\mathcal{H}_2 AND \mathcal{H}_∞ DESIGNS OF MULTIRATE SAMPLED-DATA SYSTEMS

By

Li Qiu

and

Tongwen Chen

IMA Preprint Series # 1062

November 1992
\mathcal{H}_2 and \mathcal{H}_∞ Designs of Multirate Sampled-Data Systems

Li Qiu
Inst. of Math. & Its Appl.
University of Minnesota
Minneapolis, MN
USA 55455
Tel: 612-624-1824
Email: qiu@ima.s ima.umn.edu

Tongwen Chen†
Dept. of Elect. & Comp. Engg.
University of Calgary
Calgary, Alberta
Canada T2N 1N4
Tel: 403-220-8357
Email: chent@enel.ucalgary.ca

October 24, 1992

Abstract

Treating causality constraints, this paper studies the optimal syntheses of multirate sampled-data systems with \mathcal{H}_2 and \mathcal{H}_∞ performance criteria. Explicit solutions to both the \mathcal{H}_2 and \mathcal{H}_∞ problems are obtained by input-output space extensions (lifting) and frequency-domain techniques.

Keywords: multirate systems, digital control, sampled-data systems, \mathcal{H}_2 optimization, \mathcal{H}_∞ optimization, causality constraint.

1 Introduction

In industry, most control systems are implemented digitally via microprocessors. However, many digital designs are performed by rules of thumb. There are essentially two conventional methods: Design an analog controller and then implement it digitally, sampling “fast enough”; discretize the plant and then design a discrete controller, ignoring intersample behavior.

The recent trend is to perform direct digital design, i.e., design digital controllers directly using continuous-time performance measures. This should be the preferred approach because most sampled-data systems operate in real time and the input and output signals are naturally in continuous time. Many pieces of work treating design issues have been completed in this direction; they include solutions to several \mathcal{H}_2 sampled-data control problems [8, 24, 5], several

*The first author carried out part of this research at the Fields Institute for Mathematical Sciences, 185 Columbia St. W., Waterloo, Ont., Canada and was supported by the Ministry of Colleges and Universities of Ontario and the Natural Sciences and Engineering Research Council of Canada. The second author was supported by the Natural Sciences and Engineering Research Council of Canada.

†Author to whom all correspondence should be directed.
solutions to the \mathcal{H}_∞ sampled-data control problem [20, 36, 4, 33, 35, 32, 21], and approximate solutions to the \mathcal{L}_1 sampled-data control problem [12, 3]. A general mathematical tool, the lifting technique, has been developed [36, 38, 4, 6] for attacking problems in single-rate sampled-data systems.

All work mentioned above is in the single-rate setting. However, multirate sampled-data systems arise in a more natural way. Consider the system depicted in Figure 1, where G

![Figure 1: A sampled-data system](image)

is the generalized analog plant and K_d the digital controller, interfaced via A/D and D/A conversions. One way to improve the performance of such a system is to use A/D and D/A converters at their maximum allowable speeds. Very often the maximum capacities of the two converters do not match and this therefore gives rise to a multirate sampled-data system. In multirate setting, K_d is usually periodic in a certain sense; so it can often be implemented on microprocessors via periodic difference equations. Thus the thrust for our study of multirate sampled-data systems comes from the fact that they provide improved performance and reduced implementation cost but do not violate the finite memory constraint in microprocessors.

The concept of multirate sampling was pioneered by Kranc [26]. Recent interests in multirate systems are reflected in the LQG/LQR designs [7, 1, 27, 9] (but no effective way was proposed to tackle the causality constraint), the parametrization of stabilizing controllers [28, 30], and the work in [2, 19]. While the research on single-rate direct digital design has been active, little work has been done on multirate systems using the direct design approach. The main obstacle is perhaps the so-called causality constraint [28, 30], which presents a unique difficulty for synthesizing the feedthrough term in lifted controllers. In this paper we shall study how to treat the causality constraint in the \mathcal{H}_2 and \mathcal{H}_∞ design frameworks.

Causality constraints also arise in discrete-time periodic control [25], where the feedthrough terms in lifted controllers must be block lower-triangular. Explicit and interesting solutions were obtained for the one-block \mathcal{H}_∞ problem [13, 18] and \mathcal{H}_2 problem [37]. Our \mathcal{H}_2 and \mathcal{H}_∞ solutions in this paper are more general in that first, we treat multirate designs directly from a sampled-data point of view; and second, we tackle four-block problems directly. We remark that most multirate design problems do not fall into the one-block framework, i.e., the transfer matrices in the associated model-matching problems are in general nonsquare. Finally, we
note that a treatment of causality constraints in the ℓ_1 framework for discrete-time periodic systems was recently reported in [11].

The organization of this paper is as follows. Section 2 presents the multirate sampled-data configuration for our subsequent study; in particular, desirable properties of multirate controllers are discussed.

Section 3 extends the lifting macros in [6] to the multirate case; these formulas are useful in converting a sampled-data problem to an associated discrete-time one.

Section 4 formulates and solves explicitly the multirate \mathcal{H}_2-optimal control problem using the lifting presented in Section 3; the optimal solution is expressed in terms of its optimal feedthrough term, which can be obtained via solving a matrix 2-norm optimization problem.

Section 5 is devoted to the multirate \mathcal{H}_∞ control problem. We show how to reduce the multirate sampled-data problem to a discrete-time \mathcal{H}_∞ problem with causality constraint. The latter problem is then studied in detail using frequency-domain methods and an explicit solution is obtained.

Finally, in Section 6 we offer some concluding remarks.

The main contributions of this paper are contained in Sections 4 and 5. To our best knowledge, this paper is the first in directly and effectively addressing the causality constraint in multirate sampled-data control syntheses.

The notation is quite standard. We use ℓ to denote the space of sequences, perhaps vector-valued, defined on the time set $\{0, 1, 2, \cdots\}$. The external direct sum of n copies of ℓ is denoted ℓ^n. The space ℓ_2 is a subspace of ℓ of square-summable sequences. Similarly for the external direct sum ℓ^n_2. Finally, if G is a linear time-invariant (LTI) system, we shall not distinguish G from its transfer function.

\section{Setup}

The setup of the paper is shown in Figure 2. Here we have used continuous lines for continuous

\begin{figure}[h]
\centering
\includegraphics{system.png}
\caption{A multirate control system}
\end{figure}

signals and dotted lines for discrete signals. In Figure 2, S_{mh} is an ideal sampler with period mh, H_{nh} a zero-order hold with period nh, and K_d a multirate digital controller which is
synchronized with S_{mh} and H_{nh} by a clock in the sense that K_d takes in a value of the sampled measurement ψ at times $t = k(mh)$, $k \geq 0$, and outputs a value of the control sequence v to the hold device at $t = k(nh)$, $k \geq 0$. We shall assume throughout the paper that m and n are coprime integers. In general, given any sampling period τ_1 and hold period τ_2 with a rational ratio, there exists a unique three-tuple (m, n, h) such that $\tau_1 = mh$, $\tau_2 = nh$, and m and n are coprime integers.

This setup is not the most general one as in [28, 30]; in fact, it has a uniform sampling rate and a uniform hold rate. But since the ratio of the two rates can be any positive rational number, this setup captures all the essential features in multirate systems while maintaining some clarity in the exposition. The extension of our results pertinent to this setup to the more general one is a conceptually simple and routine task.

We shall consider only the analog G which are LTI, causal, and finite-dimensional. What are the corresponding concepts for the multirate controller K_d? Throughout K_d is regarded as a linear map from ℓ to ℓ. Since the input and output time scales are not compatible, the single-rate definitions must be modified.

The sampled-data controller $H_{nh}K_dS_{mh}$ as a continuous-time operator is in general time-varying. However, note that both S_{mh} and H_{nh} are periodic elements, their least common period being $T = mnh$; so, by proper choice of K_d it is possible that $H_{nh}K_dS_{mh}$ is T-periodic in continuous time. Now let U be the unit time delay on ℓ and U^* the unit time advance. We define K_d to be (m, n)-periodic if

$$(U^*)^m K_d U^n = K_d.$$

Then it is not hard to see that $H_{nh}K_dS_{mh}$ is T-periodic iff K_d is (m, n)-periodic.

This periodicity implies a deeper fact if we use the standard discrete-time lifting procedure, see, e.g., [25], and extend the input and output spaces of K_d so as to be compatible with the period T. Define the discrete lifting operator $L_m : \ell \rightarrow \ell^m$ via $v = L_m v$:

$$\{v(0), v(1), \ldots\} \mapsto \left\{ \begin{bmatrix} v(0) \\ \vdots \\ v(m) \\ \vdots \\ v(m-1) \end{bmatrix}, \begin{bmatrix} v(m) \\ \vdots \\ v(2m-1) \end{bmatrix}, \ldots \right\}.$$

Similarly for L_n. Now define the lifted controller

$$K_d := L_m K_d L_n^{-1}. \tag{1}$$

This is now single-rate with the underlying period being T. Then K_d is time-invariant iff K_d is (m, n)-periodic.

Next is causality. Again we require that $H_{nh}K_dS_{mh}$ be causal in continuous time. This condition translates to an interesting constraint on K_d. To see this more clearly, we look at the lifted controller K_d. The feedthrough term D in K_d is an $m \times n$ block matrix, namely,

$$D = \begin{bmatrix} D_{00} & \cdots & D_{0,n-1} \\ \vdots & \ddots & \vdots \\ D_{m-1,0} & \cdots & D_{m-1,n-1} \end{bmatrix},$$
where each D_{ij} is a matrix with dimensions compatible to the dimensions of ψ and v. Now the causality of $H_{nh}K_dS_{mh}$ translates exactly to the causality of $\overline{K_d}$ and a constraint on D, namely,

$$D_{ij} = 0, \quad \text{whenever } jm > in.$$

This condition on D will be called the (m, n)-causality constraint. For example, if $m = 3$ and $n = 2$, then this constraint means that D is of the form

$$D = \begin{bmatrix} X & 0 \\ X & 0 \\ X & X \end{bmatrix},$$

where X denotes any unconstrained block. For ease of reference, the set of all D satisfying the (m, n)-causality constraint is denoted by $\Omega(m, n)$.

We say K_d is (m, n)-causal if the single-rate K_d is causal and D satisfies the (m, n)-causality constraint. It follows then that the sampled-data controller $H_{nh}K_dS_{mh}$ is causal in continuous time iff K_d is (m, n)-causal. More general treatment of these concepts can be found in, e.g., [28, 30].

A similar notion is that of strict causality. We say D satisfies the strict (m, n)-causality constraint if

$$D_{ij} = 0, \quad \text{whenever } jm \geq in.$$

The set of all such D is $\Omega_s(m, n)$. It follows that $H_{nh}K_dS_{mh}$ is strictly causal in continuous time iff $\overline{K_d}$ is causal and $D \in \Omega_s(m, n)$. For the same example, $D \in \Omega_s(3, 2)$ iff D is of the form

$$D = \begin{bmatrix} 0 & 0 \\ X & 0 \\ X & X \end{bmatrix}.$$

Finally, we turn to finite dimensionality of the controller K_d. This is again best explained in terms of K_d. Assume K_d is (m, n)-periodic and (m, n)-causal. Then from the previous discussion $\overline{K_d}$ is LTI and causal. We furthermore assume K_d is finite-dimensional. Thus K_d has a state model

$$K_d = \begin{bmatrix} A & B_0 & \cdots & B_{n-1} \\ C_0 & D_{00} & \cdots & D_{0,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ C_{m-1} & D_{m-1,0} & \cdots & D_{m-1,n-1} \end{bmatrix}.$$

The corresponding difference equations for K_d ($v = K_d\psi$) are

$$\eta(k+1) = A\eta(k) + \sum_{j=0}^{n-1} B_j\psi(nk + j), \quad (2)$$

$$v(mk + i) = C_i\eta(k) + \sum_{j=0}^{n-1} D_{ij}\psi(nk + j), \quad i = 0, 1, \cdots, m - 1. \quad (3)$$
Here \(\eta \), the state for \(K_d \), is updated every \(T = mnh \) seconds and \(\psi \) every \(nh \) seconds. Such difference equations can be implemented on microprocessors with only finite memory because the vector \(\eta \) is finite-dimensional.

In summary, in this paper we are interested in the class of multirate \(K_d \) which are \((m,n)\)-periodic, \((m,n)\)-causal, and finite-dimensional; this class is called the admissible class of \(K_d \) and can be modeled by the difference equations (2) and (3) with \(D_{ij} = 0 \) when \(jm > in \). The corresponding admissible class of \(K_d \) is characterized by LTI, causal, and finite-dimensional \(K_d \) with the same constraint on \(D \). The causality constraint on the feedthrough term of \(K_d \) is the new feature in multirate systems. Good multirate design methods should tackle this constraint effectively.

3 Multirate Lifting

The single-rate lifting technique \([36, 38, 4, 6]\) is very powerful in sampled-data control because it converts a periodic sampled-data system into an LTI discrete system with infinite-dimensional input and output spaces. In this section we shall extend this technique to the multirate case.

In Figure 2, partition \(G \) according to its inputs and outputs and bring in a state model:

\[
G = \begin{bmatrix}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{bmatrix} = \begin{bmatrix}
A & B_1 & B_2 \\
C_1 & 0 & D_{12} \\
C_2 & 0 & D_{22}
\end{bmatrix}.
\] (4)

The zero block in \(D_{21} \) guarantees the proper functioning of the sampler; it also ensures that the sampled-data system is stabilizable in some input-output sense \([8]\). The zero block in \(D_{11} \) is necessary for the finiteness of the \(\mathcal{H}_2 \) measure in the next section and is often used as a simplifying condition in the \(\mathcal{H}_\infty \) case. Now move \(S_{mh} \) and \(H_{nh} \) into the plant to get Figure 3, where

![Figure 3: An equivalent multirate system](image)

\[
G_{sd} = \begin{bmatrix}
G_{11} & G_{12}H_{nh} \\
S_{mh}G_{21} & S_{mh}G_{22}H_{nh}
\end{bmatrix}.
\]
With our assumptions on K_d, this multirate system is T-periodic in continuous time. So the idea of lifting can be used.

Following [6], let E be any finite-dimensional Euclidean space, E^n be the external direct sum of n copies of E, and K be $L_2[0,T)$. The sequence space $\ell_2(K)$ is defined to be

$$\ell_2(K) := \{ \psi : \psi_k \in K, \sum_{k=0}^{\infty} \| \psi_k \|^2 < \infty \}.$$

The norm for ψ_k is the one on K and the norm for $\ell_2(K)$ is given by

$$\| \psi \|_2 := \left(\sum_{k=0}^{\infty} \| \psi_k \|^2 \right)^{1/2}.$$

To handle unbounded signals, we bring in the two extended spaces $L_{2e}[0,\infty)$ and $\ell_{2e}(K)$ defined in the obvious way. The lifting operator L_T, mapping $L_{2e}[0,\infty)$ to $\ell_{2e}(K)$ is defined by

$$\psi = L_T y \iff \psi_k(t) = y(t + kT), \quad 0 \leq t < T.$$

As before, we denote the lifted signal $L_T y$ by y.

Now we lift the system in Figure 3 with respect to the period T. Define

$$G_{sd} := \begin{bmatrix} L_T & 0 \\ 0 & L_n \end{bmatrix} G_{sd} \begin{bmatrix} L_T^{-1} & 0 \\ 0 & L_m^{-1} \end{bmatrix} = \begin{bmatrix} L_T G_{11} L_T^{-1} & L_T G_{12} H_{nh} L_m^{-1} \\ L_n S_{nh} G_{21} L_T^{-1} & L_n S_{nh} G_{22} H_{nh} L_m^{-1} \end{bmatrix}. \quad (5)$$

and K_d again as in (1) to get the lifted system configuration in Figure 4. Here the signals

\begin{center}
\begin{tikzpicture}
 \node [draw, inner sep=0] (G) at (0,0) {G_{sd}};
 \node [draw, inner sep=0] (K) at (0,-1) {K_d};
 \draw [->, dashed] (G) -- ++(0,1) node [above] {z};
 \draw [->, dashed] (G) -- ++(0,-1) node [below] {w};
 \draw [->] (K) -- ++(0,1) node [above] {ψ};
 \draw [->] (K) -- ++(0,-1) node [below] {ψ};
\end{tikzpicture}
\end{center}

Figure 4: The lifted system

are all lifted; e.g., $w = L_T w$ and $\psi = L_n \psi$. We saw in Section 2 that K_d is LTI; it is not hard to see that G_{sd} too is LTI. So Figure 4 represents a discrete LTI system. Let T_{zw} be the closed-loop map $w \mapsto z$ in Figure 2. Then the closed-loop map $T_{zw} : w \mapsto z$ in Figure 4 is the lifted T_{zw}, namely, $L_T T_{zw} L_T^{-1}$. The usefulness of this relationship is due to the fact that the operators L_T and L_T^{-1} preserve norms.
Now with a state model for G in (4), we can derive a state-space representation for G_{sd}. But first, let us find state models for the four blocks of G_{sd} in (5) as they may be of independent interest.

Lifting G_{11}

The lifted G_{11}, namely, $G_{11} := L_T G_{11} L_T^{-1}$, maps $\ell_{2e}(\mathcal{K})$ to $\ell_{2e}(\mathcal{K})$ and can be represented by a state model with finite-dimensional state space [6]:

$$G_{11} = \begin{bmatrix} A_d & B_1 \\ C_1 & D_{11} \end{bmatrix},$$

where

$$A_d : \mathcal{E} \to \mathcal{E}, \quad A_d = e^{T A},$$

$$B_1 : \mathcal{K} \to \mathcal{E}, \quad B_1 w = \int_0^T e^{(T - \tau)A} B_1 w(\tau) \, d\tau,$$

$$C_1 : \mathcal{E} \to \mathcal{K}, \quad (C_1 \xi)(t) = C_1 e^{tA} \xi,$$

$$D_{11} : \mathcal{K} \to \mathcal{K}, \quad (D_{11} w)(t) = \int_0^t C_1 e^{(t - \tau)A} B_1 w(\tau) \, d\tau.$$

Lifting $S_{mh} G_{21}$

Now we derive a state model for $S_{mh} G_{21}$, namely, $L_n S_{mh} G_{21} L_T^{-1}$, which maps $\ell_{2e}(\mathcal{K})$ to ℓ^n.

Write $\psi = S_{mh} G_{21} w$ and let the state for the realization in (4) be x. Then the state equations for G_{21} ($y = G_{21} w$) are

$$\begin{align*}
\dot{x}(t) &= A x(t) + B_1 w(t), \\
y(t) &= C_2 x(t).
\end{align*}$$

Integrate (6) from kT to $(k + 1)T$ and define the sequence ξ by $\xi(k) = x(kT)$ to get

$$\xi(k + 1) = A_d \xi(k) + B_1 w_k.$$

By the definition of L_n,

$$\psi(k) = \begin{bmatrix} \psi(kn) \\ \vdots \\ \psi(kn + n - 1) \end{bmatrix},$$

where $\psi(k) = y(kmh) = C_2 x(kmh)$, $k \geq 0$. For $j = 0, 1, \ldots, n - 1$,

$$\begin{align*}
\psi(kn + j) &= C_2 x(kT + jmh) \\
&= C_2 e^{jmh} \xi(k) + \int_{kT}^{kT+jmh} C_2 e^{(kT+jmh-\tau)A} B_1 w(\tau) \, d\tau \\
&= C_2 e^{jmh} \xi(k) + \int_0^{jmh} C_2 e^{(jmh-\tau)A} B_1 w_k(\tau) \, d\tau.
\end{align*}$$
For notational convenience, define
\[\Psi_j(\tau) = C_2 e^{(j m h - \tau) A} B_1 \chi_{(0, j m h)}(\tau) \]
for \(j = 0, 1, \ldots, n - 1 \), where \(\chi_{[a,b]} \) is the characteristic function on the interval \([a, b]\). Then
\[\psi(k n + j) = C_2 e^{j m h A} \xi(k) + \int_0^T \Psi_j(\tau) w_k(\tau) \, d\tau. \]

Putting things together, we get the state model
\[\begin{aligned}
\xi(k + 1) &= A_d \xi(k) + B_1 w_k, \\
\psi(k) &= C_{2d} \xi(k) + D_{21} w_k,
\end{aligned} \]
or equivalently
\[S_{m h} G_{21} = \begin{bmatrix} A_d & B_1 \\ C_{2d} & D_{21} \end{bmatrix}, \]
where \(A_d \) and \(B_1 \) were given before and
\[C_{2d} : \mathcal{E} \to \mathcal{E}^n, \quad C_{2d} = \begin{bmatrix} C_2 \\ C_2 e^{m h A} \\ \vdots \\ C_2 e^{(n-1) m h A} \end{bmatrix}, \]
\[D_{21} : \mathcal{K} \to \mathcal{E}^n, \quad D_{21} w = \int_0^T \begin{bmatrix} \Psi_0(\tau) \\ \vdots \\ \Psi_{n-1}(\tau) \end{bmatrix} w(\tau) \, d\tau. \]

The lifting formulas for the other two blocks in \(G_{sd} \) can be derived similarly; they are summarized below.

Lifting \(G_{12} H_{nh} \)

The lifted operator \(G_{12} H_{nh} \), namely, \(L_T G_{12} H_{nh} L_m^{-1} : \mathcal{E}^m \to \ell_2(\mathcal{K}) \), also has a state model. For \(i = 0, 1, \ldots, (m - 1) \), define
\[\Phi_i(t) = D_{12} \chi_{(inh, (i+1)nh)}(t) + \int_0^t C_1 e^{(t-\tau) A} B_2 \chi_{(inh, (i+1)nh)}(\tau) \, d\tau. \]
(8)

Next define
\[B_{2d} : \mathcal{E}^m \to \mathcal{E}, \quad B_{2d} = \int_0^T e^{(T-\tau) A} B_2 \begin{bmatrix} \chi_{[0, nh]}(\tau) & \cdots & \chi_{[(m-1) nh, T]}(\tau) \end{bmatrix} \, d\tau, \]
\[D_{12} : \mathcal{E}^m \to \mathcal{K}, \quad (D_{12} v)(t) = \begin{bmatrix} \Phi_0(t) & \cdots & \Phi_{m-1}(t) \end{bmatrix} v. \]

Then
\[G_{12} H_{nh} = \begin{bmatrix} A_d & B_{2d} \\ C_1 & D_{12} \end{bmatrix}. \]

Here \(A_d \) and \(C_1 \) were given before.
Lifting $S_{mh}G_{22}H_{nh}$

The lifted operator $S_{mh}G_{22}H_{nh} := L_m S_{mh} G_{22} H_{nh} L_m^{-1}$ maps ℓ^m to ℓ^n; it is a standard discrete-time system. A state model is

$$S_{mh}G_{22}H_{nh} = \begin{bmatrix} A_d & B_{2d} \\ C_{2d} & D_{22d} \end{bmatrix},$$

where A_d, B_{2d}, C_{2d} were already given and

$$D_{22d} : \mathcal{E}^m \to \mathcal{E}^n, \quad [D_{22d}]_{ij} = D_{22x[ih,(i+1)nh]}(j mh) + \int_{ih}^{(i+1)nh} C_{2e(jmh-\tau)}A B_{2x[0,jmh]}d\tau.$$

It can be verified that D_{22d} satisfies the (n,m)-causality constraint. Furthermore, D_{22d} satisfies the strict (n,m)-causality constraint if G_{22} is strictly causal ($D_{22} = 0$).

Lifting G_{sd}

We remark that all the four lifted blocks in G_{sd} share the same state vector $\xi(k) = \pi(kT)$. Moreover, their state models fit nicely together to form a state model for G_{sd} which maps $\ell_{2e}(\mathcal{K}) \oplus \ell^m$ to $\ell_{2e}(\mathcal{K}) \oplus \ell^n$:

$$G_{sd} = \begin{bmatrix} A_d & B_1 & B_{2d} \\ C_1 & D_{11} & D_{12} \\ C_{2d} & D_{21} & D_{22d} \end{bmatrix}.$$

This lifted model will be exploited in the design problem of the next section.

4 \mathcal{H}_2-Optimal Control

This section treats the first synthesis problem: Design an admissible K_d to achieve internal stability and minimize some generalized \mathcal{H}_2 performance measure.

First of all, let us look at the performance measure. Recall that for an admissible K_d, the closed-loop system T_{2w} in Figure 2 is T-periodic. Thus we adopt the generalized \mathcal{H}_2 measure proposed for periodic systems in [24, 5].

Let F be a continuous-time, T-periodic, causal system described by the following integral operator

$$(Fu)(t) = \int_0^t f(t, \tau) u(\tau) d\tau.$$

We assume that f, the matrix-valued impulse response of F, is locally square-integrable, i.e., every element is square-integrable on any compact subset of \mathcal{R}^2. The periodicity of F implies $f(t + T, \tau + T) = f(t, \tau)$, and the causality implies that $f(t, \tau) = 0$ if $\tau > t$. If f is square-integrable on $[0, \infty) \times [0, T)$, we can define a norm for F as follows [24, 5]:

$$\|F\|_{\text{per}} = \left\{ \frac{1}{T} \int_0^T \int_0^\infty \text{trace} \left[f'(t, \tau) f(t, \tau) \right] dt \, d\tau \right\}^{1/2}.$$
This is a generalization of the \mathcal{H}_2 norm for transfer functions: If F is furthermore time-invariant, the right-hand side reduces to the \mathcal{H}_2 norm of the transfer function $F(s)$. Moreover, it admits a sensible stochastic interpretation [5].

Now we lift F to get $F := L_T F L_T^{-1}$. The lifted system $F : \ell_2(\mathcal{K}) \mapsto \ell_2(\mathcal{K})$ can be described by $(y = F u)$

$$y_k = \sum_{j=0}^{k} f_{k-j} y_j, \quad k \geq 0,$$

where $f_k, \ i \geq 0$, map \mathcal{K} to \mathcal{K} via

$$(f_i u)(t) = \int_0^T f(t + iT, \tau) u(\tau) \, d\tau, \quad 0 \leq t < T.$$

F is LTI in discrete time; its transfer function is defined as

$$F(\lambda) = \sum_{i=0}^{\infty} f_i \lambda^i.$$

The local square-integrability of $f(t, \tau)$ implies that $f_i, \ i \geq 0$, are Hilbert-Schmidt operators [39]. Moreover, the set of Hilbert-Schmidt operators equipped with the Hilbert-Schmidt norm, $\| \cdot \|_{HS}$, is a Hilbert space [18]. Thus the transfer function F is a Hilbert-space vector-valued function on some subset of \mathcal{C}. We say the function F belongs to \mathcal{H}_2 if

$$\left(\sum_{i=0}^{\infty} \|f_i\|_{HS}^2 \right)^{1/2} < \infty,$$

and the left-hand side is defined to be its \mathcal{H}_2 norm, denoted $\|F\|_2$ [34]. A result connecting the time- and frequency-domain definitions is given below.

Lemma 1 [5] F is in \mathcal{H}_2 iff every element of f is square-integrable on $[0, \infty) \times [0, T)$; in this case, $\frac{1}{\sqrt{T}} \|F\|_2 = \|F\|_{per}$.

Now we turn to internal stability of Figure 2. There are many ways to define closed-loop stability. Here we choose the way in terms of the plant state x and the controller state η (K_d is admissible). Define the continuous-time vector

$$x_{sd}(t) := \begin{bmatrix} x(t) \\ \eta(k) \end{bmatrix}, \quad kT \leq t < (k + 1)T.$$

The (autonomous) multirate sampled-data system is internally stable, or K_d internally stabilizes G, if for any initial value $x_{sd}(t_0), \ 0 \leq t_0 < T$, $x_{sd} \rightarrow 0$ as $t \rightarrow \infty$. Note that by finite dimensionality, internal stability implies that $x_{sd} \rightarrow 0$ exponentially as $t \rightarrow \infty$.

We need a few standing assumptions in this section about the plant G in (4):

1. (A, B_2) is stabilizable and (C_2, A) is detectable;
2. the period T is non-pathological with respect to G [23, 8];

3. $D_{22} = 0$.

Assumptions 1 and 2 are mild and standard. Assumption 3 is for the well-posedness of the closed-loop system. The system in Figure 2 is well-posed iff the lifted system in Figure 4 is well-posed. The latter property holds if the matrix $I - D_{22}D$ is nonsingular, where D_{22} is in $\Omega_s(n, m)$ as we commented before and D, the feedthrough term in K_d, is in $\Omega(m, n)$. Invoking the fact that $M_1, M_2 \in \Omega_s(p, q)$ if $M_1 \in \Omega_s(p, l)$ and $M_2 \in \Omega(l, q)$ [28, 30], we get that $D_{22}D \in \Omega_s(n, n)$, or equivalently, $D_{22}D$ is strictly (block) lower-triangular. Hence the matrix $I - D_{22}D$ is nonsingular.

Let us write

$$G_{sd} = \begin{bmatrix}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{bmatrix} := \begin{bmatrix}
A_d & B_1 & B_{2d} \\
C_1 & D_{11} & D_{12} \\
C_{2d} & D_{21} & D_{22d}
\end{bmatrix}$$

and note that G_{sd} is a standard discrete-time system. Now we relate internal stability of the multirate system to that of the LTI discrete-time system shown in Figure 5.

![Diagram](image)

Figure 5: A discrete-time system for stability

Lemma 2 Under Assumptions 1-3, K_d internally stabilizes G iff K_d internally stabilizes G_{22} in discrete time.

Proof Under Assumptions 1 and 2, we have that (A_d, B_T) is stabilizable, where

$$B_T := \int_0^T e^{(T-\tau)A}B_d \, d\tau,$$

and (C_2, A_d) is detectable [23]. It follows easily that (C_{2d}, A_d) is detectable. The stabilizability of (A_d, B_{2d}) can be obtained from the fact that

$$B_T = B_{2d} \begin{bmatrix}
I \\
\vdots \\
I
\end{bmatrix}.$$
Finally, using a similar argument as in [15], we can conclude that \(x_{sd} \to 0 \) as \(t \to \infty \) iff
\[
\begin{bmatrix}
\xi(k) \\
\eta(k)
\end{bmatrix} \to 0, \quad k \to \infty,
\]
where \(\xi \) is the state for \(G_{sd} \) or \(G_{22} \).
\[\text{QED} \]

We can now state the \(\mathcal{H}_2 \)-optimal control problem precisely: Given \(G, m, n, \) and \(h \), design an admissible \(K_d \) to provide internal stability and minimize \(\| T_{zw} \|_{\text{per}} \) in Figure 2. By Lemmas 1 and 2, we can recast the problem exactly in the lifted spaces: Design an admissible \(K_d \) to internally stabilize \(G_{22} \) and minimize the \(\mathcal{H}_2 \) norm of \(T_{zw} \) in Figure 4.

In what follows we shall solve explicitly this \(\mathcal{H}_2 \) problem using a frequency-domain approach. The problem is much harder than the single-rate one [24, 5] due to the facts that \(D_{21} \) is nonzero and that \(K_d \) must satisfy the causality constraint.

In (9), \(A_d, B_{2d}, C_{2d}, D_{22d} \) are matrices and \(B_1, D_{11}, D_{12}, D_{21} \) are operators. However, all the operators but \(D_{11} \) are of finite rank. This fact can be exploited: Define the real-rational matrices
\[
\bar{G}_{11} = \begin{bmatrix} A_d & I \\ I & 0 \end{bmatrix}, \quad \bar{G}_{12} = \begin{bmatrix} A_d & B_{2d} \\ I & 0 \\ 0 & I \end{bmatrix}, \quad \bar{G}_{21} = \begin{bmatrix} A_d & I \\ C_{2d} & 0 \end{bmatrix}
\]
to get
\[
\begin{align*}
G_{11} &= D_{11} + C_1 \bar{G}_{11} B_1 \\
G_{12} &= \begin{bmatrix} C_1 & D_{12} \end{bmatrix} \bar{G}_{12} \\
G_{21} &= \begin{bmatrix} B_1 & D_{21} \end{bmatrix} \bar{G}_{21}.
\end{align*}
\]

Now bring in a special doubly-coprime factorization for the real rational transfer matrix \(\bar{G}_{22} \):
\[
\bar{G}_{22} = NM^{-1} = \bar{M}^{-1} \bar{N},
\]
\[
\begin{bmatrix}
\bar{X} & -\bar{Y} \\
-\bar{N} & \bar{M}
\end{bmatrix}
\begin{bmatrix}
M & Y \\
N & X
\end{bmatrix} = I,
\]
with \(M(0) = I \) and \(\bar{M}(0) = I \). The latter conditions on \(M(0) \) and \(\bar{M}(0) \) yield
\[
\begin{align*}
N(0) &= \bar{N}(0) = D_{22d}, \\
X &= I, \quad \bar{X} = I, \\
Y(0) &= \bar{Y}(0) = 0.
\end{align*}
\]
(The standard procedure in [14] generates such a factorization.) Then by Youla’s parametrization, every real-rational, proper stabilizing controller \(K_d \) for \(\bar{G}_{22} \) has the form
\[
K_d = (Y - MQ)(X - NQ)^{-1}
\] \(\text{(10)} \)
for some \(Q \in \mathcal{RH}_\infty \) with \(X - NQ \) invertible. Now we consider the causality constraint on \(K_d \), namely, the condition that

\[
K_d(0) = Q(0)[I - D_{22d}Q(0)]^{-1}
\]

must lie in \(\Omega(m, n) \). By [28, 30], \(K_d(0) \in \Omega(m, n) \) iff \(Q(0) \in \Omega(m, n) \). Moreover, the same argument used in the well-posedness discussion yields that \(X - NQ \) is invertible if \(Q(0) \in \Omega(m, n) \).

On summarizing, the set of admissible \(K_d \) which internally stabilize \(G \) is parametrized by

\[
K_d = (Y - MQ)(X - NQ)^{-1}, \quad Q \in \mathcal{RH}_\infty, \quad Q(0) \in \Omega(m, n).
\]

With this controller applied, the closed-loop map in Figure 4 is

\[
T_{\text{scw}} = T_1 - T_2QT_3,
\]

where \(T_1, T_2, T_3 \) are given by

\[
T_1 = D_{11} + [C_1 \ D_{12} \begin{bmatrix} \tilde{G}_{11} & 0 \\ 0 & 0 \end{bmatrix} + \tilde{G}_{12}MY_2G_{21}] \begin{bmatrix} B_1 \\ D_{21} \end{bmatrix},
\]

\[
T_2 = \begin{bmatrix} C_1 \\ D_{12} \end{bmatrix} \tilde{G}_{12}M,
\]

\[
T_3 = \{MG_{21}\begin{bmatrix} B_1 \\ D_{21} \end{bmatrix}.
\]

Therefore, the multirate \(\mathcal{H}_2 \) problem is equivalent to the following constrained \(\mathcal{H}_2 \) model-matching problem

\[
\inf_{Q \in \mathcal{RH}_\infty, Q(0) \in \Omega} \|T_1 - T_2QT_3\|_2.
\]

Here we used \(\Omega \) for \(\Omega(m, n) \) to simplify notation. Note that \(T_1, T_2, T_3 \) are all operator-valued. For an operator-valued transfer function \(T(\lambda) \), denote the transfer function of the adjoint system by \(T^\sim(\lambda) := T^*(1/\lambda) \). To proceed further, we need one additional assumption:

4. For every \(\lambda \) on the unit circle, \(T_2(\lambda) \) and \(T_3^\sim(\lambda) \) are both injective.

Since for a fixed \(\lambda \), the domains of \(T_2(\lambda) \) and \(T_3^\sim(\lambda) \) are finite-dimensional but their codomains are infinite-dimensional, Assumption 4 will be generically satisfied. It is not hard to show that Assumption 4 holds if for every \(\lambda \) on the unit circle, the two operator matrices

\[
\begin{bmatrix} A_d - \lambda I & B_{2d} \\ C_1 & D_{12} \end{bmatrix}, \quad \begin{bmatrix} A_d - \lambda I & B_1 \\ C_2 & D_{21} \end{bmatrix}
\]

are injective and surjective respectively.
Note that $T_2\hspace{-0.5em}^\sim T_2$ and $T_3 T_3\hspace{-0.5em}^\sim$ are both matrix-valued. Bring in constant matrices E_{12} and E_{21} satisfying
\[
E'_{12} E_{12} = \begin{bmatrix} C_1^* \\ D_{12}^* \end{bmatrix} \begin{bmatrix} C_1 & D_{12} \end{bmatrix},
E_{21} E'_{21} = \begin{bmatrix} B_1 \\ D_{21} \end{bmatrix} \begin{bmatrix} B_1^* & D_{21}^* \end{bmatrix},
\]
(computational issues will be addressed at the end of the section) to get
\[
T_2\hspace{-0.5em}^\sim T_2 = (E_{12} \hat{G}_{12} M)^\sim (E_{12} \hat{G}_{12} M),
T_3 T_3\hspace{-0.5em}^\sim = (\hat{M} \hat{G}_{21} E_{21})(\hat{M} \hat{G}_{21} E_{21})^\sim.
\]

It follows that $T_2\hspace{-0.5em}^\sim T_2$ and $T_3 T_3\hspace{-0.5em}^\sim$ are both para-symmetric real-rational matrices and have full ranks on the unit circle (Assumption 4). So we can perform spectral factorizations $T_2\hspace{-0.5em}^\sim T_2 = T_2\hspace{-0.5em}^\sim T_2$ and $T_3 T_3\hspace{-0.5em}^\sim = T_{3\hspace{-0.5em}co} T_{3\hspace{-0.5em}co}$ with $T_{2\hspace{-0.5em}co}, T_{2\hspace{-0.5em}co}^{-1}, T_{3\hspace{-0.5em}co}, T_{3\hspace{-0.5em}co}^{-1} \in \mathcal{RH}_\infty$. An inner-outer factorization $T_2 = T_{2i} T_{2o}$ and a co-inner-outer factorization $T_3 = T_{3\hspace{-0.5em}co} T_{3ci}$ can be obtained by defining
\[
T_{2i} = T_{2o} T_{2o}^{-1} = \begin{bmatrix} C_1 & D_{12} \end{bmatrix} \hat{G}_{12} M T_{2o}^{-1},
T_{3ci} = T_{3\hspace{-0.5em}co}^{-1} T_3 = T_{3\hspace{-0.5em}co}^{-1} \hat{M} \hat{G}_{21} \begin{bmatrix} B_1 \\ D_{21} \end{bmatrix}.
\]

Note that the operator-valued inner factor T_{2i} satisfies $T_{2i} T_{2i} = I$ and co-inner factor T_{3ci} satisfies $T_{3ci} T_{3ci}^\sim = I$.

Define the constant matrix
\[
E_{11} := \begin{bmatrix} C_1^* \\ D_{12}^* \end{bmatrix} D_{11} \begin{bmatrix} B_1^* & D_{21}^* \end{bmatrix}
\]
and the real-rational matrix in \mathcal{L}_2
\[
R_{11} = (\hat{G}_{12} M T_{2o}^{-1})^\sim \left[E_{11} + E'_{12} E_{12} \left[\begin{bmatrix} \hat{G}_{11} & 0 \\ 0 & 0 \end{bmatrix} + \hat{G}_{12} \hat{M} \hat{G}_{21} \right] E_{21} E'_{21} \right] (T_{3\hspace{-0.5em}co}^{-1} \hat{M} \hat{G}_{21})^\sim.
\]
Denote the constant term of R_{11} by R_{110}. (Since R_{11} is in general noncausal, it follows that in general $R_{110} \neq R_{11}(0)$). Let $\Pi_{\mathcal{H}_2} : \mathcal{L}_2 \rightarrow \mathcal{H}_2$ and $\Pi_{\mathcal{H}_2^\perp} : \mathcal{L}_2 \rightarrow \mathcal{H}_2^\perp$ be the orthogonal projections. We are now set up to state the main result of this section.

Theorem 1 The optimal Q in (12) is given by
\[
Q_{opt} = Q_0 + \lambda T_{2o}^{-1} \left[\Pi_{\mathcal{H}_2} \left[\lambda^{-1} (R_{11} - T_{2o} Q_{0} T_{3\hspace{-0.5em}co}) \right] \right] T_{3\hspace{-0.5em}co}^{-1},
\]
where the constant matrix Q_0 is the optimal $Q(0)$ solving
\[
\min_{Q(0) \in \mathcal{U}} \| R_{110} - T_{2o}(0) Q(0) T_{3\hspace{-0.5em}co}(0) \|_2.
\]
Proof Apply unitary transformations to $T_1 - T_2 Q T_3$ and define

$$
\begin{bmatrix}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{bmatrix} = \begin{bmatrix}
T_{2i}^{-1} \\
I - T_{2i} T_{2i}^{-1}
\end{bmatrix} T_1 \begin{bmatrix}
T_{3i}^{-1} \\
I - T_{3i} T_{3i}^{-1}
\end{bmatrix}
$$

(simple calculation shows that this R_{11} is exactly the one given in (13)) to get

$$
\|T_1 - T_2 Q T_3\|_2^2 = \| \begin{bmatrix}
T_{2i}^{-1} \\
I - T_{2i} T_{2i}^{-1}
\end{bmatrix} (T_1 - T_2 Q T_3) \begin{bmatrix}
T_{3i}^{-1} \\
I - T_{3i} T_{3i}^{-1}
\end{bmatrix} \|_2^2
$$

$$
\| \begin{bmatrix}
R_{11} - T_{2o} Q T_{3o} & R_{12} \\
R_{21} & R_{22}
\end{bmatrix} \|_2^2
$$

$$
= \|R_{11} - T_{2o} Q T_{3o}\|_2^2 + \|R_{12}\|_2^2 + \|R_{21}\|_2^2 + \|R_{22}\|_2^2.
$$

The last three terms are independent of Q; so the problem in (12) reduces to minimizing the first term. On writing

$$
Q = Q(0) + \lambda Q_1, \quad Q_1 \in \mathcal{R} \mathcal{H}_\infty,
$$

this is

$$
\inf_{Q(0) \in \Omega} \inf_{Q_1 \in \mathcal{R} \mathcal{H}_\infty} \|R_{11} - T_{2o} Q T_{3o}\|_2^2
$$

$$
\inf_{Q(0) \in \Omega} \inf_{Q_1 \in \mathcal{R} \mathcal{H}_\infty} \|R_{11} - T_{2o} Q(0) T_{3o} - \lambda T_{2o} Q_1 T_{3o}\|_2^2
$$

$$
\inf_{Q(0) \in \Omega} \inf_{Q_1 \in \mathcal{R} \mathcal{H}_\infty} \|\lambda^{-1}[R_{11} - T_{2o} Q(0) T_{3o}] - T_{2o} Q_1 T_{3o}\|_2^2
$$

$$
\geq \inf_{Q(0) \in \Omega} \|\Pi_{\mathcal{H}_2} \left\{ \lambda^{-1}[R_{11} - T_{2o} Q(0) T_{3o}] \right\} \|_2^2
$$

$$
\|\Pi_{\mathcal{H}_2} R_{11}\|_2^2 + \inf_{Q(0) \in \Omega} \|R_{110} - T_{2o} (0) Q(0) T_{3o}(0)\|_2^2.
$$

The equality is achieved by setting

$$
Q_1 = T_{2o}^{-1} \Pi_{\mathcal{H}_2} \left[\lambda^{-1}(R_{11} - T_{2o} Q(0) T_{3o}) \right] T_{3o}^{-1}.
$$

Thus the optimal Q can be obtained in two steps: Solve the matrix 2-norm optimization in (15) to get Q_0 (this will be discussed in Lemma 3); and then substitute Q_0 into (14) to get Q_{opt}. QED

Now let us look at how to compute the optimal cost, $\inf_Q \|T_{2o} w\|_2^2$. From the above proof we see that the optimal cost is

$$
\|R_{12}\|_2^2 + \|R_{21}\|_2^2 + \|R_{22}\|_2^2 + \|\Pi_{\mathcal{H}_2} R_{11}\|_2^2 + \|R_{110} - T_{2o} (0) Q_0 T_{3o}(0)\|_2^2.
$$

(16)

The computation of Q_0 is our next topic; now we compute the first several terms in (16). Instead of a direct effort, we note for a short cut that the sum of the first four terms equals

$$
\| \begin{bmatrix}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{bmatrix} \|_2^2 - \|\Pi_{\mathcal{H}_2} R_{11}\|_2^2 = \|T_1\|_2^2 - \|\Pi_{\mathcal{H}_2} R_{11}\|_2^2.
$$
and the norm of T_1 can be computed with relative ease:

$$
\|T_1\|_2^2 = \|D_{11}\|_{HS}^2 + \|[C_1 \ D_{12}] \begin{bmatrix} \tilde{G}_{11} & 0 \\ 0 & 0 \end{bmatrix} + \bar{G}_{12}M\bar{Y}\bar{G}_{21} \begin{bmatrix} B_1 \\ D_{21} \end{bmatrix} \|_2^2
= \|D_{11}\|_{HS}^2 + \|E_{12} \begin{bmatrix} \tilde{G}_{11} & 0 \\ 0 & 0 \end{bmatrix} + \bar{G}_{12}M\bar{Y}\bar{G}_{21} \|_{E_{21}}^2. \tag{17}
$$

Here we used the fact that \tilde{G}_{11} and \bar{Y} are strictly proper. The Hilbert-Schmidt norm of D_{11} follows from that of a general integral operator [18]:

$$
\|D_{11}\|_{HS}^2 = \text{trace} \int_a^T \int_0^t B_1^t e^{(T-t)A'}C_1'C_1e^{(T-t)A}B_1 \, dt. dt.
$$

In summary, the optimal cost can be found by

$$
\inf_Q \|T_{\Sigma^q}\|_2^2 = \|T_1\|_2^2 - \|\Pi_{\Omega_2} R_{11}\|_2^2 + \|R_{110} - T_{2o}(0)Q_0 T_{3c0}(0)\|_2^2,
$$

where $\|T_1\|_2$ is given in (17).

Next we look at how to find Q_0 solving (15). This is a least-square minimization problem and can be solved using matrix factorization theory.

For square and nonsingular matrices $T_{2o}(0)$ and $T_{3c0}(0)$, bring in factorizations

$$
T_{2o}(0) = U_2 R_2, \quad T_{3c0}(0) = R_3 U_3,
$$

where U_2, R_2, U_3, R_3 are all square, U_2, U_3 are orthogonal ($U_2'U_2 = I, U_3'U_3 = I$), and R_2, R_3 are lower-triangular. The existence and computation of such factorizations follow analogously from those of the well-known QR factorization. Recall that the 2-norm for matrices is induced by the inner product:

$$
(A, B) := \text{trace} (A'B).
$$

Thus the subspace Ω has its orthogonal complement Ω^\perp in the space of matrices of appropriate dimensions. Let Π_Ω and Π_{Ω_2} be the orthogonal projections to Ω and Ω^\perp respectively. It follows then that Π_Ω amounts to simply retaining the blocks corresponding to the unconstrained blocks in Ω and zeroing the other blocks.

Lemma 3 *The optimal $Q(0)$ solving (15) is*

$$
Q_0 = R_2^{-1} \Pi_\Omega [U_2'R_{110}U_3'] R_3^{-1}. \tag{18}
$$

Note that the matrix Q_0 in (18) is indeed in $\Omega = \Omega(m, n)$: The matrices R_2^{-1} and R_3^{-1} are lower-triangular and so they belong to $\Omega(m, m)$ and $\Omega(n, n)$ respectively.
\textbf{Proof} Substituting in the factorizations for $T_{2o}(0)$ and $T_{3co}(0)$, we get that (15) is
\[
\min_{Q(0)\in\Omega} \|R_{110} - U_2 R_2 Q(0) R_3 U_3^*\|_2 \\
= \min_{Q(0)\in\Omega} \|U_2' R_{110} U_3' - R_2 Q(0) R_3^*\|_2 \\
\geq \|\Pi_{\Omega^+}[U_2' R_{110} U_3']\|_2
\]
The inequality follows from the fact that $R_2 Q(0) R_3 \in \Omega$ (since R_2 and R_3 are lower-triangular) and becomes equality if we select $Q(0)$ as in (18). \hfill \text{QED}

With Assumptions 1-4, let us recap and summarize briefly the steps in design:

\textbf{Step 1} Compute the constant matrices E_{11}, E_{12}, and E_{21}.

\textbf{Step 2} Compute a coprime factorization of G_{22} and spectral and co-spectral factors T_{2o} and T_{3co}.

\textbf{Step 3} Compute the (noncausal) transfer function R_{11}.

\textbf{Step 4} Solve the matrix optimization of (15) for Q_0 by Lemma 3.

\textbf{Step 5} The optimal Q is given by (14) and the optimal K_d by (10).

Finally, we conclude this section by showing how to do Step 1, namely, presenting the explicit formulas for E_{11}, E_{12}, and E_{21}. From their definitions, we have
\[
E_{11} = \begin{bmatrix} C_1^* D_{11} B_1^* & C_1^* D_{11} D_{21}^* \\ D_{12}^* D_{11} B_1^* & D_{12}^* D_{11} D_{21}^* \end{bmatrix}
\]
\[
E_{12}' E_{12} = \begin{bmatrix} C_1^* C_1 & C_1^* D_{12} \\ (C_1^* D_{12})' & D_{12}^* D_{12} \end{bmatrix}
\]
\[
E_{21} E_{21}' = \begin{bmatrix} B_1 B_1^* & B_1 D_{21}^* \\ (B_1 D_{21}^*)' & D_{21}^* D_{21} \end{bmatrix}
\]

With the functions Ψ_j and Φ_i defined in (7) and (8), the individual blocks can be found to be
\[
C_1^* D_{11} B_1^* = \int_0^T \int_0^t e^{tA'} C_1^* C_1 e^{(t-\tau)A} B_1 B_1' e^{(T-\tau)A'} d\tau dt,
\]
\[
C_1^* D_{11} D_{21}^* = \int_0^T \int_0^t e^{tA'} C_1^* C_1 e^{(t-\tau)A} B_1 \begin{bmatrix} \Psi_0'(t) & \cdots & \Psi_{n-1}'(t) \end{bmatrix} d\tau dt,
\]
\[
D_{12}^* D_{11} B_1^* = \int_0^T \int_0^t \begin{bmatrix} \Phi_0'(t) \\ \vdots \\ \Phi_{m-1}'(t) \end{bmatrix} C_1 e^{(t-\tau)A} B_1 B_1' e^{(T-\tau)A'} d\tau dt,
\]

18
\begin{align*}
D_{12}^* D_{11} D_{21}^* &= \int_0^T \int_0^t \left[\begin{array}{c} \Phi_0(t) \\
\vdots \\
\Phi_{m-1}(t) \end{array} \right] C_1 e^{(t-\tau)A} B_1 \left[\begin{array}{c} \Psi_0(t) \\
\cdots \\
\Psi_{n-1}(t) \end{array} \right] d\tau \, dt, \\
C_1^* C_1 &= \int_0^T e^{tA'} C_1' C_1 e^{tA} \, dt, \\
C_1^* D_{12} &= \int_0^T e^{tA'} C_1' \left[\begin{array}{c} \Phi_0(t) \\
\cdots \\
\Phi_{m-1}(t) \end{array} \right] dt, \\
D_{12}^* D_{12} &= \int_0^T \left[\begin{array}{c} \Phi_0(t) \\
\vdots \\
\Phi_{m-1}(t) \end{array} \right] \left[\begin{array}{c} \Phi_0(t) \\
\cdots \\
\Phi_{m-1}(t) \end{array} \right] dt, \\
B_1 B_1^* &= \int_0^T e^{(T-\tau)A} B_1 B_1' e^{(T-\tau)A'} \, d\tau, \\
B_1 D_{21}^* &= \int_0^T e^{(T-\tau)A} B_1 \left[\begin{array}{c} \Psi_0(\tau) \\
\cdots \\
\Psi_{n-1}(\tau) \end{array} \right] d\tau, \\
D_{21} D_{21}^* &= \int_0^T \left[\begin{array}{c} \Psi_0(\tau) \\
\vdots \\
\Psi_{n-1}(\tau) \end{array} \right] \left[\begin{array}{c} \Psi_0(\tau) \\
\cdots \\
\Psi_{n-1}(\tau) \end{array} \right] d\tau.
\end{align*}

With the two symmetric matrices $E_{12}' E_{12}$ and $E_{21}' E_{21}$ computed, there are many choices for E_{12} and E_{21}; for example, we can take them as the square roots or Cholesky factors of the two symmetric matrices respectively.

5 \textbf{ \mathcal{H}_∞-Optimal Control}

In this section we shall study the multirate \mathcal{H}_∞ control problem: Design an admissible K_d to provide internal stability and achieve a pre-specified level of \mathcal{H}_∞ performance, i.e., the L_2-induced norm of T_{zw}, denoted $\|T_{zw}\|$, is less than γ, where γ is positive. By proper scaling, we can always take $\gamma = 1$.

In principle, the multirate lifting procedure in Section 3 could be employed to reduce the problem to a discrete-time \mathcal{H}_∞ problem with causality constraint. However, in this section we shall present a simpler reduction process which is based on recent single-rate results [4, 21] and the discrete lifting. Then the constrained discrete \mathcal{H}_∞ problem is solved explicitly.

With the state model of G in (4), Assumptions 1-3 made in Section 4 are in force in this section. Let $D_{11h} : L_2[0, h) \to L_2[0, h)$ be defined by

\[(D_{11h} w)(t) = C_1 \int_0^t e^{(t-\tau)A} B_1 w(\tau) \, d\tau.\]

An additional assumption is needed:

$4'$. $\|D_{11h}\| < 1$.

19
This is a necessary condition for $\|T_{zw}\| < 1$; its computation was studied in [4].

Corresponding to the two integers m and n, introduce the discrete sampling operator $S_m : \ell \to \ell$ defined via

$$\psi = S_m \phi \iff \psi(k) = \phi(mk)$$

and the discrete hold operator $H_n : \ell \to \ell$ via

$$\psi = H_n \phi \iff \psi(kn + j) = \phi(k), \quad j = 0, 1, \ldots, n - 1.$$

Now we bring in a discrete LTI system

$$G_d := \begin{bmatrix} A_d & B_{1d} & B_{2d} \\ C_{1d} & D_{11d} & D_{12d} \\ C_{2d} & 0 & 0 \end{bmatrix}. \tag{19}$$

Here G_d is an equivalent system for the single-rate \mathcal{H}_∞ sampled-data problem with sampling period τ; several sets of realization matrices were given in several recent papers, e.g., [4, 21]. Define the discrete system $T_{\zeta \omega} : \omega \leftrightarrow \zeta$ as in Figure 6, where K_d is as in Section 2 and

![Diagram](image)

Figure 6: An LTI discrete system

$$G_d = \begin{bmatrix} I_{mn} & 0 \\ 0 & I_n S_m \end{bmatrix} G_d \begin{bmatrix} I_{m-1} & 0 \\ 0 & H_n I_{m-1} \end{bmatrix}.$$

It is not hard to check that G_d is LTI, causal, and finite-dimensional. (In fact, based on (19) a state-space representation of G_d is not difficult to derive.) Thus Figure 6 is LTI. The following result establishes the connection between the multirate \mathcal{H}_∞ problem and a discrete \mathcal{H}_∞ problem.

Theorem 2 Under Assumptions 1-3 and 4', we have

(i) K_d internally stabilizes G iff K_d internally stabilizes G_d;

(ii) $\|T_{zw}\| < 1$ iff $\|T_{\zeta \omega}\|_\infty < 1$.

20
Before we prove the result, it is beneficial to introduce a notation: Given an operator K and an operator matrix

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix},$$

the associated linear fractional transformation is denoted

$$\mathcal{F}(P, K) = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}.$$

Of course, the domains and co-domains of the operators must be compatible and the inverse must exist.

Proof of Theorem 2 The first statement is relatively easy to establish (see Lemma 2); so we look at the second.

Note that S_{mh} and H_{nh} can be written

$$S_{mh} = S_mS_h, \quad H_{nh} = H_hH_n.$$

So Figure 2 can be viewed as a single-rate system with time-varying control:

$$T_{zw} = \mathcal{F}(G, H_{nh}K_dS_{mh}) = \mathcal{F}(G, H_hK_{d1}S_h),$$

where $K_{d1} := H_hK_dS_m$ is time-varying. The single-rate result in [4] or [21] does not require the digital controller to be time-invariant and so can be applied now:

$$||\mathcal{F}(G, H_hK_{d1}S_h)|| < 1 \Leftrightarrow ||\mathcal{F}(G_d, K_{d1})|| < 1,$$

the latter norm being the ℓ_2-induced one. From the definitions of G_d and K_d we get

$$T_{\zeta w} = \mathcal{F}(G_d, K_d) = L_{mn}\mathcal{F}(G_d, K_{d1})L_{mn}^{-1}.$$

Since L_{mn} is norm-preserving, we have

$$||T_{\zeta w}||_\infty = ||T(G_d, K_{d1})||.$$

This completes the proof. \textbf{QED}

Theorem 2 provides a way to analyze a multirate sampled-data system: For a given admissible K_d, checking the H_∞ performance condition $||T_{zw}|| < 1$ amounts to checking if the H_∞ norm of the real-rational matrix $T_{\zeta w}(\lambda)$ is < 1.

Moreover, and more importantly, the theorem also implies that the multirate H_∞ problem can be recast as a constrained H_∞ model-matching problem. To see this, we note that the $(2, 2)$ block in G_d, G_{22d}, is in $\Omega_s(n, m)$. Parametrize all the stabilizing and admissible controllers K_d for G_{22d} as in Section 4 to get

$$T_{\zeta w} = T_1 - T_2QT_3,$$

21
where T_1, T_2, T_3 are real-rational matrices in \mathcal{H}_∞ and can be found from G_d. Then the multirate \mathcal{H}_∞ problem is equivalent to the discrete \mathcal{H}_∞ model-matching problem of finding a $Q \in \mathcal{RH}_\infty$ with the constraint $Q(0) \in \Omega(m,n)$ such that

$$||T_1 - T_2 QT_3||_\infty < 1.$$

If such a Q exists, we say the multirate \mathcal{H}_∞ problem is *solveable*.

From now on we shall focus on this constrained \mathcal{H}_∞ problem. For regularity, we need an assumption similar to Assumption 4 in Section 4:

5'. For every λ on the unit circle, $T_2(\lambda)$ and $T_3^\sim(\lambda)$ are both injective.

Under this assumption, perform an inner-outer factorization $T_2 = T_2^\lambda T_2^o$ and an co-inner-outer factorization $T_3 = T_3^\lambda T_3^c$, where T_2^o and T_3^c are both invertible over \mathcal{RH}_∞. Apply unitary transformations to $T_1 - T_2 QT_3$ and define

$$R = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} := \begin{bmatrix} T_2^\sim & T_3^\sim \\ I - T_2^\lambda T_3^\sim & I - T_3^\lambda T_3^\sim \end{bmatrix} T_1 \begin{bmatrix} T_3^\sim & I - T_3^\lambda T_3^\sim \end{bmatrix}. $$

The constrained model-matching problem is equivalent to the following four-block problem of finding a $Q \in \mathcal{RH}_\infty$ with $Q(0) \in \Omega(m,n)$ such that

$$|| \begin{bmatrix} R_{11} - T_2^o QT_3^c & R_{12} \\ R_{21} & R_{22} \end{bmatrix} ||_\infty < 1. $$ (20)

We shall consider the causality constraint at a later stage; let us now drop this constraint on $Q(0)$ and look at the unconstrained four-block problem. This allows us to use the powerful result in [17] to parametrize all Q in \mathcal{RH}_∞ achieving (20).

Lemma 4 [17] There exists a $Q \in \mathcal{RH}_\infty$ such that (20) holds iff

$$|| \begin{bmatrix} \Pi_{\mathcal{H}_\infty^+} & 0 \\ 0 & I \end{bmatrix} R|_{\mathcal{H}_2 \oplus \mathcal{L}_2} ||_\infty < 1. $$ (21)

Moreover, if (21) is satisfied, then there exists an \mathcal{RH}_∞ matrix

$$K = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}$$

with $K_{12}^{-1}, K_{21}^{-1} \in \mathcal{RH}_\infty$ and $\|K_{22}\|_\infty < 1$ such that all $Q \in \mathcal{RH}_\infty$ satisfying (20) are characterized by

$$Q = F(K, Q_1), \quad Q_1 \in \mathcal{RH}_\infty, \quad \|Q_1\|_\infty < 1. $$ (22)
We refer to [17] for the details of checking inequality (21) and the expression of K. Hereafter, we shall assume that (21) is true. This is also necessary for the solvability of the multirate \mathcal{H}_∞ problem.

Look at the constant term in (22):

$$Q(0) = K_{11}(0) + K_{12}(0)Q_1(0)[I - K_{22}(0)Q_1(0)]^{-1}K_{21}(0).$$

This is too complicated to study the causality constraint; but it would reduce to an affine mapping from $Q_1(0)$ to $Q(0)$ if we had $K_{22}(0) = 0$. Next we shall make this happen. Introduce another linear fractional transformation:

$$Q_1 = \mathcal{F}(V, Q_2).$$

Here V, partitioned as usual, is a constant unitary matrix. It follows that the mapping $Q_2 \mapsto Q_1$ is bijective from the open unit ball of \mathcal{RH}_∞ onto itself [31]. Thus all Q satisfying (20) can be re-parametrized by

$$Q = \mathcal{F}[K, \mathcal{F}(V, Q_2)]$$
$$= \mathcal{F}(L, Q_2), \quad Q_2 \in \mathcal{RH}_\infty, \quad \|Q_2\|_\infty < 1,$$

where L, partitioned as usual, can be written in terms of K and V:

$$L = \begin{bmatrix}
K_{11} + K_{12}V_{11}(I - K_{22}V_{11})^{-1}K_{21} & K_{12}(I - V_{11}K_{22})^{-1}V_{12} \\
V_{21}(I - K_{22}V_{11})^{-1}K_{21} & V_{21}(I - K_{22}V_{11})^{-1}K_{22}V_{12} + V_{22}
\end{bmatrix}.$$

Setting

$$V = \begin{bmatrix}
K_{22}(0) \\
[I - K_{22}(0)K_{22}(0)]^{1/2} \\
-K_{22}(0)
\end{bmatrix}$$

achieves $L_{22}(0) = 0$; furthermore, $L_{12}(0)$ and $L_{21}(0)$ are still nonsingular. (Since $\|K_{22}(0)\| < 1$, this V is well-defined and is unitary.)

To recap, the set of all $Q \in \mathcal{RH}_\infty$ achieving (20) is parametrized by

$$Q = \mathcal{F}(L, Q_2), \quad Q_2 \in \mathcal{RH}_\infty, \quad \|Q_2\|_\infty < 1.$$

Here L has the additional properties that $L_{22}(0) = 0$, $L_{12}(0)$ and $L_{21}(0)$ are nonsingular. Thus

$$Q(0) = L_{11}(0) + L_{12}(0)Q_2(0)L_{21}(0). \quad (23)$$

Now we bring in the causality constraint on $Q(0)$. Our goal is to find the necessary and sufficient condition for the existence of a $Q_2 \in \mathcal{RH}_\infty$ with $\|Q_2\|_\infty < 1$ such that $Q(0)$ in (23) lies in $\Omega(m, n)$. Since $Q(0)$ depends only on $Q_2(0)$ and in general $\|Q_2\|_\infty \geq \|Q_2(0)\|$, the problem is the same as searching a constant matrix $Q_2(0)$ with $\|Q_2(0)\| < 1$ such that $Q(0) \in \Omega(m, n)$, the norm being the largest singular value of $Q_2(0)$.

As in Section 4, introduce matrix factorizations

$$L_{12}(0) = R_1U_1, \quad L_{21}(0) = -U_2R_2,$$
where R_1, R_2, U_1, U_2 are all square, R_1, R_2 are lower-triangular, and U_1, U_2 are orthogonal. Substitute the factorizations into (23) and pre- and post-multiply by R_1^{-1} and R_2^{-1} respectively to get

$$R_1^{-1}Q(0)R_2^{-1} = R_1^{-1}L_{11}(0)R_2^{-1} - U_1Q_2(0)U_2.$$

Define

$$W := R_1^{-1}L_{11}(0)R_2^{-1}, \quad P := U_1Q_2(0)U_2.$$

It follows that $||Q_2(0)|| < 1$ iff $||P|| < 1$ and $Q(0) \in \Omega(m, n)$ iff $R_1^{-1}Q(0)R_2^{-1} \in \Omega(m, n)$ (Section 4). Therefore, we arrive at the following equivalent matrix problem: Given W, find P with $||P|| < 1$ such that $W - P \in \Omega(m, n)$.

Partition W and P as required in $\Omega(m, n)$. Apparently, P must cancel the Ω^\perp-part of W. So the blocks in P corresponding to the zero blocks in $\Omega(m, n)$ are fixed and equal to those blocks in W; the other blocks are free for choice. The question is when it is possible and then how to choose the free blocks to make $||P|| < 1$.

Before we attack the general case, let us look at the example with $m = 3$ and $n = 2$ (Section 2). Then W and P are given by

$$W = \begin{bmatrix} W_{00} & W_{01} \\ W_{10} & W_{11} \\ W_{20} & W_{21} \end{bmatrix}, \quad P = \begin{bmatrix} X_{00} & X_{01} \\ X_{10} & X_{11} \\ X_{20} & X_{21} \end{bmatrix},$$

where X_{ij} denote the free blocks in P. Obviously,

$$\min_{X_{ij}} ||P|| = || \begin{bmatrix} W_{01} \\ W_{11} \end{bmatrix} ||.$$

So the matrix problem is solvable iff the right-hand side is < 1 and when this is so we choose all X_{ij} to be zero to attain the minimum.

The general case is much more complicated. First, let us distinguish two cases: The fixed blocks in P, or the zero blocks in $\Omega(m, n)$, take the (block) row-echelon form if $m < n$ and the (block) column-echelon form if $n < m$. Next, we need to locate all the maximum fixed submatrices of P, namely, the submatrices which consist of only the fixed blocks and have maximum sizes. To do this, denote the integer part of a positive real number x by $[x]$. If $m < n$, let $l = m$ and for $k = 0, 1, \ldots, l - 1$, define

$$M_k = \begin{bmatrix} I \\ \vdots \\ I \end{bmatrix} \begin{bmatrix} I \end{bmatrix} k + 1 \text{ blocks}$$

$$m \text{ blocks}$$

$$N_k = \begin{bmatrix} I \\ \vdots \\ I \end{bmatrix} \begin{bmatrix} I \end{bmatrix} N \text{ blocks}$$

$$n - 1 - \left[\frac{kn}{m} \right] \text{ blocks}$$

24
If $n < m$, define $l = n - 1$ and for $k = 0, 1, \ldots, l - 1$, define

$$M_k = \begin{bmatrix} I & \cdots & 0 \\ \vdots & \ddots & \vdots \\ I & \cdots & I \end{bmatrix}^{(k+1)m} \text{ blocks}$$

$$N_k = \begin{bmatrix} 0 \\ I \\ \vdots \\ I \end{bmatrix}^{n \text{ blocks}}$$

Then it can be checked that $M_kW_Nk, k = 0, 1, \ldots, l - 1$, are exactly those maximum fixed submatrices of P. Define

$$\mu := \max\{\|M_kW_Nk\| : k = 0, 1, \ldots, l - 1\}.$$

Theorem 3 Under Assumptions 1-3 and 4'-5', the multirate \mathcal{H}_∞ problem is solvable, i.e., there exists a matrix P with $\|P\| < 1$ such that $W - P \in \Omega(m, n)$, iff $\mu < 1$.

The proof requires a result on norm preserving dilations from operator theory, which is specialized to constant matrices below.

Lemma 5 [29], [10] Assume that A, B, C are fixed matrices of appropriate dimensions. Then

$$\inf_X \| \begin{bmatrix} C & A \\ X & B \end{bmatrix} \| = \max\{\| \begin{bmatrix} C & A \end{bmatrix} \|, \| \begin{bmatrix} A \\ B \end{bmatrix} \|\} =: \alpha.$$

Moreover, a minimizing X is given by

$$X = -B(\alpha^2I - AA^*)^{-1}C.$$

Proof of Theorem 3 The necessity follows easily since each M_kW_Nk is a fixed submatrix of P. In what follows, we shall prove the sufficiency when $m = 3$ and $n = 5$; the general case is no harder conceptually and follows similarly.

When $m = 3$ and $n = 5$, the matrix P is of the form

$$P = \begin{bmatrix} X_{00} & W_{01} & W_{02} & W_{03} & W_{04} \\ X_{10} & X_{11} & W_{12} & W_{13} & W_{14} \\ X_{20} & X_{21} & X_{22} & X_{23} & W_{24} \end{bmatrix}.$$

Thus the three fixed maximum matrices $M_kW_Nk, k = 0, 1, 2$, are

$$\begin{bmatrix} W_{01} & W_{02} & W_{03} & W_{04} \end{bmatrix}, \begin{bmatrix} W_{02} & W_{03} & W_{04} \\ W_{12} & W_{13} & W_{14} \end{bmatrix}, \begin{bmatrix} W_{04} \\ W_{14} \\ W_{24} \end{bmatrix}.$$
respectively. It suffices to show that we can choose X_{ij} in P to achieve $\|P\| = \mu$. First, choose X_{11} via Lemma 5 so that $\|M_1 PN_0\|$ is minimized:

$$\|M_1 PN_0\| = \max\{\|M_0 WN_0\|, \|M_1 WN_1\|\}.$$

Fix this X_{11}. Next, choose $\begin{bmatrix} X_{21} & X_{22} & X_{23} \end{bmatrix}$ again via Lemma 5 so that $\|M_2 PN_0\|$ is minimized:

$$\|M_2 PN_0\| = \max\{\|M_1 PN_0\|, \|M_2 WN_2\|\}.$$

Finally, set X_{00}, X_{10}, X_{20} to zero. These choices of X_{ij} yield $\|P\| = \|M_2 PN_0\| = \mu$. \textbf{QED}

The proof provides a constructive procedure to determine the free blocks in P to get $\|P\| = \mu$; this is done by sequentially applying Lemma 5 as was illustrated in the proof.

To summarize, let us list the solvability conditions for the multirate \mathcal{H}_∞ control problem $\|T_{zw}\| < 1$:

(a) $\|D_{11}\| < 1$;

(b) $\| \begin{bmatrix} \mathcal{H}_2 & 0 \\ 0 & I \end{bmatrix} R|_{\mathcal{H}_2 \otimes \mathcal{L}_2} \| < 1$;

(c) $\mu < 1$.

Condition (a) was studied in detail in [4]. Condition (b) is the solvability condition for a standard four-block \mathcal{H}_∞ problem, see, e.g., [17] for checking this condition. When conditions (a-b) hold, a necessary and sufficient test for condition (c) is given in Theorem 3; it ammounts to computing the norms (largest singular values) of several constant matrices.

Finally, by recapping the steps in the reduction process described in this section, one can obtain an implementable procedure for computing an admissible and stabilizing K_d to achieve $\|T_{zw}\| < 1$, if the solvability conditions are met.

\section{Concluding Remarks}

In this paper we have addressed causality constraints in direct designs of multirate sampled-data control systems using \mathcal{H}_2 and \mathcal{H}_∞ performance measures. Explicit solutions are given for the \mathcal{H}_2-optimal controller and the \mathcal{H}_∞-suboptimal controllers which achieve the performance requirement $\|T_{zw}\| < 1$. \mathcal{H}_∞ controllers which are arbitrarily close to optimality can be computed based on the solvability conditions (a-c) (with proper scaling) and a standard bisection search.

A good project for future research is to do some case studies and study the trade-offs between choices of sampling and hold rates and performance of the system. This is quite feasible using the results of this paper. Finally, we remark that although the setup in this paper has a uniform sampling rate and a uniform hold rate, extension to the more general setup in, e.g., [28, 30], is quite possible using the techniques developed in this paper.
References

<table>
<thead>
<tr>
<th>#</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>982</td>
<td>Robert J. Plemmons</td>
<td>A proposal for FFT-based fast recursive least-squares</td>
</tr>
<tr>
<td>983</td>
<td>Anne Greenbaum and Zdenek Strakos</td>
<td>Matrices that generate the same Krylov residual spaces</td>
</tr>
<tr>
<td>984</td>
<td>Alan Edelman and G.W. Stewart</td>
<td>Scaling for orthogonality</td>
</tr>
<tr>
<td>985</td>
<td>G.W. Stewart</td>
<td>Note on a generalized sylvest equation</td>
</tr>
<tr>
<td>986</td>
<td>G.W. Stewart</td>
<td>Updating URV decompositions in parallel</td>
</tr>
<tr>
<td>987</td>
<td>Angelika Bunse-Gerstner, Volker Mehrmann and Nancy K. Nichols</td>
<td>Numerical methods for the regularization of descriptor systems by output feedback</td>
</tr>
<tr>
<td>988</td>
<td>Ralph Byers and N.K. Nichols</td>
<td>On the stability radius of generalized state-space systems</td>
</tr>
<tr>
<td>989</td>
<td>David C. Dobson</td>
<td>Designing periodic structures with specified low frequency scattered in far-field data</td>
</tr>
<tr>
<td>990</td>
<td>C.-T. Pan and Kermit Sigmon</td>
<td>A bottom-up inductive proof of the singular value decomposition</td>
</tr>
<tr>
<td>991</td>
<td>Ricardo D. Fierro and James R. Bunch</td>
<td>Orthogonal projection and total least squares</td>
</tr>
<tr>
<td>992</td>
<td>Chiou-Ming Huang and Dianne P. O'Leary</td>
<td>A Krylov multisplitting algorithm for solving linear systems of equations</td>
</tr>
<tr>
<td>993</td>
<td>A.C.M Ran and L. Rodman</td>
<td>Factorization of matrix polynomials with symmetries</td>
</tr>
<tr>
<td>994</td>
<td>Mike Boyle</td>
<td>Symbolic dynamics and matrices</td>
</tr>
<tr>
<td>995</td>
<td>A. Novick-Cohen and L.A. Peletier</td>
<td>Steady states of the one-dimensional Cahn-Hilliard spaces</td>
</tr>
<tr>
<td>996</td>
<td>Zhangxin Chen</td>
<td>Large-scale averaging analysis of single phase flow in fractured reservoirs</td>
</tr>
<tr>
<td>997</td>
<td>Boris Mordukhovich</td>
<td>Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis</td>
</tr>
<tr>
<td>998</td>
<td>Yongzhi Xu</td>
<td>CW mode structure and constraint beamforming in a waveguide with unknown large inclusions with porous-elastic seabeds</td>
</tr>
<tr>
<td>999</td>
<td>R.P. Gilbert and Yongzhi Xu</td>
<td>Acoustic waves and far-field patterns in two dimensional oceans</td>
</tr>
<tr>
<td>1000</td>
<td>M.A. Herrero and J.J.L. Velázquez</td>
<td>Some results on blow up for semilinear parabolic problems</td>
</tr>
<tr>
<td>1001</td>
<td>Pierre-Alain Gremaud</td>
<td>Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions</td>
</tr>
<tr>
<td>1002</td>
<td>Izchak Lewkowicz</td>
<td>Stability robustness of state space systems inter-relations between the continuous and discrete time cases</td>
</tr>
<tr>
<td>1003</td>
<td>Kenneth R. Driessel and Wasin So</td>
<td>Linear operators on matrices: Preserving spectrum and displacement structure</td>
</tr>
<tr>
<td>1004</td>
<td>Carolyn Eschenbach</td>
<td>Idempotence for sign pattern matrices</td>
</tr>
<tr>
<td>1005</td>
<td>Carolyn Eschenbach, Frank J. Hall and Charles R. Johnson</td>
<td>Self-inverse sign patterns</td>
</tr>
<tr>
<td>1006</td>
<td>Marc Moonen, Paul Van Dooren and Filiep Vanpoucke</td>
<td>On the QR algorithm and updating the SVD and URV decomposition in parallel</td>
</tr>
<tr>
<td>1007</td>
<td>Paul Van Dooren</td>
<td>Upcoming numerical linear algebra issues in systems and control theory</td>
</tr>
<tr>
<td>1008</td>
<td>Avner Friedman and Juan J.L. Velázquez</td>
<td>The analysis of coating flows near the contact line</td>
</tr>
<tr>
<td>1009</td>
<td>Stephen J. Kirkland and Michael Neumann</td>
<td>Convexity and concavity of the Perron root and vector of Leslie matrices with applications to a population model</td>
</tr>
<tr>
<td>1010</td>
<td>Stephen J. Kirkland and Bryan L. Shader</td>
<td>Tournament matrices with extremal spectral properties</td>
</tr>
<tr>
<td>1011</td>
<td>E.G. Kalnins, Willard Miller, Jr. and Sanchita Mukherjee</td>
<td>Models of q-algebra representations: Matrix Elements of $U_q(su_2)$</td>
</tr>
<tr>
<td>1012</td>
<td>Zhangxin Chen and Bernardo Cockburn</td>
<td>Error estimates for a finite element method for the drift-diffusion semiconductor device equations</td>
</tr>
<tr>
<td>1013</td>
<td>Chaocheng Huang</td>
<td>Drying of gelatin asymptotically in photographic film</td>
</tr>
<tr>
<td>1014</td>
<td>Richard E. Ewing and Hong Wang</td>
<td>Eulerian-Lagrangian localized adjoint methods for reactive transport in groundwater</td>
</tr>
<tr>
<td>1015</td>
<td>Bing-Yu Zhang</td>
<td>Taylor series expansion for solutions of the Korteweg-de Vries equation with respect to their initial values</td>
</tr>
<tr>
<td>1016</td>
<td>Kenneth R. Driessel</td>
<td>Some remarks on the geometry of some surfaces of matrices associated with Toeplitz eigenproblems</td>
</tr>
<tr>
<td>1017</td>
<td>C.J. Van Duijn and Peter Knabner</td>
<td>Flow and reactive transport in porous media induced by well injection: Similarity solution</td>
</tr>
<tr>
<td>1018</td>
<td>Wasin So</td>
<td>Rank one perturbation and its application to the Laplacian spectrum of a graph</td>
</tr>
<tr>
<td>1019</td>
<td>G. Baccarani, F. Odeh, A. Gnudi and D. Ventura</td>
<td>A critical review of the fundamental semiconductor equations</td>
</tr>
<tr>
<td>1020</td>
<td>T.R. Hoffend Jr.</td>
<td>Magnetostatic interactions for certain types of stacked, cylindrically symmetric magnetic particles</td>
</tr>
<tr>
<td>1021</td>
<td>IMA Summer Program for Graduate Students, Mathematical Modeling</td>
<td></td>
</tr>
<tr>
<td>1022</td>
<td>Wayne Barrett, Charles R. Johnson, and Pablo Tarazaga</td>
<td>The real positive definite completion problem for a simple cycle</td>
</tr>
<tr>
<td>1023</td>
<td>Charles A. McCarty</td>
<td>Fourth order accuracy for a cubic spline collocation method</td>
</tr>
</tbody>
</table>
Martin Hanke, James Nagy, and Robert Plemmons, Preconditioned iterative regularization for ill-posed problems

John R. Gilbert, Esmond G. Ng, and Barry W. Peyton, An efficient algorithm to compute row and column counts for sparse Cholesky factorization

Xinfu Chen, Existence and regularity of solutions of a nonlinear nonuniformly elliptic system arising from a thermistor problem

Xinfu Chen and Weiqing Xie, Discontinuous solutions of steady state, viscous compressible Navier-Stokes equations

E.G. Kalnins, Willard Miller, Jr., and Sanchita Mukherjee, Models of \(q \)-algebra representations: Matrix elements of the \(q \)-oscillator algebra

W. Miller, Jr. and Lee A. Rubel, Functional separation of variables for Laplace equations in two dimensions

I. Gohberg and I. Koltracht, Structured condition numbers for linear matrix structures

Xinfu Chen, Hele-Shaw problems and area preserved curve shortening motion

Zhangxin Chen and Jim Douglas, Jr. Modelling of compositional flow in naturally fractured reservoirs

Harald K. Wimmer, On the existence of a least and negative-semidefinite solution of the discrete-time algebraic Riccati equation

Harald K. Wimmer, Monotonicity and parametrization results for continuous-time algebraic Riccati equations and Riccati inequalities

Bart De Moor, Peter Van Overschee, and Geert Schelchkout, \(H_2 \) model reduction for SISO systems

Bart De Moor, Structured total least squares and \(L_2 \) approximation problems

Chjan Lim, Nonexistence of Lyapunov functions and the instability of the Von Karman vortex streets

David C. Dobson and Fadil Santosa, Resolution and stability analysis of an inverse problem in electrical impedance tomography – dependence on the input current patterns

C.N. Dawson, C.J. van Duijn, and M.F. Wheeler, Characteristic-Galerkin methods for contaminant transport with non-equilibrium adsorption kinetics

Bing-Yu Zhang, Analyticity of solutions of the generalized Korteweg-de Vries equation with respect to their initial values

Neerchal K. Nagaraj and Wayne A. Fuller, Least squares estimation of the linear model with autoregressive errors

H.J. Sussman & W. Liu, A characterization of continuous dependence of trajectories with respect to the input for control-affine systems

Karen Rudie & W. Murray Wonham, Protocol verification using discrete-event systems

Rohan Abeyaratne & James K. Knowles, Nucleation, kinetics and admissibility criteria for propagating phase boundaries

Gang Bao & William W. Symes, Computation of pseudo-differential operators

Srdjan Stojanovic, Nonsmooth analysis and shape optimization in flow problem

Miroslav Tuma, Row ordering in sparse QR decomposition

Onur Toker & Hitay Özbaý, On the computation of suboptimal \(H_\infty \) controllers for unstable infinite dimensional systems

Hitay Özbaý, \(H_\infty \) optimal controller design for a class of distributed parameter systems

J.E. Dunn & Roger Fosdick, The Weierstrass condition for a special class of elastic materials

Bei Hu & Jianhua Zhang, A free boundary problem arising in the modeling of interanl oxidation of binary alloys

Eduard Feireisl & Enrique Zuazua, Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent

I-Heng McComb & Chjan C. Lim, Stability of equilibria for a class of time-reversible, \(D_z \)-symmetric homogeneous vector fields

Ruben D. Spies, A state-space approach to a one-dimensional mathematical model for the dynamics of phase transitions in pseudoelastic materials

H.S. Dumas, F. Golse, and P. Lochak, Multiphase averaging for generalized flows on manifolds

Bei Hu & Hong-Ming Yin, Global solutions and quenching to a class of quasilinear parabolic equations

Zhangxin Chen, Projection finite element methods for semiconductor device equations

Peter Guttorp, Statistical analysis of biological monitoring data

Wensheng Liu & Héctor J. Sussmann, Abnormal sub-Riemannian minimizers

Chjan C. Lim, A combinatorial perturbation method and Arnold's whiskered Tori in vortex dynamics

Yong Liu, Axially symmetric jet flows arising from high speed fiber coating

Li Qu & Tongwen Chen, \(H_2 \) and \(H_\infty \) designs of multirate sampled-data systems

Eduardo Casas & Jiongmin Yong, Maximum principle for state-constrained optimal control problems covered by quasilinear elliptic equations

Suzanne M. Lenhart & Jiongmin Yong, Optimal control for degenerate parabolic equations with logistic growth

Suzanne Lenhart, Optimal control of a convective-diffusive fluid problem