \chi_j\|_{L^\infty} \leq \beta_1$. Since $Pu = \sum_{j=0}^{J} P_j u = \sum_{j=0}^{J} \chi_j P_j u$ and $\text{div } Pu = \sum_{j=0}^{J} \chi_j \text{div } P_j u$,

$$
\Lambda(Pu, Pu) = \sum_{i,j=0}^{J} \int_{\Omega} \chi_i \chi_j \left[(P_i u)(P_j u) + \text{div } (P_i u) \text{div } (P_j u) \right] dx
$$

$$
= \sum_{i,j=0}^{J} \int_{\Omega} (\chi_i P_j u)(\chi_j P_i u) + [\chi_i \text{div } (P_j u)] [\chi_j \text{div } (P_i u)] dx
$$

$$
\leq \sum_{i,j=0}^{J} \left\{ \int_{\Omega} \chi_i^2 \left[|P_j u|^2 + |\text{div } (P_j u)|^2 \right] dx \right\}^{1/2} \left\{ \int_{\Omega} \chi_j^2 \left[|P_i u|^2 + |\text{div } (P_i u)|^2 \right] dx \right\}^{1/2}
$$

$$
\leq \sum_{i,j=0}^{J} \int_{\Omega} \chi_i^2 |P_j u|^2 + |\text{div } (P_j u)|^2] dx
$$

$$
\leq \beta_1 \sum_{j=0}^{J} \Lambda(P_j u, P_j u) = \beta_1 \sum_{j=0}^{J} \Lambda(P_j u, u) = \beta_1 \Lambda(Pu, u),
$$

10
as desired.

The key to establishing the first inequality is showing that we can decompose any $u \in V_h$ as $\sum_{j=0}^J u_j$ with $u_j \in V_j$ and so that

\[(4.2) \quad \sum_{j=0}^J \Lambda(u_j, u_j) \leq c \Lambda(u, u).\]

Assuming this result momentarily, the completion of the argument is standard:

\[
\Lambda(u, u) = \sum_{j=0}^J \Lambda(u_j, u) = \sum_{j=0}^J \Lambda(u_j, P_j u) \leq \left[\sum_{j=0}^J \Lambda(u_j, u_j) \right]^{1/2} \left[\sum_{j=0}^J \Lambda(P_j u, P_j u) \right]^{1/2} \leq \left[c \Lambda(u, u) \right]^{1/2} \Lambda(P u, u)^{1/2}.
\]

To define the decomposition of u, we first use the Helmholtz decomposition to write $u = \nabla_h p + \text{curl} w$, with $p \in S_h$ and $w \in W_h$ normalized so that $\int w = 0$. We shall decompose each of the summands independently. The decomposition of $\text{curl} w$ follows from the usual procedure to decompose $w \in H^1$ which arises in the theory of domain decomposition for standard elliptic operators (cf. [34, Lemma 7.1]). Using this procedure we may write w as $\sum_{j=0}^J w_j$ with $w_j \in W_j$ and $\sum_{j=0}^J \|w_j\|_1^2 \leq c \|w\|_1^2$. Then $\text{curl} w_j \in V_j$, $\text{curl} w = \sum_{j=0}^J \text{curl} w_j$, and

\[
\sum_{j=0}^J \Lambda(\text{curl} w_j, \text{curl} w_j) \leq \sum_{j=0}^J \|w_j\|_1^2 \leq c \|w\|_1^2 \leq c(\text{curl} w, \text{curl} w) = c \Lambda(\text{curl} w, \text{curl} w) \leq c \Lambda(u, u).
\]

It thus remains to decompose $v := \nabla_h p$ as $\sum_{j=0}^J v_j$ with $v_j \in V_j$ such that

\[(4.3) \quad \sum_{j=0}^J \Lambda(v_j, v_j) \leq c \Lambda(v, v).\]

First define $(v_0, p_0) \in V_0 \times S_0$ by $v_0 = \nabla_0 p_0$, $\text{div} v_0 = Q_0 \text{div} v$, where Q_0 is the L^2 projection into S_0. Next let $\{\theta_j\}_{j=1}^J$ be a partition of unity subordinate to the covering Ω'_j of Ω so that

\[
\sum_{j=1}^J \theta_j \equiv 1, \quad 0 \leq \theta_j \leq 1, \quad \text{supp}(\theta_j) \subset \Omega'_j.
\]
In view of the sufficient overlap condition (A2), we can choose \(\{\theta_j\} \) such that

\[
\| \text{grad} \theta_j \|_{L^\infty} \leq cH^{-1}.
\]

We then set \(v_j = \Pi_h[\theta_j(v - v_0)] \). By construction, \(v = \sum_{j=0}^J v_j \). Defining \(u_j = \text{curl} w_j + v_j \), we have

\[
\sum_{j=0}^J \Lambda(u_j, u_j) \leq 2 \sum_{j=0}^J [\Lambda(\text{curl} w_j, \text{curl} w_j) + \Lambda(v_j, v_j)].
\]

Since \(\Lambda(v, v) \leq \Lambda(u, u) \), the proof of the theorem will be complete if we can show (4.3). Now for \(j > 0 \),

\[
\| v_j \| \leq \| \Pi_h[\theta_j(v - v_0)] - \theta_j(v - v_0) \| + \| \theta_j(v - v_0) \|
\]

\[
\leq cH \| \text{grad} \theta_j \|_{L^\infty} \| v - v_0 \|_{L^2(\Omega_j')} + \| \theta_j \|_{L^\infty} \| v - v_0 \|_{H^1(\Omega_j')} + \| \theta_j \|_{L^\infty} \| v - v_0 \|_{L^2(\Omega_j')}
\]

\[
\leq c\| v - v_0 \|_{L^2(\Omega_j')},
\]

where we have used an inverse inequality, the boundedness of \(\theta_j \), and (4.4) in the last step.

Now

\[
\| \text{div} \Pi_h[\theta_j(v - v_0)] \| \leq \| \text{div}[\theta_j(v - v_0)] \| = \| \text{div}[\theta_j(v - v_0)] \|_{0, \Omega_j'}
\]

\[
\leq \| \text{grad} \theta_j \|_{L^\infty} \| v - v_0 \|_{0, \Omega_j'} + \| \theta_j \|_{L^\infty} \| \text{div}(v - v_0) \|_{0, \Omega_j'}
\]

\[
\leq c(H^{-1}\| v - v_0 \|_{0, \Omega_j'} + \| \text{div}(v - v_0) \|_{0, \Omega_j'}).
\]

Squaring and adding over \(j \), and using (A1) gives

\[
\sum_{j=1}^J \Lambda(v_j, v_j) \leq c[(1 + H^{-2})\| v - v_0 \|^2 + \| \text{div}(v - v_0) \|^2].
\]

Since \(\text{div} v_0 = Q_0 \text{div} v \), it follows easily using Lemma 3.1 that the right hand side may be bounded by \(c\Lambda(v, v) \). This completes the proof. \(\square \)

We remark that in using Lemma 3.1, we require that the domain \(\Omega \) be convex. In fact, this restriction may be eliminated by using a more complicated argument, which we present in Appendix A.

We shall now discuss the corresponding symmetric multiplicative Schwarz preconditioner \(\tilde{\Theta}_h : V_h \rightarrow V_h \). The results for this preconditioner follow by a standard argument from those derived above for the additive preconditioner (cf. for example Bramble, Pasciak, Wang, and Xu [7] or Xu [34]).
We recall the definition of the multiplicative Schwarz operator \(\tilde{\Theta}_h \). For a given \(f \in V_h \) we let \(\tilde{\Theta}_h f = v^J \in V_h \), where the \(v^j \) are defined by the iteration

\[
\begin{align*}
 v^{-J-1} &= 0, \\
 v^j &= v^{j-1} - P_{[j]}(v^{j-1} - \Lambda_h^{-1} f), \quad j = -J, -J + 1, \ldots, J.
\end{align*}
\]

(4.6)

If we let \(v = \Lambda_h^{-1} f \), then it follows from the iteration above that

\[
 v - v^j = (I - P_{[j]})(v - v^{j-1}).
\]

Hence, if we let \(E : V_h \to V_h \) denote the operator

\[
 E = (I - P_0)(I - P_1) \ldots (I - P_J),
\]

then

\[
 I - \tilde{\Theta}_h \Lambda_h = E^* E,
\]

where \(E^* \) is the adjoint of \(E \) with respect to the inner product \(\Lambda(\cdot, \cdot) \). This immediately implies that

\[
 \Lambda((I - \tilde{\Theta}_h \Lambda_h) u, u) = \Lambda(E u, E u) \geq 0 \quad \text{for all } u \in V_h,
\]

(4.7)

and hence the spectrum of \(\tilde{\Theta}_h \Lambda_h \) is bounded above by one.

A lower bound on the spectrum of \(\tilde{\Theta}_h \Lambda_h \) can be derived from an upper bound of \(\Lambda(E u, E u) \). Define operators

\[
 E_j = (I - P_j)(I - P_{j+1}) \ldots (I - P_J) \quad \text{for } j = 0, 1, \ldots, J.
\]

Hence \(E_0 = E \). Furthermore let \(E_{J+1} = I \). Observe that

\[
 \Lambda(E_j u, E_j u) = \Lambda((I - P_j)E_{j+1} u, E_{j+1} u)
\]

\[
= \Lambda(E_{j+1} u, E_{j+1} u) - \Lambda(P_j E_{j+1} u, E_{j+1} u).
\]

Therefore we obtain

\[
 \Lambda(E u, E u) = \Lambda(u, u) - \sum_{j=0}^J \Lambda(P_j E_{j+1} u, E_{j+1} u).
\]

Combining this with (4.7) we have

\[
 \Lambda(\tilde{\Theta}_h \Lambda_h u, u) = \sum_{j=0}^J \Lambda(P_j E_{j+1} u, E_{j+1} u).
\]

(4.8)
The desired lower bound for the spectrum of $\tilde{\Theta}_h \Lambda_h$ will essentially follow from the identity (4.8) and the corresponding bound for the additive operator derived above. In order to see this, observe first that from the relation $E_j = (I - P_j)E_{j+1}$ we obtain

$$I = E_j + \sum_{i=j}^J P_i E_{i+1}.$$

Therefore, since $P_j E_j = 0$ we have

$$(4.9) \quad \Lambda(Pu, u) = \sum_{j=0}^J \Lambda(P_j u, u) = \sum_{j=0}^J \sum_{i=j}^J \Lambda(P_j u, P_i E_{i+1} u).$$

By arguing as in the derivation of (4.1), it now follows from the Cauchy–Schwarz inequality and the overlap condition (A1) that

$$\sum_{j=0}^J \sum_{i=j}^J \Lambda(P_j u, P_i E_{i+1} u) \leq \beta_1 \Lambda(Pu, u)^{1/2} (\sum_{j=0}^J \Lambda(P_j E_{j+1} u, E_{j+1} u))^{1/2}.$$

Together with (4.9) this implies that

$$(4.10) \quad \Lambda(Pu, u) \leq \beta_1^2 \sum_{j=0}^J \Lambda(P_j E_{j+1} u, E_{j+1} u).$$

Hence, by combining (4.8), (4.10), and the left inequality in Theorem 4.1, we obtain

$$(4.11) \quad \Lambda(\tilde{\Theta}_h \Lambda_h u, u) \geq \beta_1^{-2} \Lambda(Pu, u) \geq (c \beta_1^{-2})^{-1} \Lambda(\Lambda_h u, u) \quad \text{for all } u \in V_h.$$

We summarize this discussion of the multiplicative Schwarz operator in the following theorem.

Theorem 4.2. The spectrum of the operator $\tilde{\Theta}_h \Lambda_h$ is contained in an interval $[1 - \delta, 1]$, where the positive constant δ is independent of h and H, but depends on the overlap constants β_1 and β_2.

As a corollary of the discussion which led to Theorem 4.2, we also obtain the following relation between the multiplicative operator $\tilde{\Theta}_h$ and the corresponding additive operator Θ_h which will be used in the next section.

Corollary 4.3. Let $\beta_1 > 0$ be given by the overlap condition (A1). Then

$$(\tilde{\Theta}_h v, v) \geq \beta_1^{-2} (\Theta_h v, v) \quad \text{for all } v \in V_h.$$

Proof. From (4.11) we have

$$(\tilde{\Theta}_h \Lambda_h u, \Lambda_h u) \geq \beta_1^{-2} (\Theta_h \Lambda_h u, \Lambda_h u) \quad \text{for all } u \in V_h.$$

The result follows by setting $v = \Lambda_h^{-1} u$.

14
5. Multigrid methods. In this section we define a V-cycle multigrid preconditioner \(\Theta_h \) for the operator \(\Lambda_h \) using an additive Schwarz smoother formed by summing solutions to local problems in a neighborhood of each mesh vertex, and we show that the operator \(I - \Theta_h \Lambda_h \) is a contraction uniformly with respect to \(h \), and, a fortiori, that \(\Theta_h \) is spectrally equivalent to \(\Lambda_h^{-1} \). At the end of this section, we show that an analogous result holds for the multiplicative Schwarz smoother.

We begin by recalling the multigrid V-cycle construction in an abstract setting. For this discussion the notation is independent of the rest of the paper. Let \(V_1 \subset V_2 \subset \ldots \subset V_J \) be a nested sequence of finite dimensional subspaces of a Hilbert space \(H \), and let \(\Lambda : V_J \times V_J \to \mathbb{R} \) be a positive definite symmetric bilinear form. For \(j = 1, 2, \ldots, J \) define \(\Lambda_j : V_j \to V_j \) by

\[
(\Lambda_j v, w) = \Lambda(v, w) \quad \text{for all } v, w \in V_j,
\]

where the pairing on the left hand side is the inner product in \(H \). Also let \(Q_j : V_J \to V_j \) denote the \(H \)-orthogonal projection and \(P_j : V_J \to V_j \) the orthogonal projection with respect to the bilinear form \(\Lambda \). Finally, suppose that we are given for each \(j > 1 \) a linear operator \(R_j : V_j \to V_j \). As will be clarified below, \(R_j \), the smoother, is intended to behave in some ways like an approximation to \(\Lambda_j^{-1} \).

For a fixed positive integer \(m \), the standard V-cycle multigrid algorithm with \(m \) smoothings recursively defines operators \(\Theta_j : V_j \to V_j \) beginning with \(\Theta_1 = \Lambda_1^{-1} \). For \(j > 1 \) and \(f \in V_j \) we define \(\Theta_j f = x_{2m+1} \) where

\[
\begin{align*}
x_0 &= 0 \in V_j, \\
x_i &= x_{i-1} + R_j(f - \Lambda_j x_{i-1}), \quad i = 1, 2, \ldots, m, \\
x_{m+1} &= x_m + \Theta_{j-1} Q_{j-1}(f - \Lambda_j x_m), \\
x_i &= x_{i-1} + R_j(f - \Lambda_j x_{i-1}), \quad i = m + 2, m + 3, \ldots, 2m + 1.
\end{align*}
\]

Note that if \(R_j \) is \(H \)-symmetric, as we shall assume, then so is \(\Theta_j \).

The following result is useful for establishing the convergence of the V-cycle algorithm. It was proved in a special case by Braess and Hackbusch [2] and can easily be adapted from the proof of Theorem 3.6 in [3]. For the convenience of the reader, we provide a proof in Appendix B.

Theorem 5.1. Suppose that for each \(j = 1, 2, \ldots, J \) the smoother \(R_j \) is \(H \)-symmetric and positive semidefinite and satisfies the conditions

\[
(5.1) \quad \Lambda([I - R_j \Lambda_j]v, v) \geq 0 \quad \text{for all } v \in V_j
\]

and

\[
(5.2) \quad (R_j^{-1}([I - P_{j-1}]v, [I - P_{j-1}]v) \leq \alpha \Lambda([I - P_{j-1}]v, [I - P_{j-1}]v) \quad \text{for all } v \in V_j,
\]

15
where α is some constant. Then

$$0 \leq \Lambda([I - \Theta_j \Lambda_j]v, v) \leq \delta \Lambda(v, v) \text{ for all } v \in V_j,$$

where $\delta = \alpha/(\alpha + 2m)$.

Corollary 5.2. Under the hypotheses of the theorem, the error operator $I - \Theta_j \Lambda_j$ is a positive definite contraction on V_J whose operator norm relative to the Λ inner product is bounded by δ. Moreover the eigenvalues of $\Theta_j \Lambda_j$ belong to the interval $[1 - \delta, 1]$.

Thus we have, in particular, that Θ_j is spectrally equivalent to Λ_j^{-1}.

We wish to apply this abstract theorem to the case where $H = L^2$, $V_J = V_h$ is the Raviart–Thomas space of index $r \geq 0$ relative to the triangulation T_h, and Λ is the $H(\text{div})$ inner product. In order to define the nested set of subspaces V_j, we assume that the triangulation T_h is constructed by a successive refinement process. More precisely, we assume that we have a nested sequence of quasi-uniform triangulations T_j, $1 \leq j \leq J$, with characteristic mesh size h_j proportional to γ^{2j} for some positive constant $\gamma < 1$, and that $T_h = T_J$. It is easy to check that

$$V_1 \subset V_2 \subset \cdots \subset V_J = V_h$$

where V_j is the Raviart-Thomas space of index r relative to the triangulation T_j. (Note, that V_j in this section has a different meaning than it had in the preceding one.) At each level j we have the discrete operator $\Lambda_j : V_j \rightarrow V_j$ defined as in (1.1) and the L^2- and $H(\text{div})$-orthogonal projections onto V_j, which we denote by Q_j and P_j, respectively. Also, using the triangulation T_j we may define the spaces W_j and S_j and the discrete gradient operator $\text{grad}_j : S_j \rightarrow V_j$ so that the discrete Helmholtz decomposition

$$V_j = \text{grad}_j S_j \oplus \text{curl} W_j,$$

holds. Thus there exist maps $F_j : V_j \rightarrow W_j$ and $G_j : V_j \rightarrow S_j$, so that

$$u = \text{grad}_j (G_j u) + \text{curl}(F_j u) \text{ for all } u \in V_j.$$

To complete the description of the multigrid algorithm, we must define the smoothers. We shall discuss both additive smoothers R_j and multiplicative smoothers \tilde{R}_j. The additive smoother $R_j : V_j \rightarrow V_j$ will be defined as a multiple of the additive Schwarz operator formed with respect to a decomposition of V_j which we now describe. Let N_j be the set of vertices in the triangulation T_j, and for each $\nu \in N_j$ let $T_{j, \nu}$ be the set of triangles in T_j meeting at the vertex ν. These form a triangulation of a small subdomain which we denote $\Omega_{j, \nu}$. The family of subdomains $\{\Omega_{j, \nu}\}_{\nu \in N_j}$ forms an overlapping covering of Ω as did the family $\{\Omega'_j\}_{j=1}^J$ of the preceding section, and we define a decomposition of V_j, W_j,
and \(S_j \) as we did there: \(V_{j,\nu}, W_{j,\nu}, \) and \(S_{j,\nu} \) are the subsets of functions in \(V_j, W_j, \) and \(S_j, \) respectively, which are supported in \(\Omega_{j,\nu}. \) Note that the finite overlap condition certainly holds: no point belongs to more than three of the \(\Omega_{j,\nu}. \) Then we define

\[
(5.3) \quad R_j = \eta \sum_{\nu \in \mathcal{N}_j} P_{j,\nu} \Lambda_j^{-1}
\]
as the additive Schwarz operator multiplied by a scaling factor of \(\eta > 0. \) The implementation of \(R_j \) is easy: on each of the small domains (each consisting of only a small number of elements, whose number does not grow with decreasing \(h \) or increasing \(j \)) one must solve the restricted discrete variational problem with Dirichlet boundary conditions on the subdomain boundary (except where the subdomain boundary coincides with the domain boundary), and the scaled sum of these solutions gives the value of \(R_j. \) As discussed at the end of \(\S \) 2, \(R_j \) is \(L^2 \)-symmetric and positive definite and

\[
(5.4) \quad \eta(R_j^{-1} v, v) = \inf_{\nu \in \mathcal{V}_j, \nu} \sum_{\nu \in \mathcal{N}_j} \Lambda(v_{\nu}, v_{\nu}).
\]

In the remainder of this section we show that if \(0 < \eta \leq 1/3, \) then the scaled additive Schwarz smoother \((5.3) \) satisfies the conditions of Theorem 5.1 and so the conclusions of that theorem and of Corollary 5.2 are satisfied.

For \(v \in V_j, \)

\[
\Lambda((I - R_j) v, v) = \Lambda(v, v) - \eta \sum_{\nu \in \mathcal{N}_j} \Lambda(P_{j,\nu} v, v).
\]

But

\[
\Lambda(P_{j,\nu} v, v) = \| P_{j,\nu} v \|_H^2 \leq \| v \|_H \| P_{j,\nu} v \|_H \| v \|_H \leq 3 \Lambda(v, v).
\]

Thus the hypothesis (5.1) holds.

Thus, it only remains to establish (5.2), which, in view of (5.4) reduces to showing that for \(v = (I - P_{j-1}) u, u \in V_j, \) we can decompose \(v \) as \(\sum_{\nu} v_{\nu} \) with \(v_{\nu} \in V_{j,\nu} \) such that

\[
(5.5) \quad \sum_{\nu \in \mathcal{N}_j} \Lambda(v_{\nu}, v_{\nu}) \leq c \Lambda(v, v).
\]

We use the discrete Helmholtz decomposition to write

\[
v = \bar{v} + \tilde{v} = \text{grad}_h G_j v + \text{curl} F_j v,
\]

and decompose the two pieces separately.
First we consider \(\vec{v} := \text{grad}_h G_j v \). Letting \(\{\theta_{\nu}\}_{\nu \in \mathcal{N}_j} \) denote a partition of unity subordinate to the covering \(\{\Omega_{j,\nu}\}_{\nu \in \mathcal{N}_j} \), we set \(\vec{v}_\nu = \Pi_j(\theta_{\nu} \vec{v}) \). Then \(\vec{v} = \sum_{\nu} \vec{v}_\nu \), and, arguing as at the end of the proof of Theorem 4.1 (with \(H = h_j \) and \(v_0 = 0 \)), we get
\[
\sum_{\nu \in \mathcal{N}_j} \Lambda(\vec{v}_\nu, \vec{v}_\nu) \leq C(\|\vec{v}\|_{H(\text{div})}^2 + h_j^{-2} \|\vec{v}\|^2).
\]
Clearly \(\|\vec{v}\|_{H(\text{div})} \leq \|v\|_{H(\text{div})} \) and by Lemma 3.2, \(\|\vec{v}\| \leq c h_j \|v\|_{H(\text{div})} \), so
\[
\sum_{\nu \in \mathcal{N}_j} \Lambda(\vec{v}_\nu, \vec{v}_\nu) \leq C \|v\|^2_{H(\text{div})}.
\]

Next consider \(\vec{v} = \text{curl} F_j v \). Using a standard decomposition argument (as in [34, Lemma 7.1]) we may write \(F_j v = \sum_{\nu} s_{\nu} \), where \(s_{\nu} \in W_{j,\nu} \) and
\[
\sum_{\nu \in \mathcal{N}_j} (\text{curl} s_{\nu}, \text{curl} s_{\nu}) \leq C((\text{curl} F_j v, \text{curl} F_j v) + h_j^{-2} \|F_j v\|^2).
\]
Recalling that \(v = u - P_{j-1} u = \text{grad}_h G_j v + \text{curl} F_j v \), we have from Lemma 3.2 that
\[
\|F_j v\| \leq C h_j \Lambda(v, v)^{1/2}.
\]
Setting \(\vec{v}_\nu = \text{curl} s_{\nu} \) so \(\vec{v} = \sum_{\nu} \vec{v}_\nu \), and combining these results, we obtain
\[
\sum_{\nu \in \mathcal{N}_j} \Lambda(\vec{v}_\nu, \vec{v}_\nu) = \sum_{\nu \in \mathcal{N}_j} (\text{curl} s_{\nu}, \text{curl} s_{\nu}) \leq C \Lambda(v, v).
\]
Finally, setting \(v_\nu = \vec{v}_\nu + \vec{v}_\nu \), we get that \(v = \sum v_\nu \) and that (5.5) holds. This completes the verification of the required properties of the smoother.

Next we consider the corresponding multiplicative preconditioner \(\widetilde{R}_j : V_j \rightarrow V_j \). This operator is defined by an algorithm of the form (4.6) with respect to the spaces \(V_{j,\nu} \). By construction (cf. (4.7)), these operators satisfy (5.1). Furthermore, by Corollary 4.3, the operators \(\widetilde{R}_j \) and \(R_j \) satisfy
\[
(R_j v, v) \leq 9 \eta(\widetilde{R}_j v, v) \quad \text{for all} \quad v \in V_h.
\]
In order to verify (5.2) for the multiplicative operator, again let \(v = (I - P_{j-1}) u, u \in V_j \), and decompose \(v \) as \(\sum_{\nu} v_\nu \), with \(v_\nu \in V_{j,\nu} \) satisfying (5.5). Then, by the Cauchy–Schwarz inequality and the definition of the additive smoother \(R_j \), we have
\[
(R_j^{-1} v, v) = \sum_{\nu \in \mathcal{N}_j} \Lambda(P_{j,\nu} \Lambda_j^{-1} R_j^{-1} v, v_\nu)
\]
\[
\leq \left[\sum_{\nu \in \mathcal{N}_j} \Lambda(P_{j,\nu} \Lambda_j^{-1} R_j^{-1} v, \Lambda_j^{-1} R_j^{-1} v) \right]^{1/2} \left[\sum_{\nu \in \mathcal{N}_j} \Lambda(v_\nu, v_\nu) \right]^{1/2}
\]
\[
= \eta^{-1/2} (R_j \widetilde{R}_j^{-1} v, \widetilde{R}_j^{-1} v)^{1/2} \left[\sum_{\nu \in \mathcal{N}_j} \Lambda(v_\nu, v_\nu) \right]^{1/2}.
\]
Hence, from (5.5) and (5.7) we obtain
\[
(R_j^{-1} v, v) \leq c(\widetilde{R}_j^{-1} v, v)^{1/2} \Lambda(v, v)^{1/2}
\]
which implies (5.2).
6. Extensions. We now consider two extensions of the results obtained in the previous sections. First we remark that the entire analysis of §§ 3–5 adapts easily to the case where the space \(H(\text{div}) \) is replaced by the subspace

\[
\hat{H}(\text{div}) = \{ v \in H(\text{div}) : v \cdot n = 0 \text{ on } \partial \Omega \}.
\]

In this case, the finite element spaces \(V_h, W_h, \) and \(S_h \) are replaced by \(V_h \cap \hat{H}(\text{div}), \)
\(W_h \cap \hat{H}^1, \) and \(S_h \cap \hat{L}^2, \) respectively, and the Dirichlet problem (3.4) is replaced by the Neumann problem

\[
\Delta p = f \text{ on } \Omega, \quad \partial p/\partial n = 0 \text{ on } \partial \Omega, \quad \int_{\Omega} p \, dx = 0.
\]

(Here \(\hat{L}^2 \) denotes the subspace of functions in \(L^2 \) with mean value zero.)

Second, we consider the case where the bilinear form \(\Lambda \) is redefined as

\[
\Lambda(u, v) = (u, v) + k^2(\text{div } u, \text{div } v),
\]

where \(k \in (0,1] \) is a parameter. (An application of this case will be discussed in the next section.) The results of §§ 4 and 5 continue to hold in this case, moreover, with the spectral bounds now independent of \(k \) as well as \(h \). In order to prove such results, some small modifications to the preceding analysis are required. We now discuss these modifications. First we define the norm

\[
\| v \|_{\Lambda} = [\Lambda(v, v)]^{1/2}.
\]

In the case when \(k = 1 \), this is the norm \(\| v \|_{H(\text{div})} \). The first change we need occurs in Lemma 3.1, where we need to replace the estimate

\[
\| v_h - v_H \|_{H(\text{div})} \leq cH \| \Lambda_h v_h \|
\]

by the estimate

\[
(6.2) \quad \| v_h - v_H \|_{\Lambda} \leq cH k^{-1} \| \Lambda_h v_h \|.
\]

The proof of this result is completely analogous to the previous one.

Similarly, in Lemma 3.2, we need to replace the estimate

\[
\| \text{grad}_h p \| + \| s \| \leq cH \| u - P_H u \|_{H(\text{div})}
\]

by the estimate

\[
(6.3) \quad \| \text{grad}_h p \| + \| s \| \leq cH k^{-1} \| u - P_H u \|_{\Lambda}.
\]
Using (6.2), the proof of this result is completely analogous to the previous one.

Turning now to § 4 on domain decomposition, the proof of the second inequality in Theorem 4.1 carries over directly once k is introduced. The proof of the first inequality carries over directly until (4.5), for which the obvious replacement is

$$\sum_{j=1}^{J} \Lambda(v_j, v_j) \leq c[(1 + k^2 H^{-2})\|v - v_0\|^2 + k^2 \|\text{div}(v - v_0)\|^2].$$

When $H \leq k$, we can complete the proof essentially as before using Lemma 3.1 to obtain from the above

$$\sum_{j=1}^{J} \Lambda(v_j, v_j) \leq c[H^2 + k^2] \|\text{div} v\|^2 \leq c\Lambda(v, v).$$

When $k < H$, we replace the v_0 defined previously by $v_0 = 0$. Then

$$\sum_{j=1}^{J} \Lambda(v_j, v_j) \leq c[\|v - v_0\|^2 + k^2 \|\text{div}(v - v_0)\|^2] \leq c\Lambda(v, v).$$

Turning to the section on multigrid, we need only check that the smoother still satisfies the conditions of Theorem 5.1. The proof of (5.1) is the same, requiring only the replacement of the $\| \cdot \|_{H(\text{div})}$ norm by the more general $\| \cdot \|_{\Lambda}$ norm. To establish (5.2), we proceed as previously, obtaining instead of (5.6), the obvious replacement

$$\sum_{\nu \in \mathcal{N}_j} \Lambda(\bar{v}_\nu, \bar{v}_\nu) \leq C(k^2 h^{-2}_j \|\bar{v}\|^2 + \|\bar{v}\|^2 + k^2 \|\text{div} \bar{v}\|^2).$$

Applying (6.3), we get $\|\bar{v}\| \leq c h_j k^{-1} \|v\|_\Lambda$. Since $\|\bar{v}\| \leq \|v\|$ and $\|\text{div} \bar{v}\| = \|\text{div} v\|$, it follows immediately that

$$\sum_{\nu \in \mathcal{N}_j} \Lambda(\bar{v}_\nu, \bar{v}_\nu) \leq C \|v\|^2_\Lambda.$$

The remainder of the proof is unchanged.

7. Applications. In this section we give examples of how the preconditioners Θ_h constructed in the previous sections can be used to develop efficient solution operators for the linear systems that arise from some finite element procedures.

To explain our approach, we first consider the abstract problem of finding x_h belonging to a normed finite dimensional vectorspace X_h and satisfying

$$(7.1) \quad A_h x_h = f_h,$$
where A_h is a self-adjoint linear operator from X_h to its dual X_h^* and $f_h \in X_h^*$ is given. We think of A_h as coming from some discretization of a boundary value problem using finite elements of meshsize h and assume that the operator norms

\[(7.2) \quad \|A_h\|_{\mathcal{L}(X_h,X_h^*)} \text{ and } \|A_h^{-1}\|_{\mathcal{L}(X_h^*,X_h)} \text{ are bounded uniformly in } h.\]

In order to solve (7.1), we will use an iterative solution algorithm preconditioned by a positive definite self-adjoint operator $B_h : X_h^* \to X_h$. For example, we may use a preconditioned minimum residual iteration, or, if A_h is positive definite, a preconditioned conjugate gradient iteration. Such an iterative scheme is efficient if the action of the B_h can be computed efficiently and if the magnitude of the eigenvalues of $B_h A_h$ can be bounded above and below by positive constants independent of h (this last property insures that the number of iterations needed to achieve a given factor of reduction of the error is bounded). Now, in light of (7.2), the desired eigenvalue bounds will follow if

\[(7.3) \quad \|B_h\|_{\mathcal{L}(X_h^*,X_h)} \text{ and } \|B_h^{-1}\|_{\mathcal{L}(X_h,X_h^*)} \text{ are bounded uniformly in } h.\]

Thus to efficiently solve (7.1), we simply require a computable positive definite operator B_h for which (7.3) holds. We remark that the preconditioner B_h can be constructed without reference to the detailed structure of the operator A_h, but depends only on the norm in X_h.

As a first example, consider an elliptic boundary value problem of the form

\[(7.4) \quad \text{div}(a \text{ grad } p) = g \text{ in } \Omega, \quad p = 0 \text{ on } \partial \Omega.\]

The data g is assumed to be $L^2(\Omega)$, while the coefficient matrix $a = \{a_{ij}(x)\}_{i,j=1}^2$ is assumed measurable, bounded, symmetric, and uniformly positive definite on Ω.

Introducing the variable $u = a \text{ grad } p$, we obtain the first order system

\[(7.5) \quad u - a \text{ grad } p = 0 \text{ in } \Omega, \quad \text{div } u = g \text{ in } \Omega, \quad p = 0 \text{ on } \partial \Omega.\]

A simple least squares approach characterizes (u, p) as the minimizer of the functional

$$J(v, q) = \|v - a \text{ grad } q\|_0^2 + \|\text{div } v - g\|_0^2$$

over $H(\text{div}) \times \hat{H}^1$. Defining $B : [H(\text{div}) \times \hat{H}^1] \times [H(\text{div}) \times \hat{H}^1] \to \mathbb{R}$ by

$$B(u, p; v, q) = (u - a \text{ grad } p, v - a \text{ grad } q) + (\text{div } u, \text{div } v),$$

it is easy to see that $(u, p) \in H(\text{div}) \times \hat{H}^1$ is determined by the weak equations

$$B(u, p; v, q) = (g, \text{div } v) \quad \text{for all } (v, q) \in H(\text{div}) \times \hat{H}^1.$$
In [25] (and, in greater generality, in [13]), it is shown that this bilinear form is symmetric and positive-definite, and so defines an inner product on \(\mathbf{H}(\text{div}) \times \mathbf{H}^1 \) equivalent to the usual one.

By restricting the minimization to a finite dimensional subspace \(X_h \subset \mathbf{H}(\text{div}) \times \mathbf{H}^1 \), we obtain an approximate solution, \((u_h, p_h) \in X_h\). The convergence of this procedure was established for a wide variety of finite element spaces in [25]. Defining \(A_h : X_h \to X_h^* \) by

\[
\langle A_h x, y \rangle = B(x, y) \quad \text{for all } x, y \in X_h,
\]

and \(f_h \in X_h^* \) by

\[
\langle f_h, (v, q) \rangle = (g, \text{div } v),
\]

the linear system determining the discrete solution can be written in the form (7.1). Since \(X_h \) is normed with the restriction of the norm in \(\mathbf{H}(\text{div}) \times \mathbf{H}^1 \) and the norm in \(X_h^* \) is defined by duality, the bounds (7.2) follow directly from the equivalence of the \(B \) inner product with the inner product in \(\mathbf{H}(\text{div}) \times \mathbf{H}^1 \). Hence we need to construct a preconditioner \(B_h : X_h^* \to X_h \) for which (7.3) holds.

Now suppose that \(X_h = V_h \times W_h \) where \(V_h \subset \mathbf{H}(\text{div}) \) is a Raviart–Thomas space and \(W_h \) is some standard finite element subspace of \(\mathbf{H}^1 \). As is usual we identify \(V_h^* \) with \(V_h \) so that

\[
\|v\|_{V_h^*} = \sup_{w \in V_h} \frac{(v, w)}{\|w\|_{\mathbf{H}(\text{div})}},
\]

and similarly for \(W_h^* \). The operators \(\Theta_h \) constructed in the previous sections map \(V_h^* \to V_h \) and satisfy

\[
\|\Theta_h\|_{\mathcal{L}(V_h^*, V_h)} \quad \text{and} \quad \|\Theta_h^{-1}\|_{\mathcal{L}(V_h, V_h^*)} \quad \text{are bounded uniformly in } h.
\]

Moreover, domain decomposition or multigrid can be used to construct \(\Phi_h : W_h^* \to W_h \) such that

\[
\|\Phi_h\|_{\mathcal{L}(W_h^*, W_h)} \quad \text{and} \quad \|\Phi_h^{-1}\|_{\mathcal{L}(W_h, W_h^*)} \quad \text{are bounded uniformly in } h.
\]

These are the natural requirements for a preconditioner for the Laplacian discretized in the usual way using the space \(W_h \). Then, letting

\[
B_h = \begin{pmatrix} \Theta_h & 0 \\ 0 & \Phi_h \end{pmatrix},
\]

(7.2) follows directly.

To summarize this example: we may precondition the discrete least squares system using an \(\mathbf{H}(\text{div}) \) preconditioner for the vector variable and a standard \(H^1 \) preconditioner for the scalar variable.
A second example is furnished by a mixed method solution to (7.4). This again proceeds from the first order system (7.5), but now the weak formulation is to find \((u, p) \in H(\text{div}) \times L^2\) such that

\[
(a^{-1}u, v) + (p, \text{div} v) = 0 \quad \text{for all} \quad v \in H(\text{div}),
\]

\[
(\text{div} u, q) = (g, q) \quad \text{for all} \quad q \in L^2.
\]

(7.6)

We shall discretize this using the Raviart–Thomas space \(V_h\) of index \(r\) for \(u\) and the space \(S_h\) of discontinuous piecewise polynomials of degree \(r\) for \(p\), so that the discrete weak formulation is to find \((u_h, p_h) \in V_h \times S_h\) such that

\[
(a^{-1}u_h, v) + (p_h, \text{div} v) = 0 \quad \text{for all} \quad v \in V_h,
\]

\[
(\text{div} u_h, q) = (g, q) \quad \text{for all} \quad q \in S_h.
\]

(7.7)

This is again a system of the form (7.1), where now \(X_h = V_h \times S_h\) and \(A_h : X_h \to X_h^*\) is self-adjoint but indefinite. The bounds (7.2) are a consequence of the stability of the Raviart–Thomas elements (cf., [10, Proposition II.1.3]).

Note that, since the norm on \(S_h\) is the \(L^2\) norm, its dual norm coincides with itself. Thus the choice of preconditioner is obvious: we take

\[
B_h = \begin{pmatrix} \Theta_h & 0 \\ 0 & I \end{pmatrix},
\]

(7.8)

where \(I\) is the identity on \(S_h\), and then (7.3) holds. Vassilevski and Lazarov arrived at the same type of block diagonal preconditioner for the mixed system in [31], although they did not have available the simple multigrid and domain decomposition preconditioners for \(A_h\) which we constructed in \(\S\S\) 4 and 5, and so suggested the more complicated operator from [33].

Let us comment on how this choice of preconditioner differs from other block diagonal preconditioners for the mixed method which have been considered. The coefficient operator of the continuous system (7.6),

\[
A = \begin{pmatrix} a^{-1} & -\text{grad} \\ \text{div} & 0 \end{pmatrix},
\]

is an isomorphism from \(H(\text{div}) \times L^2\) onto its dual \(H(\text{div})^* \times L^2\), and the stability of the Raviart–Thomas discretization implied that similar mapping properties hold for the discrete operator \(A_h\). These mapping property led naturally to our choice of preconditioner. However, it is also true the continuous operator \(A\) defines an isomorphism from \(L^2 \times \tilde{H}^1\) onto its dual \(L^2 \times H^{-1}\). In fact, this is just a recasting of the standard \(\tilde{H}^1 \to H^{-1}\) isomorphism for the Dirichlet problem for a second order elliptic equation. From a corresponding
discrete result for the operator A_h, and by arguing in an analogous manner as above, we are led to a preconditioner for the discrete operator A_h of the form

$$(7.9) \quad \hat{B}_h = \begin{pmatrix} I & 0 \\ 0 & \Phi_h \end{pmatrix}.$$

where $\Phi_h : S_h \to S_h$ is a preconditioner for the discrete negative Laplace operator $-\Delta_h : S_h \to S_h$ given by $-\text{div grad}_h$. However, notice that S_h is not a subset of H^1 in the present case (indeed in the simplest case, S_h consists of piecewise constants), and the discrete Laplacian is not a standard, or even a local, operator, and so the definition of Φ_h is not obvious. From this point of view, this second approach seems less natural than the first. Despite this fact, most of the preconditioners for the system (7.7) which are analyzed in the literature are of the form (7.9) or closely related to it. Such preconditioners are for example discussed in [27], [28], and [29]. In this context, we also mention that many authors have sought to avoid the the solution of (7.7) when implementing mixed methods by using a reformulation of the mixed method as a positive-definite system. This can be accomplished by using the Schur complement as in algorithms of Uzawa type, via the introduction of additional Lagrange multipliers and elimination of the vector variable, or via the use of divergence free bases and elimination of the scalar variable. Examples of such approaches can be found in [4], [6], [8], [9], [14], [15], [16], [17], [20], [22], [24], and [32].

Finally, in this section we shall consider an application of the preconditioning of the k-dependent operator associated to the bilinear form (6.1). Consider the system obtained by applying the mixed finite element method to the singular perturbation problem

$$k^2 \Delta p - p = g \text{ in } \Omega, \quad p = 0 \text{ on } \partial \Omega,$$

with $k \in (0,1]$. A mixed formulation seeks $(u, p) \in H(\text{div}) \times L^2$ such that

$$(u, v) + k(p, \text{div } v) = 0 \quad \text{for all } v \in H(\text{div}),$$

$$k(\text{div } u, q) - (p, q) = (g, q) \quad \text{for all } q \in L^2.$$

The differential operator

$$A = \begin{pmatrix} I & -k \text{grad} \\ k \text{div} & -I \end{pmatrix}$$

defines an isomorphism from $H(\text{div}) \times L^2$ onto its dual. In fact, equipping $H(\text{div})$ with the norm

$$u \mapsto (\|u\|^2 + k^2 \|\text{div } u\|^2)^{1/2}$$

and choosing test functions $v = u$ and $q = k \text{div } u - p$, we easily see that the norms of A and A^{-1} are bounded uniformly with respect to k. Therefore we can precondition the mixed system with the block diagonal preconditioner (7.8), where Θ_h is the domain decomposition or multigrid preconditioner for the k-dependent operator on $H(\text{div})$. In view of the uniformity of the bounds on Θ_h discussed in the previous section, the resulting block diagonal preconditioner for the mixed method is effective uniformly with respect to k and h.

24
8. Numerical results. In this section we present numerical results which illustrate the multigrid convergence results of § 5 and their application to mixed methods, as discussed in § 7.

First we made a numerical study of the condition number of $\Lambda_h : V_h \to V_h$ and the effect of preconditioning. We took the domain to be the unit square. Bisecting the square into two triangles by its negatively sloped diagonal yields the mesh of level 1, to which we associate the mesh size $h = 1$. The level m mesh has half the mesh size as the level $m - 1$ mesh and is formed from it by subdividing each triangle into four similar triangles. Thus the level m mesh is a uniform triangulation of the square into 2^{2m-1} triangles and has mesh size $h = 1/2^{m-1}$. The space V_h is taken as Raviart–Thomas space of index 0 on this mesh.

Table 1 reports the spectral condition number of the discrete operator Λ_h and the preconditioned operator $\Theta_h \Lambda_h$ where Θ_h is the V-cycle multigrid preconditioner of § 5 using one application of the additive Schwarz preconditioner (5.3) with the scaling factor η taken to be $1/2$. (For the convergence theory of § 5 we assumed that $\eta \leq 1/3$, but other approaches to the convergence theory can be used to raise this bound to $2/3$, and we found the results slightly better with $\eta = 1/2$ than $\eta = 1/3$.) In order to determine the condition numbers, we computed the matrices corresponding to both the unpreconditioned and the preconditioned operator, and then calculated their largest and smallest eigenvalues. Of course, this is an expensive procedure which is never performed in a practical computation, but which we carried out to illustrate the theory. The fifth column of Table 1 clearly displays the expected growth of the condition number of Λ_h as $O(h^{-2})$, and the sixth column the boundedness of the condition number of the preconditioned operator $\Theta_h \Lambda_h$.

<table>
<thead>
<tr>
<th>level</th>
<th>h</th>
<th>elements</th>
<th>dim V_h</th>
<th>$\kappa(\Lambda_h)$</th>
<th>$\kappa(\Theta_h \Lambda_h)$</th>
<th>iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>38</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>8</td>
<td>16</td>
<td>153</td>
<td>1.32</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1/4</td>
<td>32</td>
<td>56</td>
<td>646</td>
<td>1.68</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>1/8</td>
<td>128</td>
<td>208</td>
<td>2,650</td>
<td>2.17</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1/16</td>
<td>512</td>
<td>800</td>
<td>10,670</td>
<td>2.34</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>1/32</td>
<td>2,048</td>
<td>3,136</td>
<td>42,810</td>
<td>2.40</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>1/64</td>
<td>8,192</td>
<td>12,416</td>
<td>–</td>
<td>–</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 1. Condition numbers for the operator Λ_h and for the preconditioned operator $\Theta_h \Lambda_h$, and iterations counts to achieve an error reduction factor of 10^6.

In addition to computing the condition numbers, we solved the equation (1.2) using the conjugate gradient method with Θ_h as preconditioner. We arbitrarily took f to be
the constant unit vectorfield in the vertical direction and started with an initial iterate of 0. The final column of Table 1 shows the number of iterations required to reduce the initial error by a factor of 10^6. As expected, the number of iterations appears to remain bounded as the mesh is refined.

As a second numerical study, we used the Raviart–Thomas mixed method to solve the factored Poisson equation

$$u = \text{grad} \, p, \quad \text{div} \, u = g \quad \text{in} \, \Omega, \quad p = 0 \quad \text{on} \, \partial \Omega.$$

We chose $g = 2(x^2 + y^2 - x - y)$ so that $p = (x^2 - x)(y^2 - y)$. The discrete solution (u_h, p_h) belongs to the space $V_h \times S_h$, with V_h the Raviart–Thomas space described above and S_h the space of piecewise constant functions on the same mesh. We solved the discrete equations both with a direct solver and by using the minimum residual method preconditioned with the block diagonal preconditioner having as diagonal blocks Θ_h and the identity (as discussed in § 7). Full multigrid was used to initialize the minimum residual algorithm. That is, the computed solution at each level was used as an initial guess at the next finer level, beginning with the exact solution on the coarsest (two element) mesh. In Table 2 we show the condition number of the discrete operator A_h and of the preconditioned operator $B_h A_h$. While the former quantity grows linearly with h^{-1} (since this is a first order system), the latter remains small.

<table>
<thead>
<tr>
<th>level</th>
<th>h</th>
<th>dim V_h</th>
<th>dim S_h</th>
<th>$\kappa(A_h)$</th>
<th>$\kappa(B_h A_h)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>8.25</td>
<td>1.04</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>16</td>
<td>8</td>
<td>15.0</td>
<td>1.32</td>
</tr>
<tr>
<td>3</td>
<td>1/4</td>
<td>56</td>
<td>32</td>
<td>29.7</td>
<td>1.68</td>
</tr>
<tr>
<td>4</td>
<td>1/8</td>
<td>208</td>
<td>128</td>
<td>59.6</td>
<td>2.18</td>
</tr>
<tr>
<td>5</td>
<td>1/16</td>
<td>800</td>
<td>512</td>
<td>119</td>
<td>2.34</td>
</tr>
</tbody>
</table>

Table 2. Condition numbers for the indefinite operator A_h corresponding to the mixed system and for the preconditioned operator $B_h A_h$.

Finally, we studied the contribution of the preconditioned minimum residual method to the solution error. To measure the error in the vector variable u, we used the relative L^2 error $\|u - u_c\|_0 / \|u\|_0$, where u_c represents the computed solution. The L^2 norms were computed using the three point quadrature rule (with edge midpoints as quadrature points) on each element and this is reported in Table 3 as a percent. Note that the reported error involves both the discretization error of the mixed method and further errors introduced by the linear solution process. To measure the error in the scalar variable p, we compared the piecewise constant computed solution to the piecewise constant function p^* whose value
is obtained on each element by averaging the values of the exact solution at the three quadrature points of the element; that is, we report \(\|p^* - p_h\|_0/\|p^*\|_0\) as a percent. We do this because \(p^*\) is a superconvergent quantity: \(\|p^* - p_h\|_0 = O(h^2)\). We see from Table 3 that for the vector variable \(u\), the full accuracy of the approximation is achieved with only four iterations of the minimum residual method, even when the system has over 20,000 unknowns. To maintain the full accuracy of the superconvergent approximation to \(p^*\), more iterations are needed, but for all practical purposes 8 iterations are sufficient, even for the finest mesh.

<table>
<thead>
<tr>
<th>level</th>
<th>(h)</th>
<th>(\dim V_h)</th>
<th>(\dim S_h)</th>
<th>direct solve</th>
<th>minres 4 iter.</th>
<th>minres 8 iter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>33.33</td>
<td>33.33</td>
<td>33.33</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>16</td>
<td>8</td>
<td>38.90</td>
<td>7.49</td>
<td>38.90</td>
</tr>
<tr>
<td>3</td>
<td>1/4</td>
<td>56</td>
<td>32</td>
<td>23.44</td>
<td>2.89</td>
<td>23.50</td>
</tr>
<tr>
<td>4</td>
<td>1/8</td>
<td>208</td>
<td>128</td>
<td>12.30</td>
<td>0.84</td>
<td>12.38</td>
</tr>
<tr>
<td>5</td>
<td>1/16</td>
<td>800</td>
<td>512</td>
<td>6.22</td>
<td>0.22</td>
<td>6.22</td>
</tr>
<tr>
<td>6</td>
<td>1/32</td>
<td>3,136</td>
<td>2,048</td>
<td>3.12</td>
<td>0.05</td>
<td>3.14</td>
</tr>
<tr>
<td>7</td>
<td>1/64</td>
<td>12,416</td>
<td>8,192</td>
<td>1.56</td>
<td>0.01</td>
<td>1.57</td>
</tr>
</tbody>
</table>

Table 3. Percent relative \(L^2\) errors for the mixed method with three different solvers for the linear system: direct, 4 iterations of the minimum residual method, and 8 iterations of minimum residual.

Appendix A. In the foregoing analysis we have assumed that the polygonal domain \(\Omega\) is convex. In this appendix we show that the results of § 4 on domain decomposition can be proven without assuming convexity. A careful examination of that section reveals that the only time convexity was used was in the application of (3.9) to bound the first summand on the right hand side of (4.5). However, the proof of (3.9) depended on 2-regularity of the Laplacian, and so fails for a non-convex polygonal domain.

The proof of the second inequality in Theorem 4.1 one did not use convexity, so only the proof of the first inequality needs to be adapted to the non-convex case. Recall that the key to establishing the first inequality was to show that we can decompose any \(u \in V_h\) as \(\sum_{j=0}^J u_j\) with \(u_j \in V_j\) and satisfying (4.2). To do so, we split \(u\) as \(\text{grad}_h p + \text{curl} w\) via the discrete Helmholtz decomposition, and set \(v = \text{grad}_h p\). In proving (4.2) in the convex case, we defined an approximation \((v_0, p_0) \in V_0 \times S_0\) by \(v_0 = \text{grad}_0 p_0\), \(\text{div} v_0 = Q_0 \text{div} v\), where \(Q_0\) is the \(L^2\) projection into \(S_0\), and then we bounded the difference \(\|v - v_0\|\) by \(cH\|\text{div} v\|\) using (3.9). Since this fails in the non-convex case, we now introduce an alternate approximation, namely we define \((\tilde{v}_h, \tilde{p}_h) \in V_h \times S_h\) by \(\tilde{v}_h = \text{grad}_h \tilde{p}_h\),
\[\text{div } \tilde{v}_h = Q_0 \text{ div } v. \] We shall show below that

\[(A.1) \quad \|v - \tilde{v}_h\| \leq cH \|\text{div } v\|.\]

Assuming \((A.1)\) for the moment, we now complete the proof of Theorem 4.1 without the assumption of convexity. From the definitions it follows that \(\text{div}(\tilde{v}_h - v_0) = 0\) and hence that \(\tilde{v}_h - v_0 = \text{curl } \rho\) for some \(\rho \in W_h\) of mean value zero. Thus,

\[u = (v - \tilde{v}_h) + (\tilde{v}_h - v_0) + v_0 + \text{curl } w = (v - \tilde{v}_h + v_0) + \text{curl}(w + \rho). \]

Note that \(\|w\|_1 \leq c\|u\|_{H(\text{div})}\) and \(\|\rho\|_1 \leq c(\|\tilde{v}_h\| + \|v_0\|) \leq c\|\text{div } v\| \leq c\|u\|_{H(\text{div})}\). We are now ready to choose the \(u_j\). First, we decompose \(w + \rho\) as \(\sum_{j=0}^{J} w_j\) with \(w_j \in W_j\) and \(\sum_{j=0}^{J} \|w_j\|_1^2 \leq c\|w + \rho\|_1^2\). Then \(\text{curl}(w + \rho) = \sum_{j=0}^{J} \text{curl } w_j\), \(\text{curl } w_j \in V_j\), and

\[\sum_{j=0}^{J} A(\text{curl } w_j, \text{curl } w_j) \leq c\|w + \rho\|_1^2 \leq cA(u, u). \]

It thus remains to decompose \(v - \tilde{v}_h + v_0\) as \(\sum_{j=0}^{J} v_j\) with \(v_j \in V_j\) such that \(\sum_{j=0}^{J} A(v_j, v_j) \leq cA(v, v)\). To do so, we proceed in an analogous manner to the earlier proof, setting \(v_j = \Pi_h[\theta_j(v - \tilde{v}_h)]\) for \(j \geq 1\). This leads to the inequality

\[\sum_{j=1}^{J} A(v_j, v_j) \leq c[(1 + H^{-2})\|v - \tilde{v}_h\|^2 + \|\text{div}(v - \tilde{v}_h)\|^2], \]

which is analogous to (4.5), and the proof is completed by invoking \((A.1)\) and arguing as before.

It thus remains to prove \((A.1)\). From the definitions of \(v\) and \(\tilde{v}_h\), we get that

\[(v - \tilde{v}_h, w) + (p - \tilde{p}_h, \text{div } w) = 0, \quad \text{for all } w \in V_h \]

\[(\text{div}[v - \tilde{v}_h], q) = ((I - Q_0) \text{ div } v, q), \quad \text{for all } q \in S_h. \]

Choosing \(w = v - \tilde{v}_h\) and \(q = p - \tilde{p}_h\) and subtracting the equations, we get

\[\|v - \tilde{v}_h\|^2 = -((I - Q_0) \text{ div } v, p - \tilde{p}_h) = -(\text{div } v, [I - Q_0][p - \tilde{p}_h]) \]

\[\leq \|\text{div } v\| \|(I - Q_0)(p - \tilde{p}_h)\|. \]

Hence \((A.1)\) will follow if we can show that

\[\|(I - Q_0)(p - \tilde{p}_h)\| \leq CH \|\text{grad}_h(p - \tilde{p}_h)\| = CH \|v - \tilde{v}_h\|. \]

This is an immediate consequence of the following lemma.
LEMMA A.1. There exists a constant c independent of h and H such that

$$
\|p - Q_H p\| \leq cH \|\text{grad}_h p\|, \quad \text{for all } p \in S_h.
$$

Proof. We first note that this result was established in the case of a convex domain in Lemma 3.1. To extend the proof to the nonconvex case, we first consider a single triangle $T = T_H$ in the coarse mesh composed of triangles $t = t_h$ in the fine mesh. We define the spaces

$$
V_h^T = \{ v \in V_h : v = 0 \text{ on } \Omega \setminus T \}, \quad S_h^T = \{ p \in S_h : p = 0 \text{ on } \Omega \setminus T \},
$$

and an operator $\text{grad}_h^T : S_h^T \to V_h^T$ defined for $p \in S_h^T$ by

$$(\text{grad}_h^T p, v) = -(p, \text{div } v) \quad \text{for all } v \in V_h^T.$$

Now, define $p_T \in S_h^T$ by $p_T = p$ on T and $p_T = 0$ on $\Omega \setminus T$. Then

$$
\|\text{grad}_h^T p_T\|_{0,T}^2 = (\text{grad}_h^T p, \text{grad}_h^T p_T) = -(p_T, \text{div } \text{grad}_h^T p_T)
$$

$$
= -(p, \text{div } \text{grad}_h^T p_T) = (\text{grad}_h p, \text{grad}_h^T p_T) = (\text{grad}_h p, \text{grad}_h^T p_T)_{T}
$$

$$
\leq \|\text{grad}_h p\|_{0,T} \|\text{grad}_h^T p_T\|_{0,T},
$$

so $\|\text{grad}_h^T p_T\|_{0,T} \leq \|\text{grad}_h p\|_{0,T}$. Now since the triangle T is convex, we may apply (3.8) to p_T, obtaining $\|p_T - Q_H p_T\|_{0,T} \leq cH \|\text{grad}_h^T p_T\|_{0,T}$. Therefore

$$
\|p - Q_H p\|^2 = \sum_T \|p_T - Q_H p_T\|_{0,T}^2 \leq c^2 H^2 \sum_T \|\text{grad}_h^T p_T\|^2_{0,T}
$$

$$
\leq c^2 H^2 \sum_T \|\text{grad}_h p\|^2_{0,T} \leq c^2 H^2 \|\text{grad}_h p\|^2.
$$

Appendix B. We now give a proof of the abstract convergence result, Theorem 5.1, for the V-cycle, and the identity (2.1) for the additive Schwarz operator.

Proof of Theorem 5.1. We shall prove by induction on i that

$$(B.1) \quad 0 \leq \Lambda([I - \Theta_i \Lambda_i]u, u) \leq \delta \Lambda(u, u).$$

The result for $i = 1$ is obvious since $\Theta_1 = \Lambda_1^{-1}$. Now assume that (B.1) holds for $i = j - 1$. Setting $K_j = I - R_j \Lambda_j$, it is straightforward to derive the recurrence relation (c.f. [5])

$$
I - \Theta_j \Lambda_j = K_j^m [(I - P_{j-1}) + (I - \Theta_{j-1} \Lambda_{j-1})P_{j-1}]K_j^m.
$$
The lower bound easily follows from this identity and the inductive hypothesis. For the upper bound, we use the induction hypothesis to obtain

\[
\Lambda([I - \Theta_j \Lambda_j]u, u) \leq \Lambda([I - P_{j-1}]K_j^m u, K_j^m u) + \delta \Lambda(P_{j-1}K_j^m u, K_j^m u) \\
= (1 - \delta) \Lambda([I - P_{j-1}]K_j^m u, K_j^m u) + \delta \Lambda(K_j^m u, K_j^m u).
\]

Now

\[
\Lambda([I - P_{j-1}]K_j^m u, [I - P_{j-1}]K_j^m u) = \Lambda([I - P_{j-1}]K_j^m u, K_j^m u) \\
= ([I - P_{j-1}]K_j^m u, \Lambda_j K_j^m u) \\
= (R_j^{-1}[I - P_{j-1}]K_j^m u, R_j \Lambda_j K_j^m u) \\
\leq (R_j^{-1}[I - P_{j-1}]K_j^m u, [I - P_{j-1}]K_j^m u)^{1/2}(R_j \Lambda_j K_j^m u, \Lambda_j K_j^m u)^{1/2} \\
\leq \sqrt{\lambda} \Lambda([I - P_{j-1}]K_j^m u, [I - P_{j-1}]K_j^m u)^{1/2}(R_j \Lambda_j K_j^m u, \Lambda_j K_j^m u)^{1/2}. \]

Hence,

\[
\Lambda([I - P_{j-1}]K_j^m u, K_j^m u) \leq \alpha(R_j \Lambda_j K_j^m u, \Lambda_j K_j^m u) = \alpha \Lambda([I - K_j]K_j^{2m} u, u).
\]

It follows from the positive semidefiniteness of \(R_j\) and from (5.1) that the spectrum of \(K_j\) is contained in the interval \([0, 1]\). Therefore \(\Lambda([I - K_j]K_j^{2m} u, u) \leq \Lambda([I - K_j]K_j^l u, u)\) for \(i \leq 2m\), whence

\[
\Lambda([I - K_j]K_j^{2m} u, u) \leq \frac{1}{2m} \sum_{i=0}^{2m-1} \Lambda([I - K_j]K_j^l u, u) = \frac{1}{2m} \Lambda([I - K_j^{2m}] u, u).
\]

Combining these results, we obtain

\[
\Lambda([I - \Theta_j \Lambda_j]u, u) \leq (1 - \delta) \frac{\alpha}{2m} \Lambda([I - K_j^{2m}] u, u) + \delta \Lambda(K_j^m u, K_j^m u) \\
= (1 - \delta) \frac{\alpha}{2m} \Lambda(u, u) + \left[\delta - (1 - \delta) \frac{\alpha}{2m} \right] \Lambda(K_j^m u, K_j^m u).
\]

The result now follows by choosing

\[
\delta = (1 - \delta) \frac{\alpha}{2m}, \quad \text{i.e.,} \quad \delta = \frac{\alpha}{\alpha + 2m}. \quad \square
\]

Proof of (2.1). Recalling that \(\Theta = \sum_j P_j B^{-1}\), and writing \(v = \sum_j v_j\), we have

\[
(\Theta^{-1} v, v) = \sum_j (\Theta^{-1} v, v_j) = \sum_j (B B^{-1} \Theta^{-1} v, v_j) = \sum_j (B P_j B^{-1} \Theta^{-1} v, v_j) \\
\leq \sum_j (B P_j B^{-1} \Theta^{-1} v, P_j B^{-1} \Theta^{-1} v)^{1/2}(B v_j, v_j)^{1/2} \\
\leq \left[\sum_j (B P_j B^{-1} \Theta^{-1} v, B^{-1} \Theta^{-1} v)^{1/2} \right]^{1/2} \left[\sum_j (B v_j, v_j)^{1/2} \right]^{1/2} \\
= \left[(B v, B^{-1} \Theta^{-1} v)^{1/2} \left[\sum_j (B v_j, v_j)^{1/2} \right]^{1/2} \right] \leq [(v, \Theta^{-1} v)^{1/2} \left[\sum_j (B v_j, v_j)^{1/2} \right]^{1/2} .
\]
Hence, \((\Theta^{-1}v, v) \leq \sum (Bv_j, v_j)\), and since the splitting was arbitrary,
\[
(\Theta^{-1}v, v) \leq \inf \sum (Bv_j, v_j),
\]
where the infimum is over all decompositions \(v = \sum_j v_j\). For the choice \(v_j = P_j B^{-1} \Theta^{-1} v\), we have that \((\Theta^{-1}v, v) = \sum_j (Bv_j, v_j)\), and so (2.1) holds.

Acknowledgements. The authors are grateful to Professors J. Bramble, J. Pasciak, and J. Xu for many useful discussions.

REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1302</td>
<td>J. Zhang</td>
<td>A nonlinear nonlocal multi-dimensional conservation law</td>
</tr>
<tr>
<td>1303</td>
<td>M.E. Taylor</td>
<td>Estimates for approximate solutions to acoustic inverse scattering problems</td>
</tr>
<tr>
<td>1304</td>
<td>J. Kim & D. Sheen</td>
<td>A priori estimates for elliptic boundary value problems with nonlinear boundary conditions</td>
</tr>
<tr>
<td>1305</td>
<td>B. Engquist & E. Luo</td>
<td>New coarse grid operators for highly oscillatory coefficient elliptic problems</td>
</tr>
<tr>
<td>1306</td>
<td>A. Boutet de Monvel & I. Egorova</td>
<td>On the almost periodicity of solutions of the nonlinear Schrödinger equation with the cantor type spectrum</td>
</tr>
<tr>
<td>1307</td>
<td>A. Boutet de Monvel & V. Georgescu</td>
<td>Boundary values of the resolvent of a self-adjoint operator: Higher order estimates</td>
</tr>
<tr>
<td>1308</td>
<td>S.K. Patch</td>
<td>Diffuse tomography modulo Graßmann and Laplace</td>
</tr>
<tr>
<td>1309</td>
<td>A. Friedman & J.J.L. Velázquez</td>
<td>Liouville type theorems for fourth order elliptic equations in a half plane</td>
</tr>
<tr>
<td>1310</td>
<td>T. Aktosun, M. Klaus & C. van der Mee</td>
<td>Recovery of discontinuities in a nonhomogeneous medium</td>
</tr>
<tr>
<td>1311</td>
<td>V. Bondarevsky</td>
<td>On the global regularity problem for 3-dimensional Navier-Stokes equations</td>
</tr>
<tr>
<td>1312</td>
<td>M. Cheney & D. Isaacson</td>
<td>Inverse problems for a perturbed dissipative half-space</td>
</tr>
<tr>
<td>1313</td>
<td>B. Cockburn, D.A. Jones & E.S. Titi</td>
<td>Determining degrees of freedom for nonlinear dissipative equations</td>
</tr>
<tr>
<td>1314</td>
<td>B. Engquist & E. Luo</td>
<td>Convergence of a multigrid method for elliptic equations with highly oscillatory coefficients</td>
</tr>
<tr>
<td>1315</td>
<td>L. Pastur & M. Shcherbina</td>
<td>Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles</td>
</tr>
<tr>
<td>1316</td>
<td>V. Jakső, S. Molchanov & L. Pastur</td>
<td>On the propagation properties of surface waves</td>
</tr>
<tr>
<td>1317</td>
<td>J. Nečas, M. Ružička & V. Šverák</td>
<td>On self-similar solutions of the Navier-Stokes equations</td>
</tr>
<tr>
<td>1318</td>
<td>S. Stojanovic</td>
<td>Remarks on $W^{2,p}$-solutions of bilateral obstacle problems</td>
</tr>
<tr>
<td>1319</td>
<td>E. Luo & H-O. Kreiss</td>
<td>Pseudospectral vs. Finite difference methods for initial value problems with discontinuous coefficients</td>
</tr>
<tr>
<td>1320</td>
<td>V.E. Grikurov</td>
<td>Soliton's rebuilding in one-dimensional Schrödinger model with polynomial nonlinearity</td>
</tr>
<tr>
<td>1321</td>
<td>J.M. Harrison & R.J. Williams</td>
<td>A multiclass closed queueing network with unconventional heavy traffic behavior</td>
</tr>
<tr>
<td>1322</td>
<td>M.E. Taylor</td>
<td>Microlocal analysis on Morrey spaces</td>
</tr>
<tr>
<td>1323</td>
<td>C. Huang</td>
<td>Homogenization of biharmonic equations in domains perforated with tiny holes</td>
</tr>
<tr>
<td>1324</td>
<td>C. Liu</td>
<td>An inverse obstacle problem: A uniqueness theorem for spheres</td>
</tr>
<tr>
<td>1325</td>
<td>M. Luskin</td>
<td>Approximation of a laminated microstructure for a rotationally invariant, double well energy density</td>
</tr>
<tr>
<td>1326</td>
<td>Rakesh & P. Sacks</td>
<td>Impedance inversion from transmission data for the wave equation</td>
</tr>
<tr>
<td>1327</td>
<td>O. Lafitte</td>
<td>Diffraction for a Neumann boundary condition</td>
</tr>
<tr>
<td>1328</td>
<td>E. Sobel, K. Lange, J.R. O'Connell & D.E. Weeks</td>
<td>Haplotyping algorithms</td>
</tr>
<tr>
<td>1329</td>
<td>B. Cockburn, D.A. Jones & E.S. Titi</td>
<td>Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems</td>
</tr>
<tr>
<td>1330</td>
<td>T. Aktosun</td>
<td>Inverse Schrödinger scattering on the line with partial knowledge of the potential</td>
</tr>
<tr>
<td>1331</td>
<td>T. Aktosun & C. van der Mee</td>
<td>Partition of the potential of the one-dimensional Schrödinger equation</td>
</tr>
<tr>
<td>1332</td>
<td>B. Engquist & E. Luo</td>
<td>Convergence of the multigrid method with a wavelet coarse grid operator</td>
</tr>
<tr>
<td>1333</td>
<td>V. Jakső & C.-A. Pillet</td>
<td>Ergodic properties of the Spin-Boson system</td>
</tr>
<tr>
<td>1334</td>
<td>S.K. Patch</td>
<td>Recursive solution for diffuse tomographic systems of arbitrary size</td>
</tr>
<tr>
<td>1335</td>
<td>J.C. Bronski</td>
<td>Semiclassical eigenvalue distribution of the non self-adjoint Zakharov-Shabat eigenvalue problem</td>
</tr>
<tr>
<td>1336</td>
<td>J.C. Cockburn</td>
<td>Bitangential structured interpolation theory</td>
</tr>
<tr>
<td>1337</td>
<td>S. Kichenassamy</td>
<td>The blow-up problem for exponential nonlinearities</td>
</tr>
<tr>
<td>1338</td>
<td>F.A. Grünbaum & S.K. Patch</td>
<td>How many parameters can one solve for in diffuse tomography?</td>
</tr>
<tr>
<td>1339</td>
<td>R. Lipton</td>
<td>Reciprocal relations, bounds and size effects for composites with highly conducting interface</td>
</tr>
<tr>
<td>1340</td>
<td>H.A. Levine & J. Serrin</td>
<td>A global nonexistence theorem for quasilinear evolution equations with dissipation</td>
</tr>
<tr>
<td>1341</td>
<td>A. Boutet de Monvel & R. Purice</td>
<td>The conjugate operator method: Application to DIRAC operators and to stratified media</td>
</tr>
<tr>
<td>1342</td>
<td>G. Michele Graf</td>
<td>Stability of matter through an electrostatic inequality</td>
</tr>
<tr>
<td>1343</td>
<td>G. Avalos</td>
<td>Sharp regularity estimates for solutions of the wave equation and their traces with prescribed Neumann data</td>
</tr>
<tr>
<td>1344</td>
<td>G. Avalos</td>
<td>The exponential stability of a coupled hyperbolic/parabolic system arising in structural acoustics</td>
</tr>
<tr>
<td>1345</td>
<td>G. Avalos & I. Lasiecka</td>
<td>A differential Riccati equation for the active control of a problem in structural acoustics</td>
</tr>
<tr>
<td>1346</td>
<td>G. Avalos</td>
<td>Well-posedness for a hyperbolic/parabolic system seen in structural acoustics</td>
</tr>
<tr>
<td>1347</td>
<td>G. Avalos & I. Lasiecka</td>
<td>The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system</td>
</tr>
<tr>
<td>1348</td>
<td>A.V. Forsikov</td>
<td>Certain optimal control problems for Navier-Stokes system with distributed control function</td>
</tr>
<tr>
<td>1349</td>
<td>F. Geszttesy, R. Nowell & W. Pötz</td>
<td>One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics</td>
</tr>
<tr>
<td>1350</td>
<td>F. Geszttesy & H. Holden</td>
<td>On trace formulas for Schrödinger-type operators</td>
</tr>
</tbody>
</table>
X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation
X. Chen, Lorenz equations, Part I: Existence and nonexistence of homoclinic orbits
X. Chen, Lorenz equations Part II: “Randomly” rotated homoclinic orbits and chaotic trajectories
X. Chen, Lorenz equations, Part III: Existence of hyperbolic sets
R. Abeyaratne, C. Chu & R.D. James, Kinetics of materials with wiggly energies: Theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy
C. Liu, The Helmholtz equation on Lipschitz domains
G. Avalos & I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation
R. Lipton, Heat conduction in fine scale mixtures with interfacial contact resistance
V. Odisharia & J. Peradze, Solvability of a nonlinear problem of Kirchhoff shell
P.J. Olver, G. Sapiro & A. Tannenbaum, Affine invariant edge maps and active contours
R.D. James, Hysteresis in phase transformations
A. Sei & W. Symes, A note on consistency and adjointness for numerical schemes
A. Friedman & B. Hu, Head-media interaction in magnetic recording
A. Friedman & J.J.L. Velázquez, Time-dependent coating flows in a strip, part I: The linearized problem
X. Ren & M. Winter, Young measures in a nonlocal phase transition problem
K. Bhattacharya & R.V. Kohn, Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials
G.A. Chechkin, Operator pencil and homogenization in the problem of vibration of fluid in a vessel with a fine net on the surface
M. Carme Calderer & B. Mukherjee, On Poiseuille flow of liquid crystals
M.A. Pinsky & M.E. Taylor, Pointwise Fourier inversion: A wave equation approach
D. Brandon & R.C. Rogers, Order parameter models of elastic bars and precursor oscillations
H.A. Levine & B.D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks
B. Li & M. Luskin, Finite element analysis of microstructure for the cubic to tetragonal transformation
M. Luskin, On the computation of crystalline microstructure
J.P. Matos, On gradient young measures supported on a point and a well
M. Nitsche, Scaling properties of vortex ring formation at a circular tube opening
J.L. Bona & Y.A. Li, Decay and analyticity of solitary waves
V. Isakov, On uniqueness in a lateral cauchy problem with multiple characteristics
M.A. Koutritzin, Averaging for fundamental solutions of parabolic equations
T. Aktosun, M. Klaus & C. van der Mee, Integral equation methods for the inverse problem with discontinuous wavespeed
P. Morin & R.D. Spies, Convergent spectral approximations for the thermomechanical processes in shape memory alloy
D.N. Arnold & X. Liu, Interior estimates for a low order finite element method for the Reissner-Mindlin plate model
D.N. Arnold & R.S. Falk, Analysis of a linear-linear finite element for the Reissner-Mindlin plate model
D.N. Arnold, R.S. Falk & R. Winther, Preconditioning in $H(div)$ and applications
M. Lavrentiev, Nonlinear parabolic problems possessing solutions with unbounded gradients
O.P. Bruno & P. Laurence, Existence of three-dimensional toroidal MHD equilibria with nonconstant pressure
O.P. Bruno, F. Reitich, & P.H. Leo, The overall elastic energy of polycrystallin martensitic solids
M. Fila & H.A. Levine, On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition
J.M. Berg & H.G. Kwatny, Unfolding the zero structure of a linear control system
A. Sei, High order finite-difference approximations of the wave equation with absorbing boundary conditions: A stability analysis
A.V. Coward & Y.Y. Renardy, Small amplitude oscillatory forcing on two-layer plane channel flow
V.A. Pliss & G.R. Sell, Approximation dynamics and the stability of invariant sets
J.G. Cao & P. Roblin, A new computational model for heterojunction resonant tunneling diode
C. Liu, Inverse obstacle problem: Local uniqueness for rougher obstacles and the identification of a ball
K.A. Pericak-Spector & S.J. Spector, Dynamic cavitation with shocks in nonlinear elasticity
G. Avalos & I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation II: The case of simply supported boundary conditions
B. Brighi & M. Chipot, Approximation of infima in the calculus of variations