ON THE SLOW MOTION OF THE INTERFACE
OF LAYERED SOLUTIONS TO THE
SCALAR GINZBURG–LANDAU EQUATION

By

Fernando Reitich

IMA Preprint Series # 714
November 1990
ON THE SLOW MOTION OF THE INTERFACE OF LAYERED SOLUTIONS TO THE SCALAR GINZBURG–LANDAU EQUATION

BY FERNANDO REITICH†

1. Introduction. In this paper we consider the scalar Ginzburg–Landau equation,

\[u_t - \epsilon^2 u_{xx} - f(u) = 0 \quad , \quad x \in [0,1] \] (1.1)

subject to the boundary-initial conditions

\[u_x(0,t) = u_x(1,t) = 0 \quad , \] (1.2)

\[u(x,0) = u_0(x) \] (1.3)

and where \(f \) is the derivative of a bistable potential; more precisely, we require that

\[
\begin{align*}
&f \in C^2(\mathbb{R}) , \\
&f \text{ is odd,} \\
&f \text{ has exactly three zeros at } u = 0, \pm 1, \\
&f'(\pm 1) < 0 \quad , \quad f'(0) > 0.
\end{align*}
\] (1.4)

Our objective is to analyze the behavior of solutions of (1.1)-(1.3) for small \(\epsilon > 0 \), when the initial condition \(u_0 \) has a transition layer structure, i.e. \(u_0 \approx \pm 1 \) except near a transition point. (For simplicity, we shall only consider the case where \(u_0 \) has only one transition point.)

It was proved in [1],[14] that the number of zeros of the solution of (1.1)-(1.3) is nonincreasing with time, so that, at least for small time, \(u \) has a unique zero \(z(t) \) at time \(t \). A formal analysis due to J.Neu (see [5]) predicts that \(u \) will preserve its layer structure and that \(z(t) \) will move according to the equation

\[\dot{z}(t) = -C_0 \epsilon \left\{ e^{-\mu z(t)/\epsilon} - e^{-\mu(1-z(t))/\epsilon} \right\} \] (1.5)

where \(C_0, \mu > 0 \) are constants depending only on \(f \). In particular, (1.5) implies that the motion is extremely slow and that the layered shape of \(u_0 \) will be preserved for periods of time which are exponentially large in \(\epsilon \).

Rigorous justifications of Neu’s conclusions have been the object of several papers, in particular Fusco and Hale [12], Carr and Pego [6] and Bronsard and Kohn [3]; all these articles study solutions having finitely many transition points.

†School of Mathematics, University of Minnesota, Minneapolis, MN 55455
The main idea in [12] is to construct a manifold $\mathcal{M} \subset H^1$ which approximates the “global attractor” of the semiflow defined by equation (1.1), i.e. the union of the unstable manifolds of the equilibria. This slow motion manifold \mathcal{M} can be explicitly computed. However, it is not invariant under (1.1); further, no error estimates are presented in [12] between functions on \mathcal{M} and actual solutions.

Carr and Pego [6] use another approach: they construct a slow channel Z within which solutions behave essentially according to the predictions of Neu. Based on energy estimates, they also prove that Z attracts nearby solutions. Further, if the initial data lie in Z, the transition points move approximately according to (1.5). In particular, if x_0 is the unique zero of u_0, then u_0 must satisfy

$$\|u_0 - W^0\|_{L^\infty} \leq C e^{-\mu_2 l_0/\epsilon}, \quad x_0 \geq M \epsilon, \quad C, M \text{ const.}$$

(1.6)

where W^0 is a given profile (depending on u_0, ϵ) and $l_0 = \min\{x_0, (1 - x_0)\}$. They also prove, in this case, that the solution u preserves its layered structure at least until $\min\{z(t), (1 - z(t))\}$ becomes $O(\epsilon)$.

The method in [3] is based on the derivation of a lower bound for the energy of a function with a finite number N of transition points. The authors show that the transition points do not move “appreciably” (i.e. by a positive constant) unless t is very large ($t = O(\frac{1}{\epsilon^{k+1}})$) if the energy of the initial condition does not exceed the minimum energy for functions having N transition points, by more than ϵ^k). Although the results in [3] are weaker than those in [6],[12], since they do not describe the motion of the interface, the approach in that paper is more elementary and it also applies to Dirichlet boundary conditions.

In this paper we present another approach to the problem. Our method consists of a careful construction of upper and lower solutions for (1.1)-(1.3) which will capture the expected behavior of the actual solution. These super and subsolutions have the form

$$v = U + \tilde{V}$$

(1.7)

where U is a perturbation of a travelling wave solution of (1.1). The function \tilde{V} is a higher order term which is constructed as a perturbation of V, where V is the highest order term in the approximate solution described in [12].

Our method is far more elementary than [6],[12], since it only involves the construction of super and subsolutions. This allows us to handle a larger class of initial conditions; at the same time, it can be easily modified to obtain results like those in [3] (at least for Neumann boundary conditions). Finally, since we closely follow the constructions in [12], our method can be interpreted as providing “error estimates” for the work of Fusco and Hale.

In §2 we state some results about travelling wave solutions of equations of the type (1.1) (most of which are well-known). These results will be needed to construct the principal
part U of the super and subsolutions. Section 3 is devoted to the construction of \tilde{V} and to the derivation of some estimates on it. The final section, $\S 4$, contains the complete construction of the upper and lower solutions, v_u, v_l, as well as the proof of the fact that

$$v_l \leq u \leq v_u \quad (1.8)$$

for exponentially large periods of time. Our final results are stated in two theorems under different assumptions on the initial data, where, for definiteness, we assume

$$0 < x_0 < \frac{1}{2}.$$

In Theorem 4.2 we assume that

$$\left| u_0(x) - U^0 \left(\frac{x - x_0}{\epsilon} \right) \right| \leq \delta_0 \left\{ e^{-\mu(1-\gamma)x/\epsilon} + e^{-\mu x_0 \frac{(1-x)}{(1-x_0)}/\epsilon} \right\},$$

$$x \in [0,1], x_0 \geq M_1 \epsilon, \quad (1.9)$$

while in Theorem 4.4 we assume the stronger condition

$$\left| u_0(x) - \left(U^0 \left(\frac{x - x_0}{\epsilon} \right) + V(x_0, x) \right) \right| \leq \delta_1 e^{-\mu x_0 / \epsilon} \left\{ e^{-\mu x/\epsilon} + e^{-\mu x_0 \frac{(1-x)}{(1-x_0)}/\epsilon} \right\},$$

$$x \in [0,1], x_0 \geq K_0 \epsilon |\ln \epsilon|, \quad (1.10)$$

where γ is any constant, $0 < \gamma < \frac{1}{2}$, and $\delta_0 = \delta_0(\gamma)$, M_1, δ_1, K_0 are given constants. The function U^0 is the unique travelling wave solution of (1.1) satisfying

$$U^0(\pm \infty) = \pm 1, \quad U^0(0) = 0,$$

and V is the function defined in [12], which is exponentially small throughout the interval $[0,1]$. Notice that the right hand side of (1.10) is smaller than $e^{-\mu x_0 / \epsilon}$ times the right hand side of (1.9) and that both of them majorize the right hand side of (1.6), for small $\epsilon > 0$.

The explicit construction of v_u, v_l satisfying (1.8) yields the following conclusions:

(i) Under assumption (1.9),

$$v_u - v_l = O(\epsilon) \quad (1.11)$$

as long as t is such that $z(t) > \frac{(1+\gamma)}{2} x_0$. Furthermore, the time it takes for $z(t)$ to become $O(\epsilon)$ can be estimated as in [6];

(ii) Under assumption (1.10), (1.11) holds as long as

$$z(t) \geq K_0 \epsilon |\ln \epsilon|.$$
Finally, we remark that the behavior of solutions of (1.1)-(1.3) changes dramatically in higher space dimensions. In fact, if we replace $\epsilon^2 u_{xx}$ by $\epsilon^2 \Delta u$ in (1.1), u_x in (1.2) by $\frac{\partial u}{\partial \nu}$ (normal derivative of u) and $[0,1]$ by $\Omega \subset \mathbb{R}^n$, then the transition hypersurface Γ moves according to the law

$$v = \epsilon^2 \kappa$$

where v is the normal velocity and κ the mean curvature of Γ (see e.g. [4],[7],[8],[9]).

2. Properties of travelling wave solutions. A simple matched asymptotic analysis of equation (1.1) yields the following conclusion (see e.g. [10]):

if x_0 is the unique zero of the initial condition u_0 and $u_0 \approx 1$ for $x > x_0 + M\epsilon$, $u_0 \approx -1$ for $x < x_0 - M\epsilon$, then u preserves the layered structure of u_0; in fact, a first order approximation for u near the internal layer is given by

$$U\left(\frac{x - x(t)}{\epsilon}\right)$$ (2.1)

where

$$\dot{x} = v_0 , \quad x(0) = x_0$$ (2.2)

and (U, v_0) is the unique solution of

$$U'' + v_0 U' + f(U) = 0 , \quad x \in \mathbb{R} ,$$

$$U(\pm \infty) = \pm 1 , \quad U(0) = 0.$$ (2.3) (2.4)

Furthermore, since f is odd, it is easy to verify that

$$v_0 = 0$$ (2.5)

and also (at least formally) that the approximation (2.1),(2.2),(2.5) is valid up to any order in ϵ.

Based on this fact, we expect to find upper and lower solutions of (1.1) whose principal part near an internal layer is given by

$$U(\beta, \frac{x - z(t)}{\epsilon}) \quad (\beta = \beta(x,t))$$ (2.6)

where $U(\beta, x)$ satisfies

$$U'' + v(\beta)U' + f(U) - \beta = 0 , \quad x \in \mathbb{R} ,$$

$$U(\beta, \pm \infty) = h_{\pm}(\beta) ,$$ (2.7) (2.8)
\[U(\beta, 0) = 0. \]

(2.9)

Here, \(\frac{\partial}{\partial x} \), \(h_-(\beta) < h_0(\beta) < h_+(\beta) \) are the three zeros of \(f(u) - \beta \) and \(v(\beta) \) is the unique constant that guarantees the existence of \(U \) satisfying (2.7)-(2.9) (see Lemma 2.1). Notice that, since \(f'(\pm 1), f'(0) \neq 0 \), the functions \(h_-, h_0, h_+ \) are well defined if \(\beta \) is sufficiently small, say

\[|\beta| < \rho_1, \quad \rho_1 > 0. \]

(2.10)

The following lemma states the properties of \(U(\beta, x) \) that will be needed later to construct super and subsolutions of (1.1)-(1.3) (see §4).

Lemma 2.1. Let \(F \) be defined by

\[F'(u) = -2f(u), \quad F(\pm 1) = 0 \]

(2.11)

and write

\[f'(\pm 1) \equiv -\mu^2, \quad \int_{0}^{1} F(u)^{1/2} du = \int_{-1}^{0} F(u)^{1/2} du \equiv K \]

(2.12)

\[K_1 \equiv \exp \left\{ \mu \int_{0}^{1} F(u)^{-1/2} \left(1 - \frac{F(u)^{1/2}}{\mu(1-u)} \right) du \right\}. \]

Then,

(i) there exists a unique solution \((U(\beta, x), v(\beta))\) of (2.7)-(2.9);

(ii) the solution \((U, v)\) satisfies

\[U'(\beta, x) > 0, \quad x \in \mathbb{R}, \]

(2.13)

\[v(\beta) = \beta (h_+(\beta) - h_-(\beta)) \left(\int_{-\infty}^{\infty} (U'(\beta, x))^2 dx \right)^{-1}; \]

(2.14)

(iii) there exists \(\rho_2, 0 < \rho_2 \leq \rho_1 \), such that, for \(|\beta| < \rho_2 \),

\[v, U(\cdot, x) \in C^2, \quad U(\beta, \cdot), \frac{\partial U}{\partial \beta}(\beta, \cdot), \frac{\partial^2 U}{\partial \beta^2}(\beta, \cdot) \in C^2 \]

(2.15)

with derivatives bounded uniformly in \((\beta, x), x \in \mathbb{R}\);

(iv) given \(r > 0 \), there exist constants \(M_0, \rho_0, 0 < \rho_0 \leq \rho_2 \), such that, if \(|\beta| < \rho_0 \), we have

\[\frac{\partial U}{\partial \beta} - h_+'(\beta), \frac{\partial^2 U}{\partial x \partial \beta}, \frac{\partial^3 U}{\partial x^2 \partial \beta} = O \left(e^{-\mu(1-r)x} \right), \quad x > M_0; \]

(2.16)

\[\frac{\partial U}{\partial \beta} - h_-'(\beta), \frac{\partial^2 U}{\partial x \partial \beta}, \frac{\partial^3 U}{\partial x^2 \partial \beta} = O \left(e^{\mu(1-r)x} \right), \quad x < -M_0; \]

(2.17)
(v) if $\beta = 0$, then

\[
1 - U, \frac{U'}{\mu}, -\frac{U''}{\mu^2} = K_1 e^{-\mu x} \left(1 + O\left(e^{-\mu x}\right)\right), \quad x > 0,
\]

\[
1 + U, \frac{U'}{\mu}, \frac{U''}{\mu^2} = K_1 e^{\mu x} \left(1 + O\left(e^{\mu x}\right)\right), \quad x < 0,
\]

\[
\frac{\partial U}{\partial \beta} + \frac{1}{\mu^2}, \frac{\partial U'}{\partial \beta} = O \left((|x| + 1)e^{-\mu |x|}\right), \quad x \in \mathbb{R}
\]

and

\[
v'(0) = \frac{1}{K}.
\]

Proof. Assertion (i) was proved in [13] and [2; Thm.4.1], while (2.13) follows from [11]. The representation (2.14) for $v(\beta)$ can be obtained by multiplying (2.7) by U' and integrating on the whole real line.

The statements (iii) and (iv) follow from the analysis in [10; Appendix].

When $\beta = 0$, (2.7)-(2.9) become

\[
U'' + f(U) = 0
\]

\[
U(\pm \infty) = \pm 1, \quad U(0) = 0.
\]

Upon integrating (2.22), (2.18) and (2.19) easily follow.

Finally, differentiating (2.7)-(2.9) with respect to β and setting $\beta = 0$, $\frac{\partial U}{\partial \beta}(0, x) = \phi(x)$ we get

\[
\phi'' + f'(U(0, x))\phi = 1 - v'(0)U'(0, x),
\]

\[
\phi(\pm \infty) = -\frac{1}{\mu^2}, \quad \phi(0) = 0.
\]

To compute ϕ, make the change of variables

\[
v = U(0, x)
\]

and use (2.11) and the fact that

\[
U'(0, x) = F(U(0, x))^{1/2}.
\]

The equation for $\phi = \phi(v)$ becomes

\[
(F\phi' + f\phi)' = 1 - v'(0)F^{1/2}
\]
with
\[\phi(\pm 1) = -\frac{1}{\mu^2}, \quad \phi(0) = 0. \tag{2.27} \]

Since \(\phi \) is bounded (from (iii)), the unique solution of (2.26),(2.27) is given by
\[\phi(v) = \frac{F(v)^{1/2}}{K} \int_0^v F(s)^{-3/2} \left(\int_0^s (K - F(r)^{1/2}) dr \right) ds \tag{2.28} \]
and \(v'(0) = \frac{1}{K} \) as asserted in (2.21). Now, (2.20) is an easy consequence of (2.28) and the properties of \(v = U(0, x) \) in (2.18),(2.19). \(\square \)

3. Approximation of layered solutions. As discussed at the beginning of §2, we expect (2.1),(2.2),(2.5) to be a good approximation of the solution \(u(x, t) \) of (1.1)-(1.3) near \(x = x_0 \) as long as
\[t = O\left(\frac{1}{\epsilon^k}\right) \quad \text{for some } k > 0. \tag{3.1} \]

Furthermore, since
\[U'(0, \frac{x-x_0}{\epsilon}) \bigg|_{x=0} = O \left(e^{-\mu x_0/\epsilon}\right), \]
\[U'(0, \frac{x-x_0}{\epsilon}) \bigg|_{x=1} = O \left(e^{-\mu(1-x_0)/\epsilon}\right), \tag{3.2} \]
\(U(0, \frac{x-x_0}{\epsilon}) \) will be very close to \(u(x, t) \) throughout the interval \([0, 1]\), provided \(t \) satisfies (3.1).

However, (3.2) also shows that, in general, we cannot expect \(U(0, \frac{x-x_0}{\epsilon}) \) to continue to approximate \(u \) for “larger” time than in (3.1), e.g. for \(t \geq e^{\rho t}, \rho > 0 \).

A formal calculation (see [5]) shows that for exponentially large times, an approximation of \(u \) is given by
\[U(0, \frac{x-z(t)}{\epsilon}) \]
where
\[\dot{z} = p(\overline{z}) \equiv -\frac{\epsilon \mu^2}{K} K_1^2 \left\{ e^{-\mu^2 z/\epsilon} - e^{-\mu^2(1-z)/\epsilon} \right\}. \tag{3.3} \]

Furthermore, a higher order approximation was computed in [12]: it has the form
\[U(0, \frac{x-z(t)}{\epsilon}) + V(z, x) \tag{3.4} \]
where \(V = V^\epsilon \) and \((V, z) \) is the solution of
\[\dot{z} = c(z) \quad \text{,} \tag{3.5} \]
\[\varepsilon^2 V_{xx} + f'(U(0, \frac{x - z}{\varepsilon}))V = -\frac{c(z)}{\varepsilon} U'(0, \frac{x - z}{\varepsilon}) , \quad x \in [0, 1] \quad (3.6a) \]

\[V_x = -\frac{1}{\varepsilon} U'(0, \frac{x - z}{\varepsilon}) , \quad x = 0, 1 \quad (3.7) \]

\[\int_0^1 V(z, x) U'(0, \frac{x - z}{\varepsilon}) dx = 0. \quad (3.6b) \]

Notice that \(c(z) \) should be treated as an unknown for the problem (3.6a,b),(3.7).

This section is devoted to the study of the function \(V \) and some perturbations of it which will be used as the highest order term of the upper and lower solutions to be constructed in the next section.

We begin by recalling the main result of [12]. We state it in a slightly different form although the proof is exactly the same. For simplicity, we write

\[U^0(x) \equiv U(0, x) \quad (3.8) \]

and, for definiteness, assume

\[0 < z < \frac{1}{2} \quad (3.9) \]

Theorem 3.1 ([12;p.86]). Let \(a, b \in \mathbb{R} \). There exists a constant \(M_1 \) such that, if

\[z > M_1 \varepsilon \quad , \quad (3.10) \]

then there is a unique solution \((V, c)\) of (3.6a,b) satisfying

\[V_x(z, 0) = -\frac{a}{\varepsilon} U^0_x \left(\frac{-z}{\varepsilon} \right) , \quad V_x(z, 1) = -\frac{b}{\varepsilon} U^0_x \left(\frac{1 - z}{\varepsilon} \right) . \quad (3.6c) \]

The functions \(V, c \in C^1 \) and \(V(z, \cdot) \in C^2 \). Moreover,

\[V(z, x) = \left[F^{1/2}(\alpha + \beta \int_0^v F^{-3/2} - \frac{c}{\varepsilon} \int_0^v (F^{-3/2} \int_0^s F^{1/2}) ds) \right]_{v=U^0((x-z)/\varepsilon)} \quad (3.11) \]

\[\equiv V(z, v)|_{v=U^0((x-z)/\varepsilon)} \quad , \]

\[\frac{c(z)}{\varepsilon} = -a(1 + d(z/\varepsilon)) \left\{ p_1(z/\varepsilon) + \frac{\mu^2 K^2_1}{K} e^{-\mu^2 z/\varepsilon} (1 + d_3(\varepsilon/\varepsilon))(1 + d_4((1 - z)/\varepsilon)) \right\} \]

\[+ b(1 + d(z/\varepsilon)) \left\{ p_2(z/\varepsilon) + \frac{\mu^2 K^2_1}{K} e^{-\mu^2(1-z)/\varepsilon} (1 + d_3(\varepsilon/\varepsilon))(1 + d_4(z/\varepsilon)) \right\} \quad (3.12) \]

where

\[\alpha = -a e^{-\mu^2 z/\varepsilon} \left(\frac{\mu^2 K^2_1}{2K} z + O(1) \right) + b e^{-\mu^2(1-z)/\varepsilon} \left(\frac{\mu^2 K^2_1}{2K} \frac{(1 - z)}{\varepsilon} + O(1) \right) \quad , \quad (3.13) \]
\[
\beta = a(1 + d(z/\epsilon)) \left\{ p_3(z/\epsilon) - \mu^2 K_1^2 e^{-\mu z/\epsilon} (1 + d_3(z/\epsilon))(1 + d_5((1-z)/\epsilon)) \right\} \\
+ b(1 + d(z/\epsilon)) \left\{ p_4(z/\epsilon) - \mu^2 K_1^2 e^{-\mu^2(1-z)/\epsilon} (1 + d_3(z/\epsilon))(1 + d_2(z/\epsilon)) \right\}
\]
(3.14)

and

\[
p_i(s) = O \left(\frac{e^{-\mu^2/s}}{\epsilon} \right), \quad d(s), \, d_j(s) = O(e^{-\mu s})
\]
(3.15)

with \(p_i \), \(d_j \) independent of \(a, b \).

Remark 3.2. Notice that the principal part of \(c(z) \) in (3.12) coincides with \(p(z) \) (defined in (3.3)) when \(a = b = 1 \).

Corollary 3.3. Under the assumption (3.10), the function \(V \) in (3.11) satisfies

\[
|V(z, x)| \leq \left\{ \left| a \left[e^{-\mu(2z+(1-z))/\epsilon} \frac{1}{1-v} + e^{-\mu^2 z/\epsilon} \frac{1}{1+v} \right] + \left| b \left[\left(e^{-\mu^2(1-z)/\epsilon} + e^{-\mu^2/\epsilon} \right) \frac{1}{1-v} + \left(e^{-\mu(2(1-z)+z)/\epsilon} + e^{-\mu^2/\epsilon} \right) \frac{1}{1+v} + \frac{e^{-\mu^2(1-z)/\epsilon}}{\epsilon(1-v^2)} \right] \right| \right\}_{v=U^0((x-z)/\epsilon)}.
\]
(3.16)

Proof. Let

\[
L = L(v) \equiv F(v)^{1/2} \int_0^v F^{-3/2} , \quad M = M(v) \equiv F(v)^{1/2} \int_0^v \left(F^{-3/2} \int_0^s F^{1/2} \right) ,
\]
(3.17)

Then, (see [12])

\[
L \text{ is odd } , \quad M \text{ is even}
\]
(3.18a)

\[
L, \frac{M}{K} = \frac{1}{2\mu^2} v^{-1} (1+O(1-v)) \quad \text{for } v \text{ near } 1,
\]
(3.18b)

and

\[
V = \left(F^{1/2} \alpha + \beta L - \frac{c}{\epsilon} M \right) \Big|_{v=U^0((x-z)/\epsilon)}.
\]
(3.19)

On the other hand, using (3.12),(3.14), we get

\[
\beta - \frac{cK}{\epsilon} = aO \left(e^{-\mu(2z+(1-z))/\epsilon} \right) + bO \left(e^{-\mu^2(1-z)/\epsilon} + \frac{e^{-\mu^2/\epsilon}}{\epsilon} \right)
\]
(3.20a)

and

\[
-\beta - \frac{cK}{\epsilon} = aO \left(e^{-\mu^2 z/\epsilon} \right) + bO \left(e^{-\mu^2(1-z)+z)/\epsilon} + \frac{e^{-\mu^2/\epsilon}}{\epsilon} \right).
\]
(3.20b)

Now, (3.16) follows from (3.13) and (3.18)-(3.20). \qed
Next, we prove existence, uniqueness and certain properties of a particular perturbation \tilde{V} of V. The main feature that we look for in constructing \tilde{V} is that $U + \tilde{V}$ should approximate a solution of (1.1),(1.2) even better than $U + V$. For this, let ρ be a small number, say $0 < \rho < \frac{1}{4}$, and let $h : \mathbb{R} \to \mathbb{R}$ be a smooth function satisfying

$$ h(v) = \begin{cases} 1, & \text{if } v \leq -\rho, \\ 0, & \text{if } v \geq 0. \end{cases} $$

(3.21)

Let $\chi : \mathbb{R} \to \mathbb{R}$ be a smooth function such that

$$ \chi(z) = \begin{cases} 0, & \text{if } z \geq \frac{2}{5} - \frac{1}{3} \left(\frac{2}{5} - \frac{1}{3} \right) = \frac{17}{45}, \\ 1, & \text{if } z \leq \frac{1}{3} + \frac{1}{3} \left(\frac{2}{5} - \frac{1}{3} \right) = \frac{16}{45}. \end{cases} $$

(3.22)

and set

$$ H(v, z) = 1 + \chi(z)(h(v) - 1). $$

(3.23)

Notice that

$$ H(v, z) = \begin{cases} 1 - \chi(z), & \text{if } v \geq 0, \\ 1, & \text{if } v \leq -\rho. \end{cases} $$

(3.24a)

Also note that

$$ z \leq \frac{17}{45} \quad \text{implies} \quad 2(1 - l)(1 - z) > 3(1 + l)z $$

(3.24b)

and that

$$ 1 - \chi(z) \equiv 0 \quad \text{if} \quad 2(1 - l)z < (1 + l)(1 - z), $$

(3.24c)

where l is (fixed) small number, e.g. $0 < l < \frac{1}{40}$.

Consider the problem

$$ \epsilon^2 \tilde{V}_{xx} + f'(U^0 \left(\frac{x - z}{\epsilon} \right))\tilde{V} = -\frac{\tilde{c}(z)}{\epsilon} U^0_x \left(\frac{x - z}{\epsilon} \right) $$

$$ - \frac{1}{2} f''(U^0 \left(\frac{x - z}{\epsilon} \right)) H(U^0 \left(\frac{x - z}{\epsilon} \right), z)(V(z, x))^2, \quad x \in [0, 1], $$

(3.25a)

$$ \tilde{V}_x = -\frac{a}{\epsilon} U^0_x \left(\frac{-z}{\epsilon} \right), \quad \tilde{V}_x = -\frac{b}{\epsilon} U^0_x \left(\frac{1 - z}{\epsilon} \right), $$

(3.25b)

$$ \int_0^1 \tilde{V}(z, x) U^0_x \left(\frac{x - z}{\epsilon} \right) dx = 0, $$

(3.25c)

where $a, b \in \mathbb{R}$, V is the solution of (3.6) and H is defined in (3.23).
THEOREM 3.4. Fix a small number \(r \)

\[
0 < r < \frac{l}{10} \quad (l \text{ appearing in (3.24)}) \tag{3.26}
\]

and let

\[
a = \lambda_1^0 + \lambda_1 e^{\mu r z / \epsilon} \tag{3.27a}
\]

\[
b = \lambda_2^0 + \lambda_2 e^{\mu r (1-z) / \epsilon} \tag{3.27b}
\]

where \(\lambda_1^0, \lambda_2^0 \) are constants bounded independently of \(\epsilon \) and

\[
|\lambda_1|, |\lambda_2| \leq \lambda \leq 1 \quad (\lambda \text{ const.}) \tag{3.28}
\]

There exists a constant \(M_2 > 0 \) such that, if

\[
z > M_2 \epsilon, \tag{3.29}
\]

then there is a unique solution \((\tilde{V}, \tilde{c}) \) of (3.25).

The functions \(\tilde{V}, \tilde{c} \in C^1 \) and \(\tilde{V}(z, \cdot) \in C^2 \) and they satisfy:

\[
\tilde{V}(z, x) = \left[F(v)^{1/2} \left(\tilde{\alpha}(z) + \tilde{\beta}(z) \int_0^v F(s)^{-3/2} ds - \frac{\tilde{\alpha}(z)}{\epsilon} \int_0^v F(s)^{-3/2} \int_0^{\omega} F(\omega)^{1/2} d\omega \right) ds \right]
\]

\[
- \int_0^v F(s)^{-3/2} \int_0^{\omega} \frac{F''(\omega)}{2} H(\omega, z) V(z, \omega)^2 d\omega \right) ds \right] \bigg|_{\omega = U^0((x-z)/\epsilon)} \tag{3.30}
\]

\[
\equiv \tilde{V}(z, v) \bigg|_{v = U^0((x-z)/\epsilon)} ,
\]

\[
\tilde{\alpha} = \alpha + \alpha_0 , \quad \tilde{\beta} = \beta + \beta_0 , \quad \tilde{c} = \tilde{c} + c_0 , \tag{3.31}
\]

where

\[
\alpha_0 = r \left(\frac{3z}{\epsilon} \right) \left(1 + O(e^{-\mu z / \epsilon}) \right) , \tag{3.32a}
\]

\[
\beta_0 = r \left(\frac{3z}{\epsilon} \right) \left\{ - \frac{K}{2\mu K_1^2} e^{-\mu z / \epsilon} (1 + d_6(z/\epsilon))(1 + d_5((1-z)/\epsilon)) + \frac{K}{2\mu K_1^2} e^{-\mu z / \epsilon} (1 + d_2(z/\epsilon))(1 + d_7((1-z)/\epsilon)) \right\} , \tag{3.32b}
\]

\[
\frac{c_0}{\epsilon} = r \left(\frac{3z}{\epsilon} \right) \left\{ - \frac{e^{-\mu z / \epsilon}}{2\mu K_1^2} (1 + d_6(z/\epsilon))(1 + d_4((1-z)/\epsilon)) + \frac{e^{-\mu z / \epsilon}}{2\mu K_1^2} (1 + d_1(z/\epsilon))(1 + d_7((1-z)/\epsilon)) \right\} , \tag{3.32c}
\]
and $\bar{\alpha}, \bar{\beta}, \bar{c}$ are defined as α, β, c in (3.12)-(3.14) but with

\[a \text{ replaced by } a + q_1(z/\epsilon) \]

\[b \text{ replaced by } b + (1 - \chi(z)) \left\{ q_2((1 - z)/\epsilon) + \left(\frac{z}{\epsilon}\right)^2 e^{-\mu(3z - 2(1 - z))}/\epsilon q_3(z/\epsilon) \right\} . \tag{3.33} \]

Here,

\[r(s), q_i(s) = O(e^{-\mu s} + \lambda e^{-\mu(1 - 2r)s}) \tag{3.34a} \]
\[d_6(s), d_7(s) = O(e^{-\mu s}) \quad \text{(independent of } a, b) \tag{3.34b} \]

and d_1, \ldots, d_5 are the functions appearing in Theorem 3.1.

Proof. The proof uses the same ideas as the proof of Theorem 3.1. As in [12] we make the change of variables

\[v = U^0 \left(\frac{z - z}{\epsilon} \right) \tag{3.35} \]

to transform (3.25) into

\[(F\bar{V}' + f\bar{V})' = -\frac{\bar{c}}{\epsilon} F^{1/2} - gHV^2 \tag{3.36a} \]

\[\bar{V}'(v^0) = -a \quad \text{and} \quad \bar{V}'(v^*) = -b \tag{3.36b} \]

\[\int_{v^0}^{v^*} \bar{V} dv = 0 \tag{3.36c} \]

where \(\dot{v} = \frac{d}{dv}, g(v) = \frac{1}{2} \left(\frac{d^2f}{dv^2} \right)(v) \),

\[v^0 = U^0 \left(\frac{z}{\epsilon} \right) \quad \text{and} \quad v^* = U^0 \left(\frac{1 - z}{\epsilon} \right). \tag{3.37} \]

From (3.36a), it is clear that \(\bar{V} \) is given by (3.30) for some constants $\tilde{\alpha}, \tilde{\beta}, \tilde{c}$.

Let

\[N = N(v) \equiv F(v)^{1/2} \int_0^v F(s)^{-3/2} \left(\int_0^s g(\omega)H(\omega, z)V(z, \omega)^2 d\omega \right) ds \tag{3.38} \]

and notice that

\[F(v)^{1/2} = \mu(1 - v)(1 + O(1 - v)), \quad v \text{ near } 1; \quad F^{1/2} \text{ is even.} \tag{3.39} \]
If a, b satisfy (3.27), then (3.16) implies the existence of a constant $C > 0$ such that

$$|V(z, x)| \leq C \left\{ (1 + \lambda e^{\mu r z / \epsilon}) \left[e^{-\mu(2z+(1-z))/\epsilon} \frac{1}{1-v} + e^{-\mu^2 z / \epsilon} \frac{1}{1+v}
ight] + e^{-\mu^2 z / \epsilon} \frac{z}{\epsilon} \right\} + (1 + \lambda e^{\mu^2(1-z) / \epsilon}) e^{-\mu^2(1-z) / \epsilon} \frac{1}{1-v} \right\}$$

and therefore

$$V^2 \leq C \left\{ (1 + \lambda e^{\mu^2 r z / \epsilon}) e^{-\mu^4 z / \epsilon} \left(\frac{z}{\epsilon} \right)^2 + \frac{1}{(1-v)^2} \right\} + (1 + \lambda e^{\mu^2 r(1-z) / \epsilon}) e^{-\mu^4(1-z) / \epsilon} \frac{1}{(1-v)^2} , \quad v \geq 0 ,$$

$$V^2 \leq C(1 + \lambda e^{\mu^2 r z / \epsilon}) e^{-\mu^4 z / \epsilon} \left(\frac{z}{\epsilon} \right)^2 + \frac{1}{(1+v)^2} , \quad v \leq 0 .$$

Thus, using the definition of H, (3.38)-(3.40) imply the following estimates:

$$N(v, z) = (1 - \chi(z)) \left\{ O \left(e^{-\mu^4 z / \epsilon} \left(\frac{z}{\epsilon} \right)^2 (1 + \lambda e^{\mu^2 r z / \epsilon}) \right) \frac{1}{(1-v)^2} + O \left(e^{-\mu^4(1-z) / \epsilon} (1 + \lambda e^{\mu^2 r(1-z) / \epsilon}) \frac{1}{(1-v)^2} \right) \right\} , \quad v \leq 0 ,$$

$$N'(v, z) = (1 - \chi(z)) \left\{ O \left(e^{-\mu^4 z / \epsilon} \left(\frac{z}{\epsilon} \right)^2 (1 + \lambda e^{\mu^2 r z / \epsilon}) \right) \frac{1}{(1-v)^2} + O \left(e^{-\mu^4(1-z) / \epsilon} (1 + \lambda e^{\mu^2 r(1-z) / \epsilon}) \frac{1}{(1-v)^3} \right) \right\} , \quad v \leq 0 ,$$

and

$$\int_{v_0}^{v^*} N(v, z) dv = (1 - \chi(z)) \left\{ O \left(e^{-\mu^4 z / \epsilon} \left(\frac{z}{\epsilon} \right)^2 (1 + \lambda e^{\mu^2 r z / \epsilon}) \right) |\ln(1 - v^*)| + O \left(e^{-\mu^4(1-z) / \epsilon} (1 + \lambda e^{\mu^2 r(1-z) / \epsilon}) \frac{1}{(1-v^*)} \right) \right\} , \quad (3.41c)$$

where $I_{v \leq 0} = \text{characteristic function of } \{v \leq 0\}$.

13
Now, using (3.30),(3.41) and the asymptotic formulas for the terms in \tilde{V} (see [12]), we may write the conditions (3.25b,c) in the form

$$A \left(\begin{array}{c} \tilde{a} \\
\tilde{b} \\
\tilde{c}/\epsilon
\end{array} \right) = \left(\begin{array}{c} -\tilde{a} \\
-\tilde{b} \\
\tilde{c}/\epsilon
\end{array} \right),$$

where

$$A = \begin{pmatrix}
\mu(1 + d_6(z/\epsilon)) & \frac{e^{\mu^2 z/\epsilon}}{(2\mu^2 K_1^2)}(1 + d_1(z/\epsilon)) & \frac{K e^{2 \mu^2 z/\epsilon}}{(2\mu^2 K_1^2)}(1 + d_2(z/\epsilon)) \\
-\mu(1 + d_7((1 - z)/\epsilon)) & \frac{e^{\mu^2 (1 - z)/\epsilon}}{(2\mu^2 K_1^2)}(1 + d_4((1 - z)/\epsilon)) & -\frac{K e^{2 \mu^2 (1 - z)/\epsilon}}{(2\mu^2 K_1^2)}(1 + d_5((1 - z)/\epsilon)) \\
2K(1 + d_3(z/\epsilon)) & \frac{(1 - 2z)}{(2\mu^2)} + O(1) & -\frac{K}{(2\mu^2)} + O(1)
\end{pmatrix},$$

and

$$\tilde{a} = a - N'(v_0, z) \equiv a + q_1(z/\epsilon),$$

$$\tilde{b} = b - N'(v^*, z) \equiv b + (1 - \chi(z)) \left\{ q_2((1 - z)/\epsilon) + \left(\frac{z}{\epsilon}\right)^2 e^{-\mu(3z - 2(1 - z))/\epsilon} q_3(z/\epsilon) \right\},$$

$$\tilde{c} = \int_{v_0}^{v^*} N dv = O\left(e^{-\mu^2 z/\epsilon}(1 + \lambda e^{2 \mu^2 z/\epsilon})\right).$$

Notice that

$$(\det(A))^{-1} = -\frac{(\mu^2 K_1^2)^2}{K^2} e^{-\mu^2 z/\epsilon}(1 + d(z/\epsilon)),$$

where $d(s)$ is the function in Theorem 3.1.

Let α_0, β_0, c_0 be defined by the equation

$$A \left(\begin{array}{c} \alpha_0 \\
\beta_0 \\
c_0/\epsilon
\end{array} \right) = \left(\begin{array}{c} 0 \\
0 \\
\tilde{c}/\epsilon
\end{array} \right).$$

Then, by (3.31),

$$A \left(\begin{array}{c} \tilde{\alpha} \\
\tilde{\beta} \\
\tilde{c}/\epsilon
\end{array} \right) = \left(\begin{array}{c} -\tilde{a} \\
-\tilde{b} \\
0
\end{array} \right),$$

that is, $\tilde{\alpha}, \tilde{\beta}, \tilde{c}$ are defined like α, β, c in (3.12)-(3.14) but with a, b replaced by \tilde{a}, \tilde{b}, respectively. Finally, (3.43),(3.44c) and (3.46) immediately yield (3.32) if we choose

$$r(3z/\epsilon) = \tilde{\gamma} \left(-\frac{(\mu^2 K_1^2)^2}{K^2} \right)(1 + d(z/\epsilon)).$$

We now derive the estimates on $(V, c), (\tilde{V}, \tilde{c})$ and their difference, which will be needed in §4.
\textbf{Lemma 3.5.} Let \((V, c)\) be the solution of (3.6), let \((\tilde{V}, \tilde{c})\) be the solution of (3.25) and assume \(a, b\) satisfy (3.27),(3.28). Then:

\[|V| + |\tilde{V}| + \epsilon |V_z| + \epsilon |\tilde{V}_z| = \left\{ \begin{array}{l}
(1 + \lambda \epsilon^{\mu r z / \epsilon}) \left[O(e^{-\mu(2z+(1-z))/\epsilon}) \frac{1}{1-v}
+ O(e^{-2r z / \epsilon}) \frac{1}{1+v} + O(e^{-z \epsilon / \epsilon} \frac{1}{1-v}) \right]
+ (1 + \lambda e^{\mu r (1-z) / \epsilon}) O(e^{-\mu(2(1-z))/\epsilon}) \frac{1}{1-v} \right\} |_{v=U^0((x-z)/\epsilon)} ;
\]

\[\left| \frac{\partial V}{\partial a} \right| + \left| \frac{\partial \tilde{V}}{\partial a} \right| = \left\{ O(e^{-\mu(2z+(1-z))/\epsilon}) \frac{1}{1-v}
+ O(e^{-2z / \epsilon}) \left(1 + \frac{1}{1+v} \right) \right\} |_{v=U^0((x-z)/\epsilon)} ; \]

\[\left| \frac{\partial V}{\partial b} \right| + \left| \frac{\partial \tilde{V}}{\partial b} \right| = \left\{ O(e^{-\mu(1-z) / \epsilon}) + \frac{e^{-2z / \epsilon}}{\epsilon} \frac{1}{1-v}
+ O(e^{-\mu(2(1-z)/\epsilon}) \frac{1}{1-v} + O(e^{-\mu(2(1-z)/\epsilon)}) \right\} |_{v=U^0((x-z)/\epsilon)} ; \]

\[|V - \tilde{V}| = \left\{ \left[(1 + \lambda \epsilon^{\mu r z / \epsilon}) O(e^{-\mu(3z+(1-z))/\epsilon}) + (1 - \chi(z))(\frac{z}{\epsilon})^2 e^{-\mu z / \epsilon} \right]
+ (1 + \lambda e^{\mu r (1-z) / \epsilon}) O(e^{-\mu(1-z)/\epsilon}) \left(\frac{z}{\epsilon} + \frac{1}{1+v} \right) \right\} |_{v=U^0((x-z)/\epsilon)} ; \]

\[|H(U^0, z)V^2 - \tilde{V}^2| = O \left((1 + \lambda \epsilon^{\mu r z / \epsilon}) \left[e^{-\mu(3z+2z)/\epsilon} + \left(\frac{z}{\epsilon} \right)^2 e^{-\mu z / \epsilon} \right] \right) \]

\[+ O(e^{-\mu(3z+(1-z))/\epsilon}) ; \]

\[|c(z)| + |\tilde{c}(z)| = O \left(\epsilon(1 + \lambda \epsilon^{\mu r z / \epsilon}) e^{-\mu z / \epsilon} \right) ; \]

\[|c(z) - \tilde{c}(z)| = O \left(\epsilon(1 + \lambda \epsilon^{\mu r z / \epsilon}) e^{-\mu z / \epsilon} \right) ; \]

and

\[|(c(z) - p(z))/\epsilon| = |a - 1| O \left(e^{-\mu z / \epsilon} \right) + |b - 1| O \left(e^{-\mu(2(1-z)/\epsilon)} \right) \]

\[+ O \left((1 + \lambda \epsilon^{\mu r z / \epsilon}) e^{-\mu z / \epsilon} \right) . \]

Before proving the Lemma, we state an immediate consequence of (3.48),(3.49), which can be obtained using the asymptotic formulas (2.18),(2.19).
COROLLARY 3.6. Under the assumptions of Lemma 3.5, there holds:

\[|V| + |\tilde{V}| + \epsilon|V_z| + \epsilon|\tilde{V}_z| = O \left((1 + \lambda e^{\mu rz/\epsilon}) e^{-\mu z/\epsilon} \right), \quad (3.51a) \]
\[\left| \frac{\partial V}{\partial a} \right| + \left| \frac{\partial \tilde{V}}{\partial a} \right| = O \left(e^{-\mu z/\epsilon} \right), \quad (3.51b) \]
\[\left| \frac{\partial V}{\partial b} \right| + \left| \frac{\partial \tilde{V}}{\partial b} \right| = O \left(e^{-\mu(1-z)/\epsilon} + \frac{e^{-\mu((1-z)+2z)/\epsilon}}{\epsilon} \right) = O \left(e^{-\mu(1-r)(1-z)/\epsilon} \right) \quad (3.51c) \]

and

\[|V - \tilde{V}| = O \left((1 + \lambda e^{\mu rz/\epsilon}) e^{-\mu z/\epsilon} \right). \quad (3.52) \]

Proof of Lemma 3.5. Notice first that the estimates for \(V, \frac{\partial V}{\partial a}, \frac{\partial V}{\partial b} \) follow from (3.16) and the fact that \(V \) and \(c \) are linear in \(a, b \).

Using (3.16) and (3.33), it is clear that to prove the estimate for \(\tilde{V} \), it suffices to prove it for \(W_1 \) where

\[W_1(z, x) = \left(F^{1/2} \alpha_0 + \beta_0 L - \frac{c_0}{\epsilon} M - N \right) \mid_{v = U^0((x-z)/\epsilon)} \quad (3.53) \]

with \(L, M \) defined in (3.17) and \(N \) in (3.38).

Using (3.32) we obtain

\[|\alpha_0| = O \left((1 + \lambda e^{\mu rz/\epsilon}) e^{-\mu z/\epsilon} \right), \quad (3.54a) \]
\[\beta_0 - K \frac{c_0}{\epsilon} = r(3z/\epsilon) O \left(e^{-\mu (2z + (1-z))/\epsilon} + e^{-\mu^2 (1-z)/\epsilon} \right), \quad (3.54b) \]
\[-\beta_0 - K \frac{c_0}{\epsilon} = r(3z/\epsilon) O \left(e^{-\mu z/\epsilon} + e^{-\mu (2(1-z)+z)/\epsilon} \right). \quad (3.54c) \]

Now the estimate (3.48a) for \(W_1 \) follows from (3.53),(3.54), upon using (3.18) and (3.41a). In fact, for \(W_1 \) we obtain

\[|W_1| = O \left((1 + \lambda e^{\mu rz/\epsilon}) e^{-\mu z/\epsilon} \right) \left\{ \left(e^{-\mu (2z+(1-z))/\epsilon} \right) + e^{-\mu^2 (1-z)/\epsilon} \right\} \frac{1}{1-v} \]
\[+ e^{-\mu^2 z/\epsilon} \frac{1}{1+v} + 1 \right\} + (1 - \chi(z)) \left\{ O \left(e^{-\mu^4 z/\epsilon} \frac{z^2}{\epsilon} \right) \frac{1}{1-v} \right\} \]
\[+ (1 + \lambda e^{\mu^2 r(1-z)/\epsilon}) O \left(e^{-\mu^4 (1-z)/\epsilon} \right) \frac{1}{(1-v)^2} \right\}
\[+ O \left(e^{-\mu^4 z/\epsilon} (1 + \lambda e^{\mu^2 rz/\epsilon}) \right) \left(\frac{z}{\epsilon} \right)^2 \frac{1}{1+v} + \frac{1}{(1+v)^2} I_{v \leq 0}. \quad (3.55) \]
Notice that all the terms in the right hand side of (3.55) are dominated by the right hand side of (3.49a), so that

\[|W_1| \text{ is bounded by the right hand side of (3.49a).} \]
(3.56)

Now, we recall that we can write

\[V = \left(\alpha F^{1/2} + \beta L - \frac{c}{\epsilon} M \right) \big|_{v=U^0((x-z)/\epsilon)} \]
(3.57)

and

\[\tilde{V} = \left(\alpha \bar{F}^{1/2} + \bar{\beta} L - \frac{\bar{c}}{\epsilon} M + W_1 \right) \big|_{v=U^0((x-z)/\epsilon)} \]
(3.58)

and also that

\[U_x^0 = F(U^0)^{1/2}. \]
(3.59)

Thus,

\[\epsilon V_z = \left(\epsilon \alpha z F^{1/2} + \epsilon \beta z L - \frac{\epsilon c z}{\epsilon} M \right) \big|_{v=U^0((x-z)/\epsilon)} \]

\[+ \left(\alpha G + \beta D - \frac{c}{\epsilon} E \right) \big|_{v=U^0((x-z)/\epsilon)} \equiv P_1 + P_2 \]
(3.60)

and

\[\epsilon \tilde{V}_z = \left(\epsilon \alpha \bar{z} F^{1/2} + \epsilon \beta \bar{z} L - \frac{\epsilon \bar{c} \bar{z}}{\epsilon} M \right) \big|_{v=U^0((x-z)/\epsilon)} \]

\[+ \left(\alpha \bar{G} + \beta \bar{D} - \frac{\bar{c}}{\epsilon} \bar{E} \right) \big|_{v=U^0((x-z)/\epsilon)} + \left(\frac{dN}{dv} F^{1/2} \right) \big|_{v=U^0((x-z)/\epsilon)} \equiv P_3 + P_4 + P_5 + P_6 + P_7, \]
(3.61)

where

\[G \equiv -\frac{dF^{1/2}}{dv} F^{1/2} = -f, \quad G = -\mu(1 - v)(1 + O(1 - v)) \text{ for } v \text{ near } 1, \quad G \text{ is odd}, \]
(3.62a)

\[D \equiv -\frac{dL}{dv} F^{1/2}, \quad D = -\frac{1}{2\mu}(1 - v)^{-1}(1 + O(1 - v)) \text{ for } v \text{ near } 1, \quad D \text{ is even}, \]
(3.62b)

\[E \equiv -\frac{dM}{dv} F^{1/2}, \quad E = -\mu(1 - v)(1 + O(1 - v)) \text{ for } v \text{ near } 1, \quad E \text{ is odd}. \]
(3.62c)

Due to (3.62), we can proceed as in the proof of Corollary 3.3 to prove (3.48a) for \(P_1, P_2 \), and, using Theorem 3.4, also for \(P_3, P_4 \); the bound for \(P_5, P_6 \) follows arguing as in the proof of the estimate for \(W_1 \) given above. Finally, since

\[\frac{dN}{dv} F^{1/2} = \frac{f}{F^{1/2}} N + \frac{1}{F^{1/2}} \int_0^v gHV^2, \]
(3.63)
we have that $\frac{dN}{dx} F^{1/2}$ satisfies exactly the same estimate as N in (3.41a), and therefore P_7 can be estimated by the right hand side of (3.48a). This completes the proof of (3.48a).

To prove (3.48b) we set

$$W = \frac{\partial \tilde{V}}{\partial a}, \quad \hat{c} = \frac{\partial \tilde{c}}{\partial a}$$

so that

$$\begin{cases}
\epsilon^2 W_{xx} + f'(U^0)W = -\frac{1}{\epsilon} U_x^0 - f''(U^0)HV \frac{\partial V}{\partial a}, \\
W_z(z, 0) = -\frac{1}{\epsilon} U_x^0 \left(\frac{-z}{\epsilon} \right), \quad W_z(z, 1) = 0, \\
\int_0^1 WU_x^0 dx = 0,
\end{cases} \quad (3.65)$$

and proceed as in the proof of Theorem 3.4. In the present case, we define

$$\tilde{N} \equiv F^{1/2} \left(\int_0^v F(s)^{-3/2} \left(\int_0^s f'' HVV_a \right) \right)$$

so

$$W = (F^{1/2} \tilde{\alpha} + \tilde{\beta} L - \frac{\hat{c}}{\epsilon} M - \tilde{N}) \big|_{v=U^0((x-z)/\epsilon)}$$

for some constants $\tilde{\alpha}, \tilde{\beta}, \hat{c}$.

From Corollary 3.3 we get

$$|\frac{\partial V}{\partial a}| \leq C(1 + \lambda e^{\mu rz/\epsilon}) \left(e^{-\mu(2z+(1-z))/\epsilon} \frac{1}{1-v} + e^{-\mu^2z/\epsilon} \frac{1}{1+v} + e^{-\mu^2z/\epsilon} \frac{z}{\epsilon} (1-v^2) \right)$$

and therefore

$$|V \frac{\partial V}{\partial a}| \leq C \left\{ (1 + \lambda e^{\mu rz/\epsilon}) e^{-\mu z/\epsilon} \left(\frac{z}{\epsilon} \right)^2 + (1 + \lambda e^{\mu r/\epsilon}) e^{-\mu^2 z/\epsilon} \left(\frac{z}{\epsilon} + \frac{e^{-\mu(1-z)/\epsilon}}{(1-v)^2} \right) \right\}, \quad v \geq 0, \quad (3.69)$$

$$|V \frac{\partial V}{\partial a}| \leq C(1 + \lambda e^{\mu rz/\epsilon}) e^{-\mu z/\epsilon} \left(\frac{z}{\epsilon} \right)^2 + \frac{1}{(1+v)^2}, \quad v \leq 0.$$

Hence,

$$\tilde{N}(v, z) = (1 - \chi(z)) \left\{ O(e^{-\mu z/\epsilon} (\frac{z}{\epsilon})^2 (1 + \lambda e^{\mu rz/\epsilon})) \frac{1}{(1-v)} + O(e^{-\mu (3(1-z)+2z)/\epsilon} (1 + \lambda e^{\mu r/\epsilon})) \frac{1}{(1-v)^2} \right\} + O(e^{-\mu z/\epsilon} (1 + \lambda e^{\mu rz/\epsilon}) \left(\frac{z}{\epsilon} \frac{1}{(1+v)} + \frac{1}{(1+v)^2} \right)) I_{v \leq 0},$$
or, equivalently,

\[\hat{N}(v, z) = (1 + \lambda e^{\mu/\varepsilon})(e^{-\mu z/\varepsilon}) \left\{ (1 - \chi(z)) \left(\frac{z}{\varepsilon} \right)^2 \frac{1}{1 - v} + I_{v \leq 0} \left(\frac{z}{\varepsilon} \right)^2 \frac{1}{1 + v} + \frac{1}{(1 + v)^2} \right\} \]

(3.70a)

and also

\[\hat{N}_v(v^0, z) = (1 + \lambda e^{\mu_{2v}/\varepsilon})(e^{-\mu z/\varepsilon}) \equiv -\hat{a}_1 \]

(3.70b)

\[\hat{N}_v(v^*, z) = (1 + \lambda e^{\mu_{2v}/\varepsilon}) \left\{ (1 - \chi(z)) \left(\frac{z}{\varepsilon} \right)^2 O(e^{-\mu(4z - 2(1 - z))/\varepsilon}) \right\} \equiv -\hat{b}_1 \]

(3.70c)

and

\[\int_{v_0}^{v^*} \hat{N} dv = (1 + \lambda e^{\mu_{2v}/\varepsilon})(e^{-\mu_{4v}/\varepsilon}) \left\{ (1 - \chi(z)) \left(\frac{z}{\varepsilon} \right)^2 \frac{1}{\varepsilon} + \left(\frac{z}{\varepsilon} \right)^3 + e^{\mu z/\varepsilon} \right\} \equiv \hat{\gamma}_3. \]

(3.70d)

Next we write

\[\hat{\alpha} = \hat{a}_1 + \hat{a}_2 + \hat{a}_3, \quad \hat{\beta} = \hat{b}_1 + \hat{b}_2 + \hat{b}_3, \quad \hat{c} = \hat{c}_1 + \hat{c}_2 + \hat{c}_3, \]

where

\[
\begin{pmatrix}
\hat{a}_1 \\
\hat{b}_1 \\
\hat{c}_1/\varepsilon
\end{pmatrix}
A
\begin{pmatrix}
\hat{a}_2 \\
\hat{b}_2 \\
\hat{c}_2/\varepsilon
\end{pmatrix}
= \begin{pmatrix}
-\hat{a}_1 \\
-\hat{b}_1 \\
0
\end{pmatrix},
\begin{pmatrix}
\hat{a}_3 \\
\hat{b}_3 \\
\hat{c}_3/\varepsilon
\end{pmatrix}
A
= \begin{pmatrix}
-1 \\
0 \\
0
\end{pmatrix}
\text{ and } A
\begin{pmatrix}
\hat{c}_1 \\
\hat{c}_2 \\
\hat{c}_3/\varepsilon
\end{pmatrix}
A
= \begin{pmatrix}
0 \\
0 \\
\hat{\gamma}_3
\end{pmatrix}.
\]

and we also notice that

\[\hat{\alpha}_1 = O(1), \quad \hat{b}_1 = O \left((1 + \lambda e^{-2z/\varepsilon})(1 - \chi(z)) \left(\frac{z}{\varepsilon} \right)^2 e^{-\mu(4z - 2(1 - z))/\varepsilon} \right) \]

\[\hat{\gamma}_3 = O \left((1 + \lambda e^{-2z/\varepsilon}) e^{-\mu z/\varepsilon} \right) \]

(3.71)

and that

\[W = \sum_{i=1}^{3} \hat{W}_i - \hat{N} \]

(3.72a)

where

\[\hat{W}_i = F^{1/2} \hat{a}_i + \hat{b}_i L - \frac{\hat{c}_i}{\varepsilon} M. \]

(3.72b)

Using (3.16) and (3.71) we immediately obtain (3.48b) for \(\hat{W}_1 \) and \(\hat{W}_2 \). To prove the estimate \(\hat{W}_3 \) we first get a representation for \((\hat{a}_3, \hat{b}_3, \hat{c}_3/\varepsilon) \) as was done in Theorem 3.4 for
(α0, β0, c0/ε). Then, (3.54) holds for (确立\(\hat{a}_3\), \(\hat{b}_3\), \(\hat{c}_3/\epsilon\)) and this implies the desired bound for \(\tilde{W}_3\). Finally, the bound (3.48b) for \(\tilde{N}\) follows from (3.70a).

The proof of (3.48c) for \(\frac{\partial \tilde{V}}{\partial b}\) is similar to the proof of (3.48b) for \(\frac{\partial \tilde{V}}{\partial a}\) and is therefore omitted.

Next, we prove (3.49a). By (3.56)-(3.58), it suffices to prove the estimate for \(W_2\) where

\[
W_2 = \left((\alpha - \alpha) F^{1/2} + (\beta - \beta) L - \left(\frac{c}{\epsilon} + \frac{\tau}{\epsilon} \right) M \right) \bigg|_{u = U_0((x-z)/\epsilon)}
\]
(3.73)

However, for \(W_2\), (3.49a) follows easily from (3.16), (3.33) and (3.34a).

To establish (3.49b), first notice that (3.48a) and (3.49a) imply

\[
|\tilde{V}^2 - V^2| = \frac{m_1}{(1-v)^2} + \frac{m_2}{(1+v)^2} + \frac{m_3}{(1-v^2)} + \frac{m_4}{(1-v)} + \frac{m_5}{(1+v)} + m_6
\]
(3.74)

and that

\[
\tilde{V}^2, V^2 = \frac{n_1}{(1-v)^2} + \frac{n_2}{(1+v)^2} + n_3,
\]
(3.75)

where

\[
m_1 = (1 + \lambda e^{3rz/\epsilon})O(e^{-\mu(5z+2(1-z)/\epsilon)} + e^{-\mu(3z+3(1-z))/\epsilon})
\]

\[+(1-\chi(z))(\frac{z}{\epsilon})^2 e^{-\mu(4z+2(1-z))/\epsilon})
\]

\[+(1 + \lambda e^{3r(1-z)/\epsilon})O(e^{-\mu(5(1-z)/\epsilon)}),
\]

\[
m_2 = (1 + \lambda e^{3rz/\epsilon})O(e^{-\mu 5z/\epsilon}),
\]

\[
m_3 = (1 + \lambda e^{3rz/\epsilon})O(e^{-\mu(9z+1(1-z))/\epsilon} + (1-\chi(z))(\frac{z}{\epsilon})^2 e^{-\mu 6z/\epsilon})
\]

\[+(1 + \lambda e^{3r(1-z)/\epsilon})O(e^{-\mu(4z+3z)/\epsilon}),
\]

\[
m_4 = (1 + \lambda e^{3rz/\epsilon})O(e^{-\mu(5z+1(1-z)/\epsilon}) \left(\frac{z}{\epsilon}\right)^3 e^{-\mu 6z/\epsilon})
\]

\[+(1 + \lambda e^{3r(1-z)/\epsilon})O(e^{-\mu(2z+3z)/\epsilon}) \left(\frac{z}{\epsilon}\right),
\]

\[
m_5 = (1 + \lambda e^{3rz/\epsilon})O(e^{-\mu 5z/\epsilon}) \left(\frac{z}{\epsilon}\right),
\]

\[
m_6 = (1 + \lambda e^{3rz/\epsilon})O(e^{-\mu 5z/\epsilon}) \left(\frac{z}{\epsilon}\right)^2,
\]

\[
n_1 = (1 + \lambda e^{2rz/\epsilon})O(e^{-\mu(4z+2(1-z)/\epsilon)})
\]

\[+(1 + \lambda e^{2r(1-z)/\epsilon})O(e^{-\mu 4z/\epsilon}),
\]

\[
n_2 = (1 + \lambda e^{2rz/\epsilon})O(e^{-\mu 4z/\epsilon}),
\]

\[
n_3 = (1 + \lambda e^{2rz/\epsilon})O(e^{-\mu 4z/\epsilon}) \left(\frac{z}{\epsilon}\right)^2.
\]

20
Thus, for \(x \in [0, 1] \),

\[
|\tilde{V}^2 - V^2| = \left(1 + \lambda e^{\mu_3 r x / \epsilon} \right) O\left(e^{-\mu (3z+2z)/\epsilon} + \left(\frac{z}{\epsilon} \right)^2 e^{-\mu_5 z / \epsilon} \right) \\
+ \left(1 + \lambda e^{\mu_3 r (1-z) / \epsilon} \right) O\left(e^{-\mu (3z+3(1-z)-2(x-z))/\epsilon} + e^{-\mu (5z+1(1-z)-(x-z))/\epsilon} \right) \\
+ \left(1 - \chi(z) \right) \left(\frac{z}{\epsilon} \right)^2 \left(e^{-\mu (4z+2(1-z)-2(x-z))/\epsilon} + \left(\frac{z}{\epsilon} \right) e^{-\mu (6z-(x-z))/\epsilon} \right)
\]
(3.76)

\[
\tilde{V}^2 - V^2 = \left(1 + \lambda e^{\mu_2 r x / \epsilon} \right) O\left(e^{-\mu (4z+2(1-z)-2(x-z))/\epsilon} + \left(\frac{z}{\epsilon} \right)^2 e^{-\mu_4 z / \epsilon} \\
+ e^{-\mu (2z+2z)/\epsilon} \right) + \left(1 + \lambda e^{\mu_2 r (1-z) / \epsilon} \right) O\left(e^{-\mu (4(1-z)-2(x-z))/\epsilon} \right).
\]
(3.77)

It is easy to check that the right hand side of (3.76) is always bounded by the right hand side of (3.49b). Hence, by (3.22)-(3.24), (3.49b) holds if either

\[
x \leq z - M_\rho \epsilon \quad \text{or} \quad x \geq z \quad \text{and} \quad z \geq \frac{17}{45},
\]

where \(M_\rho \) is such that

\[
U^0(y) \leq -\rho \quad \text{if} \quad y < -M_\rho.
\]

On the other hand, if either

\[
x \geq z \quad \text{and} \quad z \leq \frac{17}{45} \quad \text{(so that} \quad 4(1-z) - 2(x-z) > 3z + (1-x)) \quad \text{, or}
\]

\[
z - M_\rho \epsilon \leq x \leq z,
\]

then the right hand side of (3.77) is dominated by the right hand side of (3.49b), thereby completing the proof of the equality.

Finally, the estimates (3.50) are an immediate consequence of Theorems 3.1,3.4 and the definition of \(p(z) \) (see(3.3)). \(\square \)

4. Construction of upper and lower solutions; bounds on the velocity of the internal layer. In this section we construct upper and lower solutions of (1.1)-(1.3) when the initial condition \(u_0 \) is close to a certain profile. The main feature of these functions is that they stay close together for periods of time that are exponentially large in \(\epsilon \).

Fix a small number \(\gamma \), say

\[
0 < \gamma < \frac{1}{2},
\]
(4.1)
and let
\[\beta(x, t) = \beta(x, t, z) \equiv \delta e^{-\nu} \left\{ e^{-\mu(1-\gamma)z/t} + e^{-\mu(1-\gamma)\frac{z}{1-x}} \right\} + C_1 e^{-\mu z/t} \] (4.2)
and
\[\frac{\alpha(z)}{\epsilon} \equiv C_2 \left\{ e^{-t\nu} e^{-\mu(1-\gamma)z/\epsilon} + e^{-\mu z/\epsilon} \right\} \] (4.3)
for some constants \(\delta, \nu, C_1, C_2 \) to be specified later.

Let \((V(z, x, a, b), c(z, a, b)) \) denote the solution of (3.6), \((\tilde{V}(z, x, a, b), \tilde{c}(z, a, b)) \) the solution of (3.25), and let \(z_l = z_l(t, a, b), z_u = z_u(t, a, b) \) be defined by
\[\dot{z}_l = \tilde{c}(z_l, a, b) + \alpha(z_l) \quad z(0) = z_0^l < \frac{1}{2}, \] (4.4)
\[\dot{z}_u = \tilde{c}(z_u, a, b) - \alpha(z_u) \quad z(0) = z_0^u < \frac{1}{2}, \] (4.5)
where \(\dot{\cdot} \equiv \frac{\partial}{\partial t} \).

Finally, let
\[\tilde{a} = \tilde{a}(t) = U_x(\beta(0, t), -z_l/\epsilon) \left[U_x^0(0)/\epsilon \right]^{-1}, \] (4.6a)
\[\tilde{b} = \tilde{b}(t) = U_x(\beta(1, t), (1 - z_l)/\epsilon) \left[U_x^0((1 - z_l)/\epsilon) \right]^{-1}, \] (4.6b)
\[\tilde{a} = \tilde{a}(t) = U_x(-\beta(0, t), -z_u/\epsilon) \left[U_x^0(-z_u/\epsilon) \right]^{-1}, \] (4.7a)
\[\tilde{b} = \tilde{b}(t) = U_x(-\beta(1, t), (1 - z_u)/\epsilon) \left[U_x^0((1 - z_u)/\epsilon) \right]^{-1}, \] (4.7b)
and define
\[v_l(x, t) = U(\beta(x, t), (x - z_l)/\epsilon) + \tilde{V}(z_l, x, \tilde{a}(t), \tilde{b}(t)) \] (4.8)
\[v_u(x, t) = U(-\beta(x, t), (x - z_u)/\epsilon) + \tilde{V}(z_u, x, \tilde{a}(t), \tilde{b}(t)). \] (4.9)

By Lemma 2.1, the quantities \(\tilde{a}, \tilde{a}, \tilde{b}, \tilde{b} \) satisfy (3.27) if \(\beta \) is sufficiently small (independently of \(\epsilon \)). In fact,
\[\tilde{a} = 1 + \beta(0, t)k_1 e^{\mu(1-z_l)/\epsilon}, \quad \tilde{b} = 1 + \beta(1, t)k_2 e^{\mu(1-z_u)/\epsilon} \] (4.10)
where
\[k_1 = (U_x(\beta(0, t), -z_l/\epsilon) - U_x^0(-z_l/\epsilon)) \left[\beta(0, t)U_x^0(-z_l/\epsilon) \right]^{-1} e^{-\mu(1-z_l)/\epsilon}, \]
\[k_2 = (U_x(\beta(1, t), (1 - z_l)/\epsilon) - U_x^0((1 - z_l)/\epsilon)) \left[\beta(1, t)U_x^0((1 - z_l)/\epsilon) \right]^{-1} e^{-\mu(1-z_l)/\epsilon}, \]
so that
\[|k_1|, |k_2| \leq 1 \] (4.11)
if $|\beta| < \bar{\beta} = \bar{\beta}(r)$ and $0 < \epsilon < \epsilon_0$ for some constants $\bar{\beta}, \epsilon_0$. Notice that, in this case, we can take

$$\lambda = \beta(0,t) = k(t)\beta(1,t)$$

(4.12)

in (3.28), and that

$$0 < k_0 < k(t) < k_\star < \infty$$

(4.13)

for constants k_0, k_\star independent of ϵ.

Also, again from Lemma 2.1,

$$\hat{\alpha} = (U_x \beta_t - U_{xx} (\hat{z}_l / \epsilon)) (U_x^0)^{-1} + (U_x^0)^{-2} U_{xx}^0 U_x (\hat{z}_l / \epsilon)$$

$$= O \left(e^{\mu r z_1 / \epsilon} \right) \beta_t (0,t) + O(1) (\hat{z}_l / \epsilon) + O \left(e^{\mu r z_1 / \epsilon} \right) \beta(0,t),$$

(4.14)

$$\hat{b} = O \left(e^{\mu r (1 - z_1) / \epsilon} \right) \beta_t (1,t) + O(1) (\hat{z}_l / \epsilon) + O \left(e^{\mu r (1 - z_1) / \epsilon} \right) \beta(1,t).$$

(4.15)

Similar estimates can be obtained for $\bar{\alpha}, \bar{b}, \hat{\alpha}, \hat{b}$.

Lemma 4.1. There exist constants $\epsilon_0, M_0, \delta, \nu, C_1, C_2$ such that, if

$$0 < \epsilon < \epsilon_0,$$

(4.16)

then

$$\mathcal{L} v_l = \partial_t v_l - \epsilon^2 \partial_x^2 v_l - f(v_l) < 0$$

(4.17)

and

$$\mathcal{L} v_u > 0,$$

(4.18)

as long as $z_u, z_l \geq M_0 \epsilon$.

Proof. We shall only prove (4.17), since (4.18) is proved in a similar way.

First of all, by choosing δ, ϵ_0 sufficiently small, we may assume that r in (4.10) satisfies (3.26) and

$$0 < r < \frac{7}{10}.$$

(4.19)

Computing explicitly, we have

$$\mathcal{L} v_l = U_x \beta_t - U_x \hat{z}_l \epsilon^{-1} + \tilde{V}_z \hat{z}_l + \tilde{V}_a \hat{\alpha} + \tilde{V}_b \hat{b}$$

$$- \epsilon^2 \left\{ U_x \beta_{xx} + U_x \beta_\beta x \beta + 2U_{xx} \beta_\beta x \epsilon^{-1} + U_{xx} \epsilon^{-2} + \tilde{V}_{xx} \right\}$$

$$- f(U) - f'(U) \tilde{V} - \frac{1}{2} f''(U) \tilde{V}^2 - R(U, \tilde{V}) \tilde{V}^3$$

(4.19)

where

$$R(U, \tilde{V}) = \frac{1}{2} \int_0^1 (1 - s)^2 f''(U + s \tilde{V}) \, ds.$$

(4.20)
Thus, by (2.7) and (3.25a),

\[\mathcal{L}v_t = T_1 - \epsilon^2 T_2 - T_3 + T_4 - U_x^0 \left(\alpha / \epsilon - v(\beta) \right) - \beta \]
(4.21)

where

\[T_1 = U_\beta \beta_t + \tilde{V}_z \dot{z}_t + \tilde{V}_a \dot{\alpha} + \tilde{V}_b \dot{\beta}, \]
(4.22a)

\[T_2 = U_\beta \beta_{xx} + U_\beta \beta \beta_x^2 + 2U_\beta \beta x \epsilon^{-1}, \]
(4.22b)

\[T_3 = \left(U_x - U_x^0 \right) \frac{c}{\epsilon} + \left(f'(U) - f'(U^0) \right) \tilde{V} \]
\[+ \frac{1}{2} \left(f''(U) - f''(U^0) \right) \tilde{V}^2 + \left(U_x - U_x^0 \right) \left(\frac{\alpha}{\epsilon} - v(\beta) \right), \]
(4.22c)

\[T_4 = \frac{1}{2} f''(U^0) \left(H(U^0, z_t) V^2 - \tilde{V}^2 \right) - R(U, \tilde{V}) \tilde{V}^3. \]
(4.22d)

In what follows \(K_0 \) will denote a (fixed, large) known constant, not always the same, and we shall write \(z_t \equiv z \).

In order to estimate \(T_1 \), we first notice that, from (3.50a),(3.51a),

\[|\tilde{V}_z| \leq K_0 \left(1 + \lambda e^{\mu rz / \epsilon} \right) e^{-\mu z / \epsilon} \left\{ |\frac{c}{\epsilon}| + |\frac{\alpha}{\epsilon}| \right\} \]
\[\leq K_0 \left(1 + \lambda e^{\mu rz / \epsilon} \right) e^{-\mu z / \epsilon} \left\{ (1 + \lambda e^{\mu rz / \epsilon}) e^{-\mu z / \epsilon} + C_2(\delta^{-1} + C_1^{-1}) \beta(z, t) \right\} \]

so that, by (4.12),

\[|\tilde{V}_z| \leq K_0 \left\{ (1 + \lambda e^{\mu rz / \epsilon}) e^{-\mu z / \epsilon} + C_2(\delta^{-1} + C_1^{-1}) e^{-\mu (1-r)z / \epsilon} \beta(z, t) \right\}. \]
(4.23)

Also, from (4.2),(4.3),

\[z \leq z_0 + \epsilon \nu^{-1} C_2 e^{-\mu (1-r)z_0 / \epsilon} < \frac{1}{2}, \]
(4.24)

\[|\beta_t| \leq (\nu + K_0 |\tilde{z}|) \beta \leq 2 \nu \beta, \]
(4.25a)

\[|\beta_x| \leq (1 - \gamma) \frac{\mu}{\epsilon} \beta, \]
(4.25b)

\[|\beta_{xx}| \leq (1 - \gamma) \frac{\mu^2}{\epsilon^2} \beta. \]
(4.25c)

On the other hand, by Lemma 2.1,

\[|U_x - U_x^0| + |f'(U) - f'(U^0)| + |f''(U) - f''(U^0)| \leq K_0 \beta. \]
(4.26)
Finally, we also have

\[\left| \frac{\alpha}{\epsilon} - \nu(\beta) \right| \leq K_0 \left\{ \beta(x,t) + C_2(\delta^{-1} + C_1^{-1})\beta(z,t) \right\}, \quad (4.27) \]

\[|\tilde{V}_a \hat{a}| \leq K_0 e^{\mu \tau_z / \epsilon} \left\{ e^{\mu \tau_z / \epsilon} \beta_t(0,t) + \left| \frac{\hat{z}}{\epsilon} \right| + e^{\mu \tau_z / \epsilon} \beta(0,t) \right\} \]

\[\leq K_0 e^{\mu \tau_z / \epsilon} \left\{ e^{\mu \tau_z / \epsilon} \beta(0,t) + (1 + \lambda e^{\mu \tau_z / \epsilon}) e^{-\mu \tau_z / \epsilon} + C_2(\delta^{-1} + C_1^{-1})\beta(z,t) \right\}, \quad (4.28a) \]

\[|\tilde{V}_b \hat{b}| \leq K_0 e^{\mu(1-r)(1-z) / \epsilon} \left\{ e^{\mu(1-r) / \epsilon} \beta_t(1,t) + (1 + \lambda e^{\mu \tau_z / \epsilon}) e^{-\mu \tau_z / \epsilon} + C_2(\delta^{-1} + C_1^{-1})\beta(z,t) \right\}, \quad (4.28b) \]

and

\[\lambda = \beta(0,t) \leq K_0 e^{\mu(1-\gamma)z / \epsilon} \beta(z,t), \]

\[\lambda \leq K_0 \beta(1,t) \leq K_0 e^{\mu(1-\gamma)z / \epsilon} \beta(z,t), \quad (4.29) \]

Hence,

\[|T_1| \leq |U_\beta \beta_t| + |\tilde{V}_a||\hat{z}| + |\tilde{V}_a||\hat{a}| + |\tilde{V}_b||\hat{b}| \]

\[\leq K_0 \left\{ \nu \beta + e^{-\mu \tau_z / \epsilon} + \beta(0,t) e^{-\mu(1-r)z / \epsilon} + C_2(\delta^{-1} + C_1^{-1}) e^{-\mu(1-r)z / \epsilon} \beta(z,t) + e^{-\mu(1-r)z / \epsilon} \beta(0,t) \right\} \]

\[\leq K_0 \left\{ \nu \beta + e^{-\mu \tau_z / \epsilon} + \beta \left[e^{-\mu(\gamma-\gamma z) / \epsilon} + C_2(\delta^{-1} + C_1^{-1}) e^{-\mu(1-r)z / \epsilon} \right] \right\}, \quad (4.30) \]

and

\[\epsilon^2 |T_2| \leq \epsilon^2 \left\{ |U_\beta - U_\beta^0||\beta_x| + |U_\beta^0||\beta_x|^2 + 2|U_\beta - U_\beta^0||\beta_x|^2 \right\} \]

\[+ |U_\beta^0||\beta_x|^2 + 2|U_\beta^0||\beta_x|^2 \right\} \]

\[\leq K_0 \beta^2 + (1 - \gamma) \beta + K_0 \beta \chi \{|x-z| < K_1 \epsilon\} + \frac{\gamma}{10} \beta, \quad (4.31) \]

where \(K_1 > 0 \) is such that

\[|U_\beta^0 + \frac{1}{\mu^2}|(1 - \gamma) \mu^2 + 2|U_\beta^0||1 - \gamma) \mu^2 + \frac{\gamma}{10} \beta | \leq K_1 \] \[\text{if } \left| \frac{x - z}{\epsilon} \right| \geq K_1 \] \[(4.32) \]

and \(\chi \{|x-z| < K_1 \epsilon\} \) = characteristic function of \{|x-z| < K_1 \epsilon\}.

Also, using (4.26),(4.27),

\[|T_3| \leq K_0 \beta \left\{ (1 + \lambda e^{\mu \tau_z / \epsilon}) e^{-\mu \tau_z / \epsilon} + (1 + \lambda e^{\mu \tau_z / \epsilon}) e^{-\mu \tau_z / \epsilon} \right\} \]

\[+ (1 + \lambda e^{\mu \tau_z / \epsilon}) e^{-\mu \tau_z / \epsilon} + \beta + C_2(\delta^{-1} + C_1^{-1}) \beta(z,t) \right\} \]

\[\leq K_0 \beta \left\{ (1 + \lambda e^{\mu \tau_z / \epsilon}) e^{-\mu \tau_z / \epsilon} + \beta + C_2(\delta^{-1} + C_1^{-1}) \beta(z,t) \right\} \]

(4.33)
and (from (3.49b), (3.51a))

$$|T_4| \leq K_0 (1 + \lambda e^{\mu^3 z / \epsilon}) e^{-\mu^3 z / \epsilon}. \quad (4.34)$$

Thus, using (4.29)-(4.34),

$$\mathcal{L} v_1 \leq K_0 \left\{ \beta \left[\nu + e^{-\mu (\gamma-r) z / \epsilon} + C_2 (\delta^{-1} + C_1^{-1}) e^{-\mu (1-r) z / \epsilon} + \chi_{\{|x-z|<K_1\epsilon\}} + C_2 (\delta^{-1} + C_1^{-1}) \beta(z,t) \right] + \beta^2 + e^{-\mu^3 z / \epsilon} + \beta (z,t) e^{-\mu (2+\gamma-3r) z / \epsilon} \right\}$$

$$- U^0_x \chi_{\{|x-z|<K_2\epsilon\}} \left(\frac{\alpha}{\epsilon} - v(\beta) \right) + |U^0_x| \chi_{\{|x-z|>K_2\epsilon\}} v(\beta)$$

$$- \frac{9}{10} \gamma \beta. \quad (4.35)$$

If we now choose ν, C_1, K_2 such that

$$K_0 \nu < \frac{\gamma}{10},$$

$$\frac{10K_0}{\gamma} < C_1,$$

$$v(\beta) U^0_x (K_2) < \frac{\gamma}{10} \beta, \quad K_2 > K_1$$

and

$$\delta \text{ small enough so that } K_0 \beta < \frac{\gamma}{10},$$

$$C_2 \text{ large enough so that } U^0_x \left(\frac{\alpha}{\epsilon} - v(\beta) \right) > K_0 \beta \quad \text{if } \frac{|x-z|}{\epsilon} < K_2,$$

then (4.35) implies that, if $\frac{z}{\epsilon}$ is sufficiently large,

$$\mathcal{L} v_1 < 0$$

thereby completing the proof of the Lemma. []

Theorem 4.2. Let x_0 be the unique zero of the initial condition u_0 in (1.3) and set

$$z_0^t = x_0 + \Gamma \epsilon e^{-\mu (1-\gamma) x_0 / \epsilon},$$

$$z_0^\ast = x_0 - \Gamma \epsilon e^{-\mu (1-\gamma) x_0 / \epsilon} \quad (\Gamma \text{ const.}). \quad (4.36)$$

There exist positive constants Λ, Γ such that, if

$$|u_0(x) - U((x-x_0)/\epsilon)| \leq \Lambda \beta(x,0), \quad (4.37)$$
then the solution \(u \) of (1.1)-(1.3) satisfies

\[
v_l(x, t) < u(x, t) < v_u(x, t)
\]

as long as \(z_l, z_u \geq M_0 \epsilon \).

Proof. First notice that

\[
\begin{align*}
\partial_x v_l &= U \beta \beta_x \text{ at } x = 0, 1, \\
\partial_x v_u &= -U \beta \beta_x \text{ at } x = 0, 1,
\end{align*}
\]

and that

\[
\beta_x(0, t) < 0, \quad \beta_x(1, t) > 0.
\]

Thus, using Lemma 2.1 (in particular (2.20)), we get

\[
\begin{align*}
\partial_x v_l(0, t) &= \left\{ U \beta(\beta(0, t), -z_l/\epsilon) - U^0 \beta(-z_l/\epsilon) \right\} \beta_x(0, t) > 0, \\
\partial_x v_l(1, t) &< 0,
\end{align*}
\]

and

\[
\begin{align*}
\partial_x v_u(0, t) &< 0, \quad \partial_x v_u(1, t) > 0.
\end{align*}
\]

On the other hand, it is easily checked that

\[
\begin{align*}
U^0 ((x - x_0)/\epsilon) - U (\beta(x, 0), (x - z_0^l)/\epsilon) &\geq \Lambda_1 \beta(x, 0) \geq \delta \Lambda_1 e^{-\mu(1-\gamma)x/\epsilon}, \\
U (-\beta(x, 0), (x - z_0^u)/\epsilon) - U^0 ((x - x_0)/\epsilon) &\geq \Lambda_1 \beta(x, 0) \geq \delta \Lambda_1 e^{-\mu(1-\gamma)x/\epsilon},
\end{align*}
\]

for some small constant \(\Lambda_1 \) (independent of \(\epsilon \)), provided \(\Gamma \) in (4.36) is chosen large enough (again, independently of \(\epsilon \)).

Hence, if \(\Lambda \) is sufficiently small, (3.51a) together with (4.42) implies

\[
v_l(x, 0) \leq u(x, 0) \leq v_u(x, 0).
\]

Now, (4.38) follows from (4.17),(4.18),(4.41),(4.43) and the maximum principle. \(\Box \)

Now, using the estimates (3.50) together with (3.3), it is not difficult to obtain the bound

\[
0 < z_l - z_u \leq \frac{A_1 \epsilon e^{\mu(1+\gamma)x_0/\epsilon}}{(e^\mu x_0/\epsilon - A_2 e^\mu x_0/\epsilon - 2\mu^3 K_1^2 t/K)},
\]

for some constants \(A_1, A_2 > 0 \); also, from (4.8),(4.9),

\[
0 < v_l - v_u \leq A_3 \left(\beta(x, t) + \frac{z_l - z_u}{\epsilon} + e^{-\mu(1-\gamma)x_0/\epsilon} \right).
\]

27
From (4.44), (4.45) we see that the profile of the solution \(u \) resembles that of \(v_l \) and \(v_u \) only as long as

\[
z_l - z_u = o(\epsilon);
\]

this last equality can be shown to hold provided

\[
z_u > \frac{(1 + \gamma)}{2} x_0 \quad \text{(recall that } z_l > z > z_u). \]

However, due to (3.50) we can still obtain the same bounds as in \([6; \S 6]\) for the time it takes for the zero \(z(t) \) of \(u \) to become \(O(\epsilon) \).

On the other hand, for a smaller class of initial conditions \(u_0 \), it is possible to construct upper and lower solutions which will stay "close together" for even longer periods of time. In particular, their difference will be \(O(\epsilon) \) as long as the zero \(z(t) \) of \(u \) satisfies

\[
z(t) \geq \hat{K}\epsilon \ln \epsilon \quad \text{for some constant } \hat{K} > 0 \text{ (independent of } \epsilon). \quad (4.46)
\]

Lemma 4.3. Let

\[
\beta(x, t) \equiv \left\{ \hat{\Delta} e^{-\hat{\Delta} \epsilon} + \frac{\hat{C}_1}{\epsilon} \left(\frac{z}{\epsilon} \right)^2 e^{-\mu_{3z}/\epsilon} \right\} \left\{ e^{-\mu(1-\epsilon)x/\epsilon} + e^{-\mu(1-\epsilon)\frac{1}{1-\epsilon}(1-z)/\epsilon} \right\}, \quad (4.47)
\]

\[
\frac{\alpha(z)}{\epsilon} \equiv \frac{\hat{C}_2}{\epsilon^2} \left\{ e^{-\hat{\Delta} \epsilon} e^{-\mu_{2z}/\epsilon} + \frac{1}{\epsilon} \left(\frac{z}{\epsilon} \right)^2 e^{-\mu_{4z}/\epsilon} \right\}, \quad (4.48)
\]

and define \(V, c, \tilde{V}, \tilde{c}, \tilde{a}, \tilde{b}, \tilde{a}, \tilde{b}, v_l, v_u \) as in (4.4)-(4.9). Then, there exist constants \(\hat{\delta}, \hat{\nu}, \hat{C}_1, \hat{C}_2, \hat{K} \) such that

\[
\mathcal{L} v_l < 0, \quad (4.49)
\]
\[
\mathcal{L} v_u > 0, \quad (4.50)
\]

provided \(z_u, z_l \geq \hat{K}\epsilon \ln \epsilon \).

The proof of Lemma 4.3 is similar to the proof of Lemma 4.1; the only difference is that one should now use the full force of Lemma 3.5 instead of just using Corollary 3.6.

Using Lemma 4.3 and arguing as in Theorem 4.2 we obtain

Theorem 4.4. Let \(x_0 \) be the unique zero of the initial condition \(u_0 \) in (1.3) and set

\[
z_l^o = x_0 + \hat{\Gamma} \epsilon e^{-\mu_{2x_0}/\epsilon},
\]
\[
z_u^o = x_0 - \hat{\Gamma} \epsilon e^{-\mu_{2x_0}/\epsilon} \quad (\hat{\Gamma} \text{ const.}). \quad (4.51)
\]

28
There exist constants $\hat{\Lambda}, \hat{\Gamma}$ such that, if

$$|u_0(x) - (U((x - x_0)/\epsilon) + V(x_0, x, 1, 1))| \leq \hat{\Lambda}\beta(x, 0) \quad (\beta \text{ defined in (4.47))}, \quad (4.52)$$

then the solution u of (1.1)-(1.3) satisfies

$$v_1(x, t) < u(x, t) < v_u(x, t) \quad (4.53)$$
as long as $z_I, z_u \geq \hat{K}\epsilon|\ln \epsilon|$.

Under the hypotheses of Theorem 4.4, the difference between z_I and z_u satisfies

$$0 < z_I - z_u \leq \frac{A_1}{\epsilon^5}e^{-\mu^2z_u/\epsilon} \leq \frac{A_2}{\epsilon^5}e^{-\mu^2z_I/\epsilon}. \quad (4.54)$$

for some constants $\hat{A}_1, \hat{A}_2 > 0$ (independent of ϵ). Therefore, if \hat{K} is large enough, $v_u - v_1 = O(\epsilon)$ as long as the zero $z(t)$ of u satisfies (4.46).

Acknowledgements. The author wishes to thank Prof. Avner Friedman for his guidance and encouragement. The author is supported by an N.I.S.T. grant (No. DOC/60NANBOD1027).

REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>637</td>
<td>Xinfu Chen</td>
<td>Generation and propagation of the interface for reaction–diffusion equations</td>
</tr>
<tr>
<td>638</td>
<td>Philip Korman</td>
<td>Dynamics of the Lotka–Volterra systems with diffusion</td>
</tr>
<tr>
<td>639</td>
<td>Harlan W. Stech</td>
<td>Generic Hopf bifurcation in a class of integro-differential equations</td>
</tr>
<tr>
<td>640</td>
<td>Stephane Laederich</td>
<td>Periodic solutions of non linear differential difference equations</td>
</tr>
<tr>
<td>641</td>
<td>Peter J. Olver</td>
<td>Canonical Forms and Integrability of BiHamiltonian Systems</td>
</tr>
<tr>
<td>642</td>
<td>S.A. van Gils, M.P. Krupa and W.F. Langford</td>
<td>Hopf bifurcation with nonsemisimple 1:1 Resonance</td>
</tr>
<tr>
<td>643</td>
<td>R.D. James and D. Kinderlehrer</td>
<td>Frustration in ferromagnetic materials</td>
</tr>
<tr>
<td>644</td>
<td>Carlos Rocha</td>
<td>Properties of the attractor of a scalar parabolic P.D.E.</td>
</tr>
<tr>
<td>645</td>
<td>Debra Lewis</td>
<td>Lagrangian block diagonalization</td>
</tr>
<tr>
<td>646</td>
<td>Richard C. Churchill and David L. Rod</td>
<td>On the determination of Ziglin monodromy groups</td>
</tr>
<tr>
<td>647</td>
<td>Xinfu Chen and Avner Friedman</td>
<td>A nonlocal diffusion equation arising in terminally attached polymer chains</td>
</tr>
<tr>
<td>648</td>
<td>Peter Gritzmann and Victor Klee</td>
<td>Inner and outer j- Radii of convex bodies in finite-dimensional normed spaces</td>
</tr>
<tr>
<td>649</td>
<td>P. Szmolyan</td>
<td>Analysis of a singularly perturbed traveling wave problem</td>
</tr>
<tr>
<td>650</td>
<td>Stanley Reiter and Carl P. Simon</td>
<td>Decentralized dynamic processes for finding equilibrium</td>
</tr>
<tr>
<td>651</td>
<td>Fernando Reitich</td>
<td>Singular solutions of a transmission problem in plane linear elasticity for wedge-shaped regions</td>
</tr>
<tr>
<td>652</td>
<td>Russell A. Johnson</td>
<td>Cantor spectrum for the quasi-periodic Schrödinger equation</td>
</tr>
<tr>
<td>653</td>
<td>Wenxiong Liu</td>
<td>Singular solutions for a convection diffusion equation with absorption</td>
</tr>
<tr>
<td>654</td>
<td>Deborah Brandon and William J. Hrusa</td>
<td>Global existence of smooth shearing motions of a nonlinear viscoelastic fluid</td>
</tr>
<tr>
<td>655</td>
<td>James F. Reineck</td>
<td>The connection matrix in Morse–Smale flows II</td>
</tr>
<tr>
<td>656</td>
<td>Claude Baensens, John Guckenheimer, Seunghwan Kim and Robert Mackay</td>
<td>Simple resonance regions of torus diffeomorphisms</td>
</tr>
<tr>
<td>657</td>
<td>Willard Miller, Jr.</td>
<td>Lecture notes in radar/sonar: Topics in Harmonic analysis with applications to radar and sonar</td>
</tr>
<tr>
<td>658</td>
<td>Calvin H. Wilcox</td>
<td>Lecture notes in radar/sonar: Sonar and Radar Echo Structure</td>
</tr>
<tr>
<td>659</td>
<td>Richard E. Blahut</td>
<td>Lecture notes in radar/sonar: Theory of remote surveillance algorithms</td>
</tr>
<tr>
<td>660</td>
<td>D.V. Anosov</td>
<td>Hilbert's 21st problem (according to Bolibruch)</td>
</tr>
<tr>
<td>661</td>
<td>Stephane Laederich</td>
<td>Ray–Singerman torsion for complex manifolds and the adiabatic limit</td>
</tr>
<tr>
<td>662</td>
<td>Geneviève Raugel and George R. Sell</td>
<td>Navier-Stokes equations in thin 3d domains: Global regularity of solutions I</td>
</tr>
<tr>
<td>663</td>
<td>Emanuel Parzen</td>
<td>Time series, statistics, and information</td>
</tr>
<tr>
<td>664</td>
<td>Andrew Majda and Kevin Lamb</td>
<td>Simplified equations for low Mach number combustion with strong heat release</td>
</tr>
<tr>
<td>665</td>
<td>Ju. S. Il'yashenko</td>
<td>Global analysis of the phase portrait for the Kuramoto–Sivashinsky equation</td>
</tr>
<tr>
<td>666</td>
<td>James F. Reineck</td>
<td>Continuation to gradient flows</td>
</tr>
<tr>
<td>667</td>
<td>Mohamed Sami Elbialy</td>
<td>Simultaneous binary collisions in the collinear N–body problem</td>
</tr>
<tr>
<td>668</td>
<td>John A. Jacquez and Carl P. Simon</td>
<td>Aids: The epidemiological significance of two different mean rates of partner-change</td>
</tr>
<tr>
<td>669</td>
<td>Carl P. Simon and John A. Jacquez</td>
<td>Reproduction numbers and the stability of equilibria of SI models for heterogeneous populations</td>
</tr>
<tr>
<td>670</td>
<td>Matthew Stafford</td>
<td>Markov partitions for expanding maps of the circle</td>
</tr>
<tr>
<td>671</td>
<td>Ciprian Foias and Edriss S. Titi</td>
<td>Determining nodes, finite difference schemes and inertial manifolds</td>
</tr>
<tr>
<td>672</td>
<td>M.W. Smiley</td>
<td>Global attractors and approximate inertial manifolds for abstract dissipative equations</td>
</tr>
<tr>
<td>673</td>
<td>M.W. Smiley</td>
<td>On the existence of smooth breathers for nonlinear wave equations</td>
</tr>
<tr>
<td>674</td>
<td>Hitay Özbay and Janos Turi</td>
<td>Robust stabilization of systems governed by singular integro-differential equations</td>
</tr>
<tr>
<td>675</td>
<td>Mary Silber and Edgar Knobloch</td>
<td>Hopf bifurcation on a square lattice</td>
</tr>
<tr>
<td>676</td>
<td>Christophe Golé</td>
<td>Ghost circles for twist maps</td>
</tr>
<tr>
<td>677</td>
<td>Christophe Golé</td>
<td>Ghost tori for monotone maps</td>
</tr>
<tr>
<td>678</td>
<td>Christophe Golé</td>
<td>Monotone maps of $T^n \times R^n$ and their periodic orbits</td>
</tr>
<tr>
<td>679</td>
<td>E.G. Kalnins and W. Miller, Jr.</td>
<td>Hypergeometric expansions of Heun polynomials</td>
</tr>
<tr>
<td>680</td>
<td>Victor A. Pliss and George R. Sell</td>
<td>Perturbations of attractors of differential equations</td>
</tr>
<tr>
<td>681</td>
<td>Avner Friedman and Peter Knabner</td>
<td>A transport model with micro- and macro-structure</td>
</tr>
<tr>
<td>682</td>
<td>E.G. Kalnins and W. Miller, Jr.</td>
<td>A note on group contractions and radar ambiguity functions</td>
</tr>
<tr>
<td>683</td>
<td>George R. Sell</td>
<td>References on dynamical systems</td>
</tr>
<tr>
<td>684</td>
<td>Shui-Nee Chow, Kening Lu and George R. Sell</td>
<td>Smoothness of inertial manifolds</td>
</tr>
<tr>
<td>685</td>
<td>Shui-Nee Chow, Xiao-Biao Lin and Kening Lu</td>
<td>Smooth invariant foliations in infinite dimensional spaces</td>
</tr>
</tbody>
</table>
Kening Lu, A Hartman–Grobman theorem for scalar reaction-diffusion equations

Christophe Golé and Glen R. Hall, Poincaré's proof of Poincaré's last geometric theorem

Mario Taboada, Approximate inertial manifolds for parabolic evolutionary equations via Yosida approximations

Peter Rejto and Mario Taboada, Weighted resolvent estimates for Volterra operators on unbounded intervals

Joel D. Avrin, Some examples of temperature bounds and concentration decay for a model of solid fuel combustion

Susan Friedlander and Misha M. Vishik, Lax pair formulation for the Euler equation

H. Scott Dumas, Ergodization rates for linear flow on the torus

A. Eden, A.J. Milani and B. Nicolaenko, Finite dimensional exponential attractors for semilinear wave equations with damping

A. Eden, C. Foias, B. Nicolaenko & R. Temam, Inertial sets for dissipative evolution equations

A. Eden, C. Foias, B. Nicolaenko & R. Temam, Hölder continuity for the inverse of Mañé's projection

Michel Chipot and Charles Collins, Numerical approximations in variational problems with potential wells

Huanan Yang, Nonlinear wave analysis and convergence of MUSCL schemes

László Gerencsér and Zsuzsanna Vágó, A strong approximation theorem for estimator processes in continuous time

László Gerencsér, Multiple integrals with respect to L-mixing processes

David Kinderlehrer and Pablo Pedregal, Weak convergence of integrands and the Young measure representation

Bo Deng, Symbolic dynamics for chaotic systems

Charles Collins and Mitchell Luskin, Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem

Peter Grützmann and Victor Klee, Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces

A. Ronald Gallant and George Tauchen, A nonparametric approach to nonlinear time series analysis: estimation and simulation

H.S. Dumas, J.A. Ellison and A.W. Sáenz, Axial channeling in perfect crystals, the continuum model and the method of averaging

M.A. Kaashoek and S.M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems

Xinfu Chen, Generation and Propagation of interfaces in reaction diffusion systems

Avner Friedman and Bei Hu, Homogenization approach to light scattering from polymer-dispersed liquid crystal films

Yoshihisa Morita and Shuichi Jimbo, ODEs on inertial manifolds for reaction-diffusion systems in a singularly perturbed domain with several thin channels

Wenxiong Liu, Blow-up behavior for semilinear heat equations: multi-dimensional case

Hi Jun Choe, Hölder continuity for solutions of certain degenerate parabolic systems

Hi Jun Choe, Regularity for certain degenerate elliptic double obstacle problems

Fernando Reitich, On the slow motion of the interface of layered solutions to the scalar Ginzburg–Landau equation

Xinfu Chen and Fernando Reitich, Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling

C.C. Lim, J.M. Pimbley, C. Schmeiser and D.W. Schwendeman, Rotating waves for semiconductor inverter

W. Balser, B.L.J. Braaksma, J.-P. Ramis and Y. Sibuya, Multisummability of formal power series solutions of linear ordinary differential equations

Peter J. Olver and Chehrzad Shakiban, Dissipative decomposition of partial differential equations

Clark Robinson, Homoclinic bifurcation to a transitive attractor of Lorenz type, II

Michelle Schatzman, A simple proof of convergence of the QR algorithm for normal matrices without shifts

Ian M. Anderson, Niky Kamran and Peter J. Olver, Internal, external and generalized symmetries

C. Foias and J.C. Saut, Asymptotic integration of Navier–Stokes equations with potential forces. I

Ling Ma, The convergence of semidiscrete methods for a system of reaction-diffusion equations

Adelina Georgescu, Models of asymptotic approximation

A. Makagon and H. Salehi, On bounded and harmonizable solutions on infinite order arma systems

San-Yih Lin and Yan-Shin Chin, An upwind finite-volume scheme with a triangular mesh for conservation laws

J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego & P.J. Swart, On the dynamics of fine structure

Kang Ping Chen and Daniel D. Joseph, Lubrication theory and long waves