EXPONENTIAL STABILITY OF A THERMOELASTIC SYSTEM
WITHOUT MECHANICAL DISSIPATION

By

George Avalos

and

Irena Lasiecka

IMA Preprint Series # 1357
November 1995
Exponential Stability of a Thermoelastic System Without Mechanical Dissipation

George Avalos* and Irena Lasiecka†

Abstract
We show herein the uniform stability of a thermoelastic plate model with no added dissipative mechanism on the boundary (uniform stability of a thermoelastic plate with added boundary dissipation was shown in [3]). The proof is constructive in the sense that we make use of a multiplier with respect to the coupled system involved so as to generate a fortiori the desired estimates; this multiplier is of an operator theoretic nature, as opposed to the more standard differential quantities used for such work. Moreover, the particular choice of multiplier becomes clear only after recasting the pde model into an associated abstract evolution equation. With this direct technique, we also obtain an exponential stability estimate pertaining to the special case in which rotational inertia is neglected, and which leads to an associated analytic semigroup. This result was originally derived through a contradiction argument (see [9]).

1 Introduction
1.1 Statement of the Problem
Let \(\Omega \) be a bounded open subset of \(\mathbb{R}^2 \) with Lipshitz boundary \(\Gamma \). We consider here the following thermoelastic system taken from J. Lagnese’s monograph [3]:

\[
\begin{align*}
\omega_{tt} - \gamma \Delta \omega_{tt} + \Delta^2 \omega + \alpha \Delta \theta &= 0 \quad \text{in } (0, \infty) \times \Omega; \\
\beta \theta_t - \eta \Delta \theta + \sigma \theta - \alpha \Delta \omega_t &= 0
\end{align*}
\]

\[
\begin{align*}
\frac{\partial \theta}{\partial \nu} + \lambda \theta &= 0 \quad \text{on } (0, \infty) \times \Gamma, \quad \lambda \geq 0; \\
\omega(t = 0) &= \omega^0, \quad \omega_t(t = 0) = \omega^1, \quad \theta(t = 0) = \theta^0 \quad \text{on } \Omega;
\end{align*}
\]

\[
\begin{align*}
\omega = (1 - \kappa) \frac{\partial \omega}{\partial \nu} &= 0 \quad \text{on } (0, \infty) \times \Gamma. \\
\kappa (\Delta \omega + (1 - \mu) B_1 \omega + \alpha \theta) &= 0
\end{align*}
\]

Here, the parameter \(\kappa \) is either 0 or 1; \(\alpha, \beta, \gamma \) and \(\eta \) are strictly positive constants with \(\gamma \) proportional to the thickness of the plate and assumed to be small; the constant \(\sigma \geq 0 \) and the boundary operator \(B_1 \) is given by

\[
B_1 \omega \equiv 2 \nu_1 \nu_2 \frac{\partial^2 \omega}{\partial x \partial y} - \nu_1^2 \frac{\partial^2 \omega}{\partial y^2} - \nu_2^2 \frac{\partial^2 \omega}{\partial x^2};
\]

* Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455-0436.
† Department of Applied Mathematics, Thornton Hall, University of Virginia, Charlottesville, VA 22903.
the constant μ is the familiar Poisson’s ratio $\in (0, \frac{1}{3})$. The given model describes mathematically a Kirchhoff plate – the displacement of which is represented by the function ω – subjected to a thermal damping as quantified by θ. We are concerned here with the asymptotic stability of solutions (ω, θ) to (1)–(2).

1.2 Preliminaries and Abstract Formulation

As a departure point for obtaining the proofs of well–posedness and of exponential stability, we will consider the system (1)–(2) as an abstract evolution equation in a certain Hilbert space, for which we introduce the following definitions and notations.

- We define $\tilde{A}_\kappa : L^2(\Omega) \supset D(\tilde{A}_\kappa) \to L^2(\Omega)$ to be $\tilde{A}_\kappa = \Delta^2$, with domain

$$D(\tilde{A}_\kappa) = \{\omega \in H^4(\Omega) \cap H_0^1(\Omega) : B\omega = 0 \text{ on } \Gamma\}, \quad (4)$$

where

$$B\omega = \begin{cases} \frac{\partial \omega}{\partial \nu}, & \text{if } \kappa = 0 \\ \Delta \omega + (1 - \mu)B_1 \omega, & \text{if } \kappa = 1; \end{cases} \quad (5)$$

- \tilde{A} is then positive definite, self–adjoint, and consequently from [1] we have the characterizations

$$D(\tilde{A}^\frac{1}{2}_\kappa) = \begin{cases} H_0^2(\Omega), & \text{if } \kappa = 0 \\ H^2(\Omega) \cap H_0^1(\Omega), & \text{if } \kappa = 1; \end{cases} \quad (6)$$

$$D(\tilde{A}^{\frac{1}{2}}) = H_0^1(\Omega).$$

Moreover, using the Green’s formula in [3], we have that for $\forall \omega, \tilde{\omega} \in D(\tilde{A}^{\frac{1}{2}})$,

$$\left\langle \tilde{A}_\kappa \omega, \tilde{\omega} \right\rangle _{D(\tilde{A}^{\frac{1}{2}})} \times D(\tilde{A}^{\frac{1}{2}}) = \left\langle \tilde{A}^{\frac{3}{2}}_\kappa \omega, \tilde{A}^{\frac{3}{2}}_\kappa \tilde{\omega} \right\rangle _{L^2(\Omega)} = a(\omega, \tilde{\omega})_{L^2(\Omega)}, \quad (7)$$

where $a(\cdot, \cdot)$ is defined by

$$a(\omega, \tilde{\omega}) \equiv \int_\Omega \left[\omega_{xx} \tilde{\omega}_{xx} + \omega_{yy} \tilde{\omega}_{yy} + \mu (\omega_{xx} \tilde{\omega}_{yy} + \omega_{yy} \tilde{\omega}_{xx}) + 2(1 - \mu) \omega_{xy} \tilde{\omega}_{xy} \right] d\Omega, \quad (8)$$

and in addition

$$\|\omega\|_{D(\tilde{A}^{\frac{1}{2}})}^2 = \left\|\tilde{A}^{\frac{1}{2}} \omega\right\|_{L^2(\Omega)}^2 = a(\omega, \omega). \quad (9)$$

- We define $A_D : L^2(\Omega) \supset D(A_D) \to L^2(\Omega)$ to be $A_D = -\Delta$, with Dirichlet boundary conditions, viz.

$$D(A_D) = H^2(\Omega) \cap H_0^1(\Omega). \quad (10)$$

A_D is also positive definite, self–adjoint, and

$$D(A_D^{\frac{1}{2}}) = H_0^1(\Omega). \quad (11)$$
• \(A_R : L^2(\Omega) \supset D(A_R) \to L^2(\Omega) \) will designate the Laplacian with Robin boundary conditions; that is,

\[
A_R = -\Delta,
\]

\[
D(A_R) = \left\{ \hat{\theta} \in H^2(\Omega) : \frac{\partial \hat{\theta}}{\partial \nu} + \lambda \hat{\theta} = 0 \right\};
\]

(12)

\(A_R \) is positive definite, self-adjoint, and once more by the characterization of the fractional powers in [1], and we have

\[
D(A^\frac{1}{2}_R) = H^1(\Omega),
\]

(13)

\[
\left(\theta, \hat{\theta} \right)_{H^1(\Omega)} = \left(A^\frac{1}{2}_R \theta, A^\frac{1}{2}_R \hat{\theta} \right)_{L^2(\Omega)}.
\]

(14)

• We will designate by \(\gamma_0 \) the Sobolev trace map, which yields for \(f \in C^\infty(\overline{\Omega}) \)

\[
\gamma_0 f = f|_\Gamma.
\]

(15)

• We define the elliptic operators \(G \) and \(D \) as thus:

\[
Gh = v \iff \left\{ \begin{array}{l}
\Delta^2 v = 0 \text{ in } (0, \infty) \times \Omega \\
v|_\Gamma = 0 \\
\Delta v + (1 - \mu)B_1 v = h \\
\end{array} \right. \quad \text{on } (0, \infty) \times \Gamma;
\]

(16)

\[
Dh = v \iff \left\{ \begin{array}{l}
\Delta v = 0 \text{ on } (0, \infty) \times \Omega \\
v|_\Gamma = h \text{ on } (0, \infty) \times \Gamma.
\end{array} \right.
\]

(17)

The classic regularity results of [7] then provide that for \(s \in \mathbb{R} \),

\[
\begin{array}{l}
D \in \mathcal{L} \left(H^s(\Gamma), H^{s+\frac{1}{2}}(\Omega) \right) \\
G \in \mathcal{L} \left(H^s(\Gamma), H^{s+\frac{3}{2}}(\Omega) \right)
\end{array}
\]

(18)

With the operators \(A_1 \) and \(G \) as defined above, one can readily show with the use of Green’s formula that \(\forall \omega \in D(A^\frac{1}{2}_1) \) the adjoint \(G^*A_1 \in \mathcal{L} \left(D(A^\frac{1}{2}_1), L^2(\Gamma) \right) \) satisfies

\[
G^*A_1 \omega = \frac{\partial \omega}{\partial \nu}|_{\Gamma};
\]

(19)

• We define the operator \(P_\gamma \) by

\[
P_\gamma \equiv I + \gamma A_D
\]

(20)

and for \(\gamma > 0 \), let \(H^1_{0,\gamma}(\Omega) \) denote a space equivalent to \(H^1_{0}(\Omega) \) with the inner product

\[
(\omega_1, \omega_2)_{H^1_{0,\gamma}(\Omega)} = (\omega_1, \omega_2)_{L^2(\Omega)} + \gamma (\nabla \omega_1, \nabla \omega_2)_{L^2(\Omega)} \quad \forall \omega_1, \omega_2 \in H^1_{0}(\Omega)
\]

(21)
and with its dual denoted as \(H^{-1}_\gamma(\Omega) \). (11) then reveals that
\[
P_\gamma \in \mathcal{L} \left(H^{-1}_\beta(\Omega), H^{-1}_\gamma(\Omega) \right), \quad \text{with}
\]
\[
(\omega_1, \omega_2)_{H^{-1}_\gamma(\Omega) \times H_\gamma(\Omega)} = \langle \omega_1, \omega_2 \rangle_{H_\beta,\gamma(\Omega)}. \tag{23}
\]
Furthermore, the \(H^{-1}_\beta(\Omega) \)-ellipticity of \(P_\gamma \) and Lax–Milgram gives us that \(P_\gamma \) is boundedly invertible, i.e.
\[
P^{-1}_\gamma \in \mathcal{L} \left(H^{-1}_\gamma(\Omega), H_\beta,\gamma(\Omega) \right). \tag{24}
\]
Finally, \(P_\gamma \) being positive definite, self-adjoint as an operator \(P_\gamma : L^2(\Omega) \supset D(P_\gamma) \to L^2(\Omega) \) (as \(A_D \) is), the square root \(P^{\frac{1}{2}}_\gamma \) is well-defined with \(D(P^{\frac{1}{2}}_\gamma) = H_\beta,\gamma(\Omega) \); it then follows from the interpolation theorem in [7] (p. 10) and (23) that
\[
\left\| P^{\frac{1}{2}}_\gamma \omega \right\|_{L^2(\Omega)}^2 = \| \omega \|_{L^2(\Omega)}^2 + \gamma \| \nabla \omega \|_{L^2(\Omega)}^2 = \| \omega \|_{H_\beta,\gamma(\Omega)}^2; \tag{25}
\]
\[
\left(P^{\frac{1}{2}}_\gamma \omega, P^{\frac{1}{2}}_\gamma \bar{\omega} \right)_{L^2(\Omega)} = \langle \omega, \bar{\omega} \rangle_{H_\beta,\gamma(\Omega)}. \tag{26}
\]
- With \(L_\sigma^2(\Omega) \) defined by
\[
L_\sigma^2(\Omega) \equiv \begin{cases} L^2(\Omega), & \text{if } \sigma + \lambda > 0 \\ L_0^2(\Omega), & \text{if } \sigma + \lambda = 0 \end{cases} \tag{27}
\]
(where \(L_0^2(\Omega) = \{ \theta \in L^2(\Omega) : \int_\Omega \theta = 0 \} \)), we denote the Hilbert space \(H_{\kappa,\gamma} \) to be
\[
H_{\kappa,\gamma} \equiv D(\tilde{A}^{\frac{1}{2}}_\kappa) \times H_0,\gamma(\Omega) \times L_\sigma^2(\Omega), \tag{28}
\]
with the inner product
\[
\left(\begin{bmatrix} \omega_1 \\ \omega_2 \\ \theta \end{bmatrix}, \begin{bmatrix} \tilde{\omega}_1 \\ \tilde{\omega}_2 \\ \tilde{\theta} \end{bmatrix} \right)_{H_{\kappa,\gamma}}
= \left(\tilde{A}^{\frac{1}{2}}_\kappa \omega_1, \tilde{A}^{\frac{1}{2}}_\kappa \tilde{\omega}_1 \right)_{L^2(\Omega)} + \left(P^{\frac{1}{2}}_\gamma \omega_2, P^{\frac{1}{2}}_\gamma \tilde{\omega}_2 \right)_{L^2(\Omega)} + \beta \left(\theta, \tilde{\theta} \right)_{L^2(\Omega)}. \tag{29}
\]
With the above definitions, we then set \(A_{\kappa,\gamma} : H_{\kappa,\gamma} \supset D(A_{\kappa,\gamma}) \to H_{\kappa,\gamma} \) to be
\[
A_{\kappa,\gamma} \equiv \begin{pmatrix} 0 & I & 0 \\ -P^{-1}_\gamma \tilde{A}_\kappa & 0 & \alpha P^{-1}_\gamma (\sigma(A_D(I-D\gamma_0)) - \kappa \tilde{A}_1 G\gamma_0) \\ 0 & -\frac{\alpha}{\beta} A_D & -\frac{\eta}{\beta} A_D(I-D\gamma_0) - \frac{\sigma}{\beta} I \end{pmatrix}, \tag{30}
\]
with \(D(A_{\kappa,\gamma}) = \left\{ [\omega_1, \omega_2, \theta] \in D(\tilde{A}^{\frac{1}{2}}_\kappa) \times D(\tilde{A}^{\frac{1}{2}}_\kappa) \times D(A_R) \cap L_\sigma^2(\Omega) \right\} \) such that \(\tilde{A}_\kappa \omega_1 + \alpha \kappa \tilde{A}_1 G\gamma_0 \theta \in H^{-1}_\gamma(\Omega) \) and
\[
-\frac{\alpha}{\beta} \Delta \omega_2 - \frac{\eta}{\beta} \Delta \theta \in L_\sigma^2(\Omega). \]
If we take the initial data \([\omega^0, \omega^1, \theta^0]\) to be in \(H_{k, \gamma}\), then the coupled system (1)–(2) becomes the operator theoretic model

\[
\frac{d}{dt}\begin{bmatrix} \omega \\ \omega_t \\ \theta \\ \theta_t \end{bmatrix} = A_{k, \gamma}\begin{bmatrix} \omega \\ \omega_t \\ \theta \\ \theta_t \end{bmatrix}
\]

(31)

Remark 1 For initial data \([\omega^0, \omega^1, \theta^0]\) in \(D(A_{k, \gamma})\), the two equations of (1) may be written pointwise as

\[
P_{\gamma}\omega_{tt} = -\hat{A}_{k, \omega} - \alpha \eta_1 G\gamma_0 + \alpha A_D(I - D\gamma_0)\theta \text{ in } H_{-1, \gamma}^2(\Omega);
\]

(32)

\[
\beta \theta_t = -\eta A_D (I - D\gamma_0)\theta - \sigma \theta - \alpha A_D \omega_1 \text{ in } L^2_\gamma(\Omega).
\]

(33)

1.3 Previous Literature

In [3], J. Lagnese established the well-posedness and exponential stability of (1) with \(\gamma\) strictly positive, and with the following B.C.’s replacing those of (2):

\[
\begin{align*}
\omega &= \frac{\partial \omega}{\partial \nu} = 0 \text{ on } (0, \infty) \times \Gamma_0 \\
\Delta \omega + (1 - \mu) B_1 \omega + \alpha \theta &= \mathcal{F}_1(\omega_t) \text{ on } (0, \infty) \times \Gamma_1 \\
\frac{\partial \Delta \omega}{\partial \nu} + (1 - \mu) \frac{\partial B_2 \omega}{\partial \nu} - \gamma \frac{\partial \omega_{tt}}{\partial \nu} + \alpha \frac{\partial \theta}{\partial \nu} &= \mathcal{F}_2(\omega_t) \text{ on } (0, \infty) \times \Gamma_1,
\end{align*}
\]

(34)

where \(\Gamma = \Gamma_0 \cup \Gamma_1\), with \(\Gamma_0 \cap \Gamma_1 = \emptyset\), \(\Gamma_0 \neq \emptyset\), and \(\mathcal{F}_1(\omega_t), \mathcal{F}_2(\omega_t)\) are appropriately chosen dissipative feedbacks; the proof of Lagnese is based on the use of differential multipliers, and it exploits the fact that \(\gamma > 0\). Since, from a physical point of view, the thermal effects present should induce some measure of energy dissipation (in fact, one can show the system’s strong stability by routine methods), a natural question arising in this context is whether the system is actually (uniformly) stable without the boundary feedbacks \(\mathcal{F}_1(\omega_t), \mathcal{F}_2(\omega_t)\) in place, i.e. no added mechanical forces. Indeed, in the case \(\gamma = 0\), the answer to the question is in the affirmative and has been provided by several authors. With \(\gamma = 0\), Kim [2] showed the uniform stability of (1) with the boundary conditions \(\omega = \frac{\partial \omega}{\partial \nu} = \theta = 0\) on \(\Gamma\), as did Rivera and Racke in [10] with the boundary conditions \(\omega = \Delta \omega = \theta = 0\). Also with \(\gamma = 0\), Liu and Zheng in [9] proved the exponential stability of (1) with the boundary conditions

\[
\begin{align*}
\omega &= \frac{\partial \omega}{\partial \nu} = 0 \text{ on } (0, \infty) \times \Gamma_0 \\
\omega &= \Delta \omega + (1 - \mu) B_1 \omega + \alpha \theta = 0 \text{ on } (0, \infty) \times \Gamma_1,
\end{align*}
\]

(35)

where \(\Gamma_0\) and \(\Gamma_1\) are as in (34). The proof of Liu and Zheng is indirect in the sense that it is based on a contradiction argument applied to the exponential decay stability criterion (due to L.A.
Monauni, R. Nagel and F.L. Huang), a criterion essentially dictating the uniform estimate for that part of the resolvent which lies on the imaginary axis. On the other hand, it is now known that the case \(\gamma = 0 \) is rather special as the corresponding system (at least for certain boundary conditions) generates an analytic semigroup (see [8]), a consequence of which will be the exponential stability of the system (recall that the system is strongly stable). Given these results, the question of interest now is whether the given thermoelastic system (without any additional boundary dissipation) is uniformly stable in the nonanalytic case, viz. \(\gamma > 0 \) with consequently the elastic part of the system being of hyperbolic character.

The main goal of this paper is to provide an affirmative answer to the question posed above, pertaining to the case \(\gamma > 0 \). In fact, we shall show that the energy of (1) decays exponentially to zero with accompanying rates which are uniform with respect to the parameter \(\gamma > 0 \). In this way, we also reconstruct the stability result for \(\gamma = 0 \). Our proof is “direct”, based on pseudodifferential (or operator theoretic) multipliers, in contrast to the contradiction argument supplied in [9]; to the best of our knowledge, the proof by contradiction in [9] will run into essential difficulties when treating the nonanalytic case \(\gamma > 0 \). Another advantage of the “direct” proof provided herein is that it leads to explicit estimates of the decay rates.

1.4 Statement of the Results

We shall begin by giving preliminary results regarding the well-posedness of the system (1)–(2) and the regularity of its solutions.

Theorem 1 (well-posedness) Again with the parameters \(\kappa \) either 0 or 1 and \(\gamma > 0 \), \(A_{\kappa,\gamma} \), given by (30), generates a \(C_0 \)-semigroup of contractions \(\{ e^{A_{\kappa,\gamma} t} \} \) on the energy space \(H_{\kappa,\gamma} \); therefore for initial data \([\omega^0, \omega^1, \theta^0] \in H_{\kappa,\gamma} \), the solution \([\omega, \omega_t, \theta] \) to (31), and consequently to (1)–(2) is given by

\[
\begin{bmatrix}
\omega \\
\omega_t \\
\theta
\end{bmatrix} = e^{A_{\kappa,\gamma} t} \begin{bmatrix}
\omega^0 \\
\omega^1 \\
\theta^0
\end{bmatrix}.
\]

The following regularity result is needed to justify the computations performed below.

Theorem 2 (i) For initial data \([\omega^0, \omega^1, \theta^0] \in D \left(A_{\kappa,\gamma}^2 \right) \), we have that the solution \([\omega, \omega_t, \theta] \) to (1)–(2) satisfies \(\omega \in C([0, T]; H^4(\Omega)) \), \(\omega_t \in C([0, T]; H^3(\Omega)) \) and \(\theta \in C([0, T]; H^3(\Omega)) \).

(ii) \(\omega + \alpha \kappa G \gamma \theta \in C([0, T]; D(A_{\kappa})). \)

Our main result is:

Theorem 3 (uniform stability) With \(\kappa = 0 \) or 1 and \(\gamma > 0 \), the solution \([\omega, \omega_t, \theta] \) of (1)–(2) decays exponentially; that is, there exist constants \(\delta > 0 \) and \(M_\delta > 1 \) (independent of \(\kappa \) and \(\gamma \)) such that for all \(t > 0 \)

\[
\left\| \begin{bmatrix}
\omega(t) \\
\omega_t(t) \\
\theta(t)
\end{bmatrix} \right\|_{H_{\kappa,\gamma}} \leq M_\delta e^{-\delta t} \left\| \begin{bmatrix}
\omega^0 \\
\omega^1 \\
\theta^0
\end{bmatrix} \right\|_{H_{\kappa,\gamma}}.
\]

Remark 2 In a likewise manner, one could also show the well-posedness and exponential stability of (1) with other homogeneous boundary conditions replacing those of (2).

As mentioned above, we will prove Theorem 3 by explicitly applying a suitable operator theoretic multiplier.
2 Proofs

The proofs of well-posedness and of regularity (Theorems 1, 2) are by now fairly routine (see Chap. 7 in [3] for related well-posedness/regularity results). However, since these preliminaries are critical for our ultimate end of uniform stability, we provide their concise proofs for the sake of completeness.

2.1 Proof of Theorem 1

In establishing the semigroup generation of $\mathcal{A}_{\kappa,\gamma}$, we will show that the conditions of the Lumer-Phillips Theorem are satisfied; namely, we demonstrate here that $\mathcal{A}_{\kappa,\gamma}$ is maximal dissipative.

To show the dissipativity of $\mathcal{A}_{\kappa,\gamma}$: For $[\omega_1, \omega_2, \theta] \in D(\mathcal{A}_{\kappa,\gamma})$ we have

$$
\left(\mathcal{A}_{\kappa,\gamma} \begin{bmatrix} \omega_1 \\ \omega_2 \\ \theta \end{bmatrix}, \begin{bmatrix} \omega_1 \\ \omega_2 \\ \theta \end{bmatrix} \right)_{H_{\kappa,\gamma}} =
\left(\begin{bmatrix} \frac{1}{2} \mathcal{A}_{\kappa} \omega_2, \frac{1}{2} \mathcal{A}_{\kappa} \omega_1 \end{bmatrix} \right)_{L^2(\Omega)}
+ \left(\frac{3}{4} P^{-1}_\gamma (-\mathcal{A}_{\kappa} \omega_1 + \alpha A_D (I - D_{\gamma_0}) \theta - \alpha \kappa \mathcal{A}_1 G_{\gamma_0} \theta), P^{-1}_\gamma \omega_2 \right)_{L^2(\Omega)}
- \alpha \left(A_D \omega_2, \theta \right)_{L^2(\Omega)} - \left((\eta A_D (I - D_{\gamma_0}) + \sigma I) \theta, \theta \right)_{L^2(\Omega)};
$$

(38)

Using the standard result that

$$
\langle \omega^*, \omega \rangle_{H_{\gamma}^{-1}(\Omega) \times H_{\gamma}^1(\Omega)} = \langle \omega^*, \omega \rangle_{[D(\mathcal{A}^{\frac{1}{2}})]' \times D(\mathcal{A}^{\frac{1}{2}})} \text{ for every } \omega^* \in H_{\gamma}^{-1}(\Omega)
$$

(39)

and $\omega \in D(\mathcal{A}^{\frac{1}{2}})$, we have upon taking adjoints and using the characterization (19) in the second term on the RHS of (38),

$$
(38) = \left(\begin{bmatrix} \frac{1}{2} \mathcal{A}_{\kappa} \omega_2, \frac{1}{2} \mathcal{A}_{\kappa} \omega_1 \end{bmatrix} \right)_{L^2(\Omega)} - \left(\begin{bmatrix} \frac{1}{2} \mathcal{A}_{\kappa} \omega_1, \frac{1}{2} \mathcal{A}_{\kappa} \omega_2 \end{bmatrix} \right)_{[D(\mathcal{A}^{\frac{1}{2}})]' \times D(\mathcal{A}^{\frac{1}{2}})}
+ \alpha \left(A_D (I - D_{\gamma_0}) \theta, \omega_2 \right)_{L^2(\Omega)} - \alpha \kappa \left(\theta, \frac{\partial \omega_2}{\partial \nu} \right)_{L^2(\Gamma)}
- \alpha \left(A_D \omega_2, \theta \right)_{L^2(\Omega)} - \left((\eta A_D (I - D_{\gamma_0}) + \sigma I) \theta, \theta \right)
= \left(\begin{bmatrix} \frac{1}{2} \mathcal{A}_{\kappa} \omega_2, \frac{1}{2} \mathcal{A}_{\kappa} \omega_1 \end{bmatrix} \right)_{L^2(\Omega)} - \left(\begin{bmatrix} \frac{1}{2} \mathcal{A}_{\kappa} \omega_1, \frac{1}{2} \mathcal{A}_{\kappa} \omega_2 \end{bmatrix} \right)_{L^2(\Omega)} - \alpha \left(\Delta \theta, \omega_2 \right)_{L^2(\Omega)}
- \alpha \kappa \left(\theta, \frac{\partial \omega_2}{\partial \nu} \right)_{L^2(\Gamma)} + \alpha \left(\Delta \omega_2, \theta \right)_{L^2(\Omega)} + \left((\eta \Delta - \sigma I) \theta, \theta \right)_{L^2(\Omega)}
= \left(\begin{bmatrix} \frac{1}{2} \mathcal{A}_{\kappa} \omega_2, \frac{1}{2} \mathcal{A}_{\kappa} \omega_1 \end{bmatrix} \right)_{L^2(\Omega)} - \left(\begin{bmatrix} \frac{1}{2} \mathcal{A}_{\kappa} \omega_1, \frac{1}{2} \mathcal{A}_{\kappa} \omega_2 \end{bmatrix} \right)_{L^2(\Omega)} + \alpha (\nabla \theta, \nabla \omega_2)_{L^2(\Omega)}
- \alpha (\nabla \omega_2, \nabla \theta)_{L^2(\Omega)} - \eta \| \nabla \theta \|_{L^2(\Omega)}^2 - \lambda \eta \| \theta \|_{L^2(\Gamma)}^2 - \sigma \| \theta \|_{L^2(\Omega)}^2
\leq 0;
$$

(40)
i.e. \(A_{\kappa, \gamma} \) is dissipative.

To show the maximality of \(A_{\kappa, \gamma} \): if for some \(\xi > 0 \) and arbitrary \([f_1, f_2, f_3] \in H_{\kappa, \gamma}, [\omega_1, \omega_2] \in D(A_{\kappa, \gamma}) \) solves the equation

\[
(\xi I - A_{\kappa, \gamma}) \begin{bmatrix} \omega_1 \\ \omega_2 \\ \theta \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix},
\]

then this relation holds if and only if

\[
\begin{cases}
\xi \omega_1 - \omega_2 = f_1 \text{ in } D(\tilde{A}_{\kappa}^{\frac{1}{2}}), \\
\xi \omega_2 + P^{-1}_{\gamma} \left(\tilde{A}_{\kappa} \omega_1 + \alpha \kappa \tilde{A}_{1} G_{\gamma_0} \theta - \alpha A_{D}(I - D_{\gamma_0}) \omega \right) = f_2 \text{ in } H_{0, \gamma}^1(\Omega), \\
\xi \theta + \frac{\alpha}{\beta} A_{D} \omega_2 + \eta A_{D}(I - D_{\gamma_0}) \theta + \frac{\sigma}{\beta} \theta = f_3 \text{ in } L^2_\sigma(\Omega)
\end{cases}
\]

\[
\Leftrightarrow
\begin{cases}
\xi^3 P_{\gamma} \omega_1 + \xi \tilde{A}_{\kappa} \omega_1 + \alpha \kappa \tilde{A}_{1} G_{\gamma_0} \theta - \alpha \xi A_{R} \theta = \xi P_{\gamma} f_2 + \xi^2 P_{\gamma} f_1 \text{ in } H_{\gamma}^{-1}(\Omega), \\
\beta \xi \theta + \alpha \xi A_{D} \omega_1 + \eta A_{R} \theta + \sigma \theta = \beta f_3 + \alpha A_{D} f_1 \text{ in } L^2(\Omega)
\end{cases}
\]

(given that \(\theta \in D(A_{R}) \) as defined in (12)). At this point we bring forth the following:

Proposition 1 The operator \(F \) defined by

\[
F = \begin{bmatrix} \xi^3 P_{\gamma} + \xi \tilde{A}_{\kappa} & \alpha \kappa \tilde{A}_{1} G_{\gamma_0} - \alpha \xi A_{R} \\
\alpha \xi A_{D} & (\beta \xi + \sigma) I + \eta A_{R} \end{bmatrix},
\]

is an element of \(L \left(D(\tilde{A}_{\kappa}^{\frac{1}{2}}) \times H^1(\Omega) \cap L^2_\sigma(\Omega), \left[D(\tilde{A}_{\kappa}^{\frac{1}{2}}) \right]' \times [H^1(\Omega) \cap L^2_\sigma(\Omega)]' \right) \) and is boundedly invertible.

Proof of Proposition 1. We first note (by Green’s Theorem) that for arbitrary \(\theta \in D(A_{R}) \) and \(\omega \in D(\tilde{A}_{\kappa}^{\frac{1}{2}}) \),

\[
\langle A_{R} \theta, \omega \rangle_{D(\tilde{A}_{\kappa}^{\frac{1}{2}})' \times D(\tilde{A}_{\kappa}^{\frac{1}{2}})} = (\nabla \theta, \nabla \omega)_{L^2(\Omega)};
\]

the characterization (13) and an extension by continuity will then have that (45) holds \(\forall \theta \in H^1(\Omega) \cap L^2_\sigma(\Omega) \). (45) in turn, when coupled with (14), (23) and (19), will yield the asserted boundedness of \(F \), and moreover (39), (23), (14), (19), (45) and Green’s formula will provide the following coercivity inequality for all \([\omega, \theta] \in D(\tilde{A}_{\kappa}^{\frac{1}{2}}) \times H^1(\Omega) \cap L^2_\sigma(\Omega) \):

\[
\left\langle F \begin{bmatrix} \omega \\ \theta \end{bmatrix}, \begin{bmatrix} \omega \\ \theta \end{bmatrix} \right\rangle = \xi^3 \| \omega \|^2_{L^2(\Omega)} + \xi^3 \gamma \| \nabla \omega \|^2_{L^2(\Omega)} + \xi \left\| \Lambda_{\kappa}^{\frac{1}{2}} \omega \right\|^2_{L^2(\Omega)}
\]

\[
- \alpha \xi (\nabla \theta, \nabla \omega)_{L^2(\Omega)} + \alpha \xi (\nabla \theta, \nabla \omega)_{L^2(\Omega)}
\]

\[
+ C(\eta, \lambda) \| \theta \|^2_{H^1(\Omega)} + (\beta \xi + \sigma) \| \theta \|^2_{L^2(\Omega)}
\]

\[
\geq C(\eta, \lambda, \xi) \left(\left\| \Lambda_{\kappa}^{\frac{1}{2}} \omega \right\|^2_{L^2(\Omega)} + \| \theta \|^2_{H^1(\Omega) \cap L^2_\sigma(\Omega)} \right)
\]
(where \(\langle \cdot, \cdot \rangle \) in (46) denotes the pairing between \(D(A_{1/2}^\sigma) \times H^1(\Omega) \cap L_0^2(\Omega) \) and its dual). Thus, by Lax–Milgram, \(F^{-1} \) exists as an element of \(\mathcal{L}\left(\left[D(A_{1/2}^\sigma)\right]' \times [H^1(\Omega) \cap L_0^2(\Omega)]', D(A_{1/2}^\sigma) \times H^1(\Omega) \cap L_0^2(\Omega)\right) \), and the Proposition is proved.

To complete the proof of the maximality of \(A_{\kappa, \gamma} \), we apply the inverse assured by Proposition 1 to both sides of (43) to obtain

\[
\begin{bmatrix}
\omega_1 \\
\theta
\end{bmatrix} = F^{-1} \begin{bmatrix}
\xi P_\gamma f_2 + \xi^3 P_\gamma f_1 \\
\beta f_3 + \alpha A_D f_1
\end{bmatrix}
\]

and \textit{a fortiori}, one has, by using the second equation in (43), that

\[
A_R \theta = -\frac{\beta \xi}{\eta} \theta - \frac{\alpha \xi}{\eta} A_D \omega_1 - \frac{\sigma}{\eta} \theta + \frac{\beta}{\eta} f_3 + \frac{\alpha}{\eta} A_D f_1 \in L^2(\Omega),
\]

viz. \(\theta \in D(A_R) \cap L_0^2(\Omega) \). This additional regularity of \(\theta \), in conjunction with that implied in the first equation of (43), and along with the inclusion given in the third equation of (42), gives that our constructively acquired solution \(\omega_1, \omega_2, \theta \) to (41) is in \(D(A_{\kappa, \gamma}) \) as defined in (30). Hence, \(A_{\kappa, \gamma} \) is maximal dissipative and the proof of Theorem 1 is complete.

2.2 Proof of Theorem 2

By definition, if \([\omega_0, \omega^1, \theta^0] \in D(A_{\kappa, \gamma}) \), then

\[
A_{\kappa} \omega^0 + \alpha \kappa A_1 G_\gamma \theta^0 = g \in H^{-1}_\gamma(\Omega) = \left[D(A_{1/2}^\sigma)\right]',
\]

as \(A_{\kappa}^{-1} : \left[D(A_{1/2}^\sigma)\right]' \rightarrow D(A_{1/2}^\sigma) \subset H^2(\Omega) \) (this last containment deduced by the characterizations in [1]), we have after applying \(A_{\kappa}^{-1} \) to (48), the use of trace theory and the regularity posted in (18) that

\[
\omega^0 = A_{\kappa}^{-1} g - \alpha \kappa G_\gamma \theta^0 \in H^3(\Omega).
\]

Thus, for \([\omega_0, \omega^1, \theta^0] \in D(A_{\kappa, \gamma}^2) \),

\[
A_{\kappa, \gamma} \begin{bmatrix}
\omega^0 \\
\omega^1 \\
\theta^0
\end{bmatrix} = \begin{bmatrix}
-P_\gamma^{-1} A_{\kappa} \omega^0 - \alpha \kappa P_\gamma^{-1} A_1 G_\gamma \theta^0 + P_\gamma^{-1} \alpha A_D (I - D_{\gamma}) \theta^0 \\
-\eta \beta A_D (I - D_{\gamma}) \theta^0 - \sigma \theta^0 - \frac{\alpha}{\beta} \Delta \omega^1
\end{bmatrix} \in D(A_{\kappa, \gamma}),
\]

and (50) coupled with (48) implies that

\[
\omega^1 \in H^3(\Omega).
\]

In addition, the last component on the \(\text{RHS} \) of (50), (51) and (61) give that

\[
\frac{\eta}{\beta} A_R \theta^0 + \frac{\sigma}{\beta} \theta^0 = h + \frac{\alpha}{\beta} \Delta \omega^1 \in H^1(\Omega),
\]

where \(h \in H^2(\Omega) \): applying \((\frac{\eta}{\beta} A_R + \frac{\sigma}{\beta} I)^{-1}\) to both sides of (52) thus yields

\[
\theta^0 \in H^3(\Omega).
\]
Moreover, (50) also has

\[P_\gamma^{-1} A_\kappa \omega^0 + \alpha \kappa P_\gamma^{-1} A_1 G_\gamma \theta^0 = g + P_\gamma^{-1} \alpha A_D (I - D_\gamma) \theta^0 \]

(54)

where \(g \in D(A_{\frac{1}{2}}) \subset D(A_D) \), or equivalently

\[A_\kappa \omega^0 + \alpha \kappa A_1 G_\gamma \theta^0 = g - \gamma \Delta g + \alpha \Delta \theta^0 \in L^2(\Omega). \]

(55)

A fortiori then, \(\omega^0 + \alpha \kappa G_\gamma \theta^0 \in D(A_{\frac{1}{2}}) \subset H^4(\Omega) \). But trace theory and the smoothing specified in (18) give that \(G_\gamma \theta^0 \in H^4(\Omega) \), and thus \(D(A_{\frac{1}{2}}) \subset H^4(\Omega) \times H^3(\Omega) \times H^2(\Omega) \) with continuous inclusion. The solution \([\omega, \omega_t, \theta] \in D(A_{\frac{1}{2}}^2) \) will consequently have the asserted regularity upon consideration of the fundamental property that for \(\xi \geq 0 \), \([\omega^0, \omega^1, \theta^0] \in D(A_{\frac{1}{2}}^2) \Rightarrow \)

\[\begin{bmatrix} \omega \\ \omega_t \\ \theta \end{bmatrix} = e^{A_{\kappa, \gamma}(\xi)} \begin{bmatrix} \omega^0 \\ \omega^1 \\ \theta^0 \end{bmatrix} \in C\left([0, T]; D\left(A_{\frac{1}{2}}^2\right)\right). \]

(56)

To prove (ii), we note that with \([\omega^0, \omega^1, \theta^0] \in D(A_{\frac{1}{2}}^2), \omega_{tt} \in C\left([0, T]; D(A_{\frac{1}{2}}^2)\right)\), so the solution \([\omega, \omega_t, \theta] \) to (1) satisfies

\[-A_\kappa \omega - \alpha \kappa A_1 G_\gamma \theta = \omega_{tt} - \gamma \Delta \omega_{tt} + \alpha A_D (I - D_\gamma) \theta \]

in \(C([0, T]; L^2(\Omega)) \), which establishes the result. \(\square \)

Remark 3 Because of the regularity result posted in **Theorem 2 (ii)**, we have for sufficiently smooth initial data the valid representation

\[A_\kappa \omega + \alpha \kappa A_1 G_\gamma \theta = \Delta^2 \omega. \]

(58)

2.3 Proof of Theorem 3

In proving **Theorem 3**, we begin with a preliminary energy identity.

Lemma 1 Again, with initial data \([\omega^0, \omega^1, \theta^0] \in H_{\kappa, \gamma}, \) we have that the component \(\theta \) of the solution of (1)–(2) is an element of \(L^2 \left((0, \infty); H^1(\Omega) \cap L^2(\Omega) \right) \); indeed, we have the following relation \(\forall T > 0: \)

\[-2 \int_0^T \left[\eta \| \nabla \theta \|^2_{L^2(\Omega)} + \sigma \| \theta \|^2_{L^2(\Omega)} + \lambda \eta \| \theta \|^2_{L^2(\Omega)} \right] dt = E_\gamma(T) - E_\gamma(0), \]

(59)

where the “energy” \(E_\gamma(t) \) is defined by

\[E_\gamma(t) \equiv \left\| A_\kappa \omega(t) \right\|_{L^2(\Omega)}^2 + \left\| P_\gamma^\frac{1}{2} \omega(t) \right\|_{L^2(\Omega)}^2 + \beta \| \theta(t) \|_{L^2(\Omega)}^2. \]

(60)

Proof: Starting with initial data in \(D(A_{\kappa, \gamma}) \) which will provide \(\forall T > 0 \) that the solution \([\omega, \omega_t, \theta] \in C([0, T]; D(A_{\kappa, \gamma})) \) and \([\omega_t, \omega_{tt}, \theta] \in C([0, T]; H_{\kappa, \gamma}) \), we have pointwise on \((0, T)\)

\[\frac{d}{dt} \left\| \begin{bmatrix} \omega(t) \\ \omega_t(t) \\ \theta(t) \end{bmatrix} \right\|_{H_{\kappa, \gamma}}^2 = 2 \left(A_{\kappa, \gamma} \begin{bmatrix} \omega(t) \\ \omega_t(t) \\ \theta(t) \end{bmatrix}, \begin{bmatrix} \omega(t) \\ \omega_t(t) \\ \theta(t) \end{bmatrix} \right)_{H_{\kappa, \gamma}}. \]
and for this special choice of initial data we will have the desired equality (59) upon integration and using the fact that

$$(A_D(I - D_{\gamma_1})\theta, \theta)_{L^2(\Omega)} = (A_R\theta, \theta)_{L^2(\Omega)} = \|\nabla \theta\|_{L^2(\Omega)}^2 + \lambda \|\theta\|_{L^2(\Gamma)}^2$$

for $\theta \in D(A_R)$. (61)

For $\sigma > 0$, The asserted L^2-regularity follows immediately from (59), inasmuch as $\{ e^{4^* t^1} \}_{t \geq 0}$ is a contraction semigroup; for $\sigma = 0$, (59) will still yield that $\theta \in L^2(0, \infty; H^1(\Omega) \cap L^2(\Omega))$, after recalling that $\int_\Omega |\nabla \theta|^2 \geq \int_\Omega \theta^2$ for all $\theta \in H^1(\Omega) \cap L^2(\Omega)$, and again using the contraction of the semigroup. A density argument then concludes the proof. □

Remark 4. J. Lagnese in [3] first showed the dissipativity property (59) through a formal integration and a consequent justification through variational arguments, and the alternate proof is included here as a simple consequence of contractive semigroups.

We next derive a trace regularity result for the clamped model which does not follow from the standard Sobolev trace theorem, and which is critical in our estimates of uniform decay. We note that related trace regularity results for Euler Bernoulli plates were proved in [6], and for Kirchoff plates in [5].

Lemma 2. With $\kappa = 0$ in (1), one has the component ω of the solution $[\omega, \omega_t, \theta]$ satisfies $\omega_t \in L^2(0, T; L^2(\Gamma))$ with the estimate

$$\int_0^T \|\Delta \omega\|^2_{L^2(\Gamma)} \, dt \leq C \left(\int_0^T \left[\left\| \hat{A}^{\frac{1}{2}} \omega \right\|^2_{L^2(\Omega)} + \left\| \hat{P}^{\frac{1}{2}} \omega_t \right\|^2_{L^2(\Omega)} + \|\nabla \theta\|^2_{L^2(\Gamma)} \right] \, dt
+ E_\gamma(T) + E_\gamma(0) \right).$$

Proof: If we take initial data $[\omega^0, \omega^1, \theta^0]$ in $D(A_{0, \gamma}^2)$, then **Theorem 2** provides that $[\omega, \omega_t, \theta]$ is a classical pointwise solution of (1). We will work to extract the desired estimate (62) in this special case—and consequently for all initial data after an extension by continuity—by multiplying the first equation of (1) by the quantity $h \cdot \nabla \omega$, where $h(x, y) \equiv \{ h_1(x, y), h_2(x, y) \}$ is a $[C^2(\bar{\Omega})]^2$ vector field such that $h|_{\Gamma} = [\nu_1, \nu_2]$, and then integrating from 0 to T; i.e. we will work with the equation

$$\int_0^T \left(\omega_{tt} - \gamma \Delta \omega_{tt} + \Delta^2 \omega + \alpha \Delta \theta, h \cdot \nabla \omega \right)_{L^2(\Omega)} \, dt = 0. \tag{63}$$

(i) First,

$$\int_0^T (\omega_t, h \cdot \nabla \omega)_{L^2(\Omega)} \, dt = (\omega_t, h \cdot \nabla \omega)_{L^2(\Omega)} \bigg|_0^T - \int_0^T (\omega_t, h \cdot \nabla \omega_t)_{L^2(\Omega)} \, dt$$

$$= (\omega_t, h \cdot \nabla \omega)_{L^2(\Omega)} \bigg|_0^T - \frac{1}{2} \int_0^T \int_\Omega \text{div}(\omega_t^2 \nabla \omega) \, dtd\Omega$$

$$+ \frac{1}{2} \int_0^T \int_\Omega \omega_t^2 \{ h_{1x} + h_{2y} \} \, dtd\Omega$$

$$= (\omega_t, h \cdot \nabla \omega)_{L^2(\Omega)} \bigg|_0^T + \frac{1}{2} \int_0^T \int_\Omega \omega_t^2 \{ h_{1x} + h_{2y} \} \, dtd\Omega,$$

after making use of the divergence theorem and the fact that $\omega_t = 0$ on Γ.

11
(ii) Next

\[
\int_0^T (\Delta \omega_t, h \cdot \nabla \omega)_{L^2(\Omega)} \, dt = (\nabla \omega_t, \nabla (h \cdot \nabla \omega))_{L^2(\Omega)} |^T_0 \\
- \int_0^T (\nabla \omega_t, \nabla (h \cdot \nabla \omega))_{L^2(\Omega)} \, dt
\]

\[
= \left(\nabla \omega_t, \nabla (h \cdot \nabla \omega) \right)_{L^2(\Omega)} |^T_0 - \frac{1}{2} \int_0^T \int_\Omega \text{div} \left(|\nabla \omega_t|^2 \right) \, dt \, d\Omega \\
- \int_0^T \int_\Omega \left[\frac{\omega_{tx}^2 h_{1x}}{2} + \frac{\omega_{ty}^2 h_{2y}}{2} \right] \, dt \, d\Omega - \int_0^T \int_\Omega (\omega_{tx} \omega_{ty} h_{2x} + \omega_{tx} \omega_{tx} h_{1y}) \, dt \, d\Omega \\
+ \int_0^T \int_\Omega \left[\frac{\omega_{tx}^2 h_{2y}}{2} + \frac{\omega_{ty}^2 h_{1x}}{2} \right] \, dt \, d\Omega
\]

\[
= \left(\nabla \omega_t, h \cdot \nabla \omega \right)_{L^2(\Omega)} |^T_0 \\
+ \int_0^T \int_\Omega \left[\frac{\omega_{tx}^2 h_{2y}}{2} + \frac{\omega_{ty}^2 h_{1x}}{2} - \frac{\omega_{tx}^2 h_{1x}}{2} - \frac{\omega_{ty}^2 h_{2y}}{2} \right] \, dt \, d\Omega \\
- \int_0^T \int_\Omega (\omega_{tx} \omega_{ty} h_{2x} + \omega_{tx} \omega_{tx} h_{1y}) \, dt \, d\Omega,
\]

after again using the divergence theorem and the fact that \(\int_{\Omega} \text{div} \left(|\nabla \omega_t|^2 \right) \, d\Omega = \int_{\Gamma} |\nabla \omega_t|^2 \, d\Gamma = 0 \) (as \(\omega(t) \in H^2(\Omega) \)).

(iii) To handle the fourth order term, we use Green’s Theorem and the B.C. (5) to obtain

\[
\int_0^T (\Delta^2 \omega, h \cdot \nabla \omega)_{L^2(\Omega)} \, dt = \int_0^T a(\omega, h \cdot \nabla \omega) \, dt \\
- \int_{\Gamma} (\Delta \omega + (1 - \mu) B_1 \omega) \frac{\partial (h \cdot \nabla \omega)}{\partial \nu} \, dt \, d\Gamma. \tag{64}
\]

We note at this point that we can rewrite the first term on the RHS of (64) as

\[
\int_0^T a(\omega, h \cdot \nabla \omega) \, dt = \frac{1}{2} \int_0^T \int_\Omega h \cdot \nabla \left[\omega_{xx}^2 + \omega_{yy}^2 + 2\mu \omega_{xx} \omega_{yy} + 2(1 - \mu) \omega_{xy}^2 \right] \, dt \, d\Omega \\
+ \mathcal{O} \left(\int_0^T \| \bar{A}^2 \omega \|_{L^2(\Omega)}^2 \, dt \right), \tag{65}
\]
where $O \left(\int_0^T \left\| \mathbf{A}_0^{1/2} \omega \right\|_{L^2(\Omega)}^2 \, dt \right)$ denotes a series of terms which can be majorized by the $L^2(0, T; D(A_0^{1/2}))$-norm of ω; in turn we have by the divergence theorem that

\[
\int_0^T \int_{\Omega} h \cdot \nabla \left[\omega_{xx}^2 + \omega_{yy}^2 + 2\mu \omega_{xx} \omega_{yy} + 2(1 - \mu) \omega_{xy}^2 \right] \, dt \, d\Omega = \int_0^T \int_{\Gamma} \text{div} \left\{ h \left[\omega_{xx}^2 + \omega_{yy}^2 + 2\mu \omega_{xx} \omega_{yy} + 2(1 - \mu) \omega_{xy}^2 \right] \right\} \, d\Gamma \\
+ O \left(\int_0^T \left\| \mathbf{A}_0^{1/2} \omega \right\|_{L^2(\Omega)}^2 \, dt \right)
\]

\[
= \int_0^T \int_{\Omega} \left[\omega_{xx}^2 + \omega_{yy}^2 + 2\mu \omega_{xx} \omega_{yy} + 2(1 - \mu) \omega_{xy}^2 \right] \, dt \, d\Omega \\
+ O \left(\int_0^T \left\| \mathbf{A}_0^{1/2} \omega \right\|_{L^2(\Omega)}^2 \, dt \right).
\] (66)

As $\omega |_{\Gamma} = \frac{\partial \omega}{\partial \nu} |_{\Gamma} = 0$, we consequently have (as reasoned in [3], Ch. 4) that

\[
\omega_{xx}^2 + \omega_{yy}^2 + 2\mu \omega_{xx} \omega_{yy} + 2(1 - \mu) \omega_{xy}^2 = (\Delta \omega)^2 \text{ on } \Gamma; \text{ furthermore } B_1 \omega = 0, \text{ which implies that } \\
\Delta \omega = \frac{\partial^2 \omega}{\partial \nu^2} = \frac{\partial \mathbf{h} \cdot \nabla \omega |_{\Gamma}}{\partial \nu}. \text{ We consequently have upon the insertion of (65) and (66) into (64) that}
\]

\[
\int_0^T (\Delta^2 \omega, h \cdot \nabla \omega)_{L^2(\Omega)} \, dt = -\frac{1}{2} \int_0^T \| \Delta \omega \|_{L^2(\Omega)}^2 \, dt + O \left(\int_0^T \left\| \mathbf{A}_0^{1/2} \omega \right\|_{L^2(\Omega)}^2 \, dt \right).
\] (67)

(iv) To handle the last term of the equation (63), Green’s theorem again gives

\[
\int_0^T (\Delta \theta, h \cdot \nabla \omega)_{L^2(\Omega)} \, dt = -\int_0^T (\nabla \theta, \nabla (h \cdot \nabla \omega))_{L^2(\Omega)} \, dt.
\]

To finish the proof, we rewrite (63) by collecting the relations given by (i)–(ii),(67) and (iv) to thereby attain the inequality (62), upon taking norms and majorizing. \square

In showing the exponential decay of the semigroup $\{e^{A_0 \cdot t}\}_{t \geq 0}$ (Theorem 3) it will suffice, as usual, to prove that there exists a time $0 < T < \infty$ and a corresponding constant C_T which satisfies for all initial data in $H_{\kappa, \gamma}$,

\[
E_\gamma(T) \leq \xi E_\gamma(0) \text{ with } \xi < 1 \text{ and independent of } \gamma > 0.
\] (68)

By a density argument, it will then be enough by Lemma 1 to show the existence of a time $0 < T < \infty$ and constant C_T (independent of γ) for initial data in $[\omega^0, \omega^1, \theta^0] \in D(A^{2}_{\kappa, \gamma})$ such that

\[
E_\gamma(T) \leq C_T \int_0^T \| \theta \|_{H^1(\Omega) \cap L^2(\Omega)}^2 \, dt.
\] (69)
to which end we will proceed to work.

Because of Lemma 2, we have for initial data \([\omega^0, \omega^1, \theta^0]\) \(\in D\left(A^2_{\kappa, \gamma}\right)\) a classical pointwise solution \([\omega, \omega_t, \theta]\) of (1)–(2); we can thus multiply the first equation in (1) by \(A^{-1}_D\theta\), integrate from 0 to \(T\) and obtain

\[
\int_0^T \left[(\omega_{tt} - \gamma \Delta \omega_{tt} + \Delta^2 \omega + \alpha \Delta \theta, A^{-1}_D \theta)_{L^2(\Omega)} \right] dt = 0.
\]

(70)

In dealing with this equation, we note the following:

(A.1) Using an integration by parts and the second differential equation of (1) produces

\[
\int_0^T (\omega_{tt} - \gamma \Delta \omega_{tt}, A^{-1}_D \theta)_{L^2(\Omega)} dt = \left. (\omega_t, A^{-1}_D \theta)_{L^2(\Omega)} \right|_0^T + \gamma \left. (\nabla \omega_t, \nabla A^{-1}_D \theta)_{L^2(\Omega)} \right|_0^T
\]

\[
- \int_0^T \left[(\omega_t, A^{-1}_D \theta)_{L^2(\Omega)} + \gamma \left. (\nabla \omega_t, \nabla A^{-1}_D \theta)_{L^2(\Omega)} \right) dt
\]

\[
= \alpha \beta^{-1} \int_0^T \left[||\omega_t||^2_{L^2(\Omega)} + \gamma ||\nabla \omega_t||^2_{L^2(\Omega)} \right] dt
\]

\[
+ \beta^{-1} \int_0^T (\omega_t, \eta (I - D\gamma_0) \theta + \sigma A^{-1}_D \theta)_{L^2(\Omega)} dt
\]

\[
+ \beta^{-1} \gamma \int_0^T (\nabla \omega_t, \nabla (\eta (I - D\gamma_0) \theta + \sigma A^{-1}_D \theta))_{L^2(\Omega)} dt
\]

\[
+ (\omega_t, A^{-1}_D \theta)_{L^2(\Omega)} \left|_0^T + \gamma \left. (\nabla \omega_t, \nabla A^{-1}_D \theta)_{L^2(\Omega)} \right|_0^T
\];

(A.2) Yet another application of Green’s theorem and the characterization (7) give

\[
\int_0^T (\Delta^2 \omega, A^{-1}_D \theta) dt = \int_0^T a (\omega, A^{-1}_D \theta) - \int_0^T \left(\Delta \omega + (1 - \mu) B_1 \omega, \frac{\partial A^{-1}_D \theta}{\partial \nu} \right)_{L^2(\Gamma)} dt
\]

with \(a(\cdot, \cdot)\) is as defined in (8), where

\[
\Delta \omega + (1 - \mu) B_1 \omega = \begin{cases} -\alpha \theta, & \text{if } \kappa = 1 \\ \Delta \omega \in L^2(0, T; L^2(\Gamma)), & \text{if } \kappa = 0 \text{ (see Lemma 2)}; \end{cases}
\]

(A.3) Finally, for the last term of (70)

\[
\alpha \int_0^T (A_D (I - D\gamma_0) \theta, A^{-1}_D \theta)_{L^2(\Omega)} dt = \alpha \int_0^T \left[||\theta||^2_{L^2(\Omega)} - (D\gamma_0 \theta, \theta)_{L^2(\Omega)} \right] dt.
\]

As \(D\gamma_0 \in L(H^1(\Omega))\), then (70) and (A.1)–(A.3), yields, after taking norms and estimating (using (62) for the case \(\kappa = 1\):
(A.4) For $\epsilon_1 > 0$ small enough and $\epsilon_2 > 0$, there exist constants $C_{\epsilon_1}, C > 0$ such that the solution $[\omega, \omega_t, \theta]$ of (1)–(2) satisfies

$$C_{\epsilon_1} \int_0^T \left[||\omega_t||^2_{L^2(\Omega)} + \gamma ||\nabla \omega_t||^2_{L^2(\Omega)} \right] dt \leq C \left[\int_0^T ||\nabla \theta||^2_{L^2(\Omega)} + ||\theta||^2_{L^2(\Omega)} dt \right]
+ E(T) + E(0) + \epsilon_2 \int_0^T \left\| \mathbf{A}_{\kappa}^{\frac{1}{2}} \omega \right\|^2_{L^2(\Omega)} dt,$$

(71)

where the noncrucial dependence of C upon ϵ_1 and ϵ_2 has not been noted.

To majorize the norm of the component ω, we multiply (32) by ω and integrate from 0 to T to obtain

$$\left(P_\gamma^{\frac{1}{2}} \omega_t, P_\gamma^{\frac{1}{2}} \omega \right)_{L^2(\Omega)} - \int_0^T \left\| P_\gamma^{\frac{1}{2}} \omega_t \right\|^2_{L^2(\Omega)} dt = - \int_0^T \left\| \mathbf{A}_{\kappa}^{\frac{1}{2}} \omega \right\|^2_{L^2(\Omega)} dt
- \alpha \kappa \int_0^T \left(\frac{\partial \omega}{\partial v}, \frac{\partial \omega}{\partial v} \right)_{L^2(\Gamma)} dt + \alpha \int_0^T (\nabla \omega, \nabla \omega)_{L^2(\Omega)} dt,$$

(72)

and thus arrive at

(A.5) There exists a constant $C > 0$ such that for $\epsilon > 0$ small enough, the solution $[\omega, \omega_t, \theta]$ of (1)–(2) satisfies

$$\left(1 - \epsilon \right) \int_0^T \left\| \mathbf{A}_{\kappa}^{\frac{1}{2}} \omega \right\|^2_{L^2(\Omega)} dt \leq C \int_0^T \left[||\omega_t||^2_{L^2(\Omega)} + \gamma ||\nabla \omega_t||^2_{L^2(\Omega)} \right] dt
+ C \left(\int_0^T ||\omega_t||^2_{L^2(\Omega)} dt + E_\gamma(T) + E_\gamma(0) \right),$$

(73)

where the noncrucial dependence of C upon ϵ has not been noted.

Thus, if ϵ_2 of (A.4) is small enough, we then have, upon combining (A.4) and (A.5), the existence of a constant C (independent of γ) such that

$$\int_0^T \left[\left\| \mathbf{A}_{\kappa}^{\frac{1}{2}} \omega \right\|^2_{L^2(\Omega)} + ||\omega_t||^2_{L^2(\Omega)} + \gamma ||\nabla \omega_t||^2_{L^2(\Omega)} \right] dt \leq C \left[E_\gamma(T) + E_\gamma(0) + \int_0^T \left[||\nabla \theta||^2_{L^2(\Omega)} + ||\theta||^2_{L^2(\Omega)} \right] dt \right].$$

(74)

To conclude the proof of Theorem 3, we apply the relation (59) and its inherent dissipativity property (that is, $E_\gamma(T) \leq E_\gamma(t) \forall 0 \leq t \leq T$) to (74) to finally attain the sought–after inequality; namely, for $T > 2C$ (with C independent of $\gamma > 0$),

$$E_\gamma(T) < \frac{3C}{T - 2C} \int_0^T ||\theta||^2_{L^2(\Omega)} dt$$

(75)

which, as noted above, will imply (68).
Remark 5 We note that our proof can easily be adapted to the situation where boundary conditions are partially clamped and $\gamma \equiv 0$. as was considered recently by Liu and Zheng in [2]; that is, with $\Gamma = \Gamma_0 \cup \Gamma_1$, and $\Gamma_0 \cap \Gamma_1 = \emptyset$, we can show, by the same direct method employed for Theorem 3, the uniform decay of solutions of (1) with $\gamma \equiv 0$ and the boundary conditions

\[
\begin{align*}
 \omega &= \frac{\partial \omega}{\partial \nu} = 0 \text{ on } (0, \infty) \times \Gamma_0 \\
 \omega &= \Delta \omega + (1 - \mu)B_1 \omega + \alpha \theta = 0 \text{ on } (0, \infty) \times \Gamma_1.
\end{align*}
\]

(76)

Indeed, all the arguments presented above will be the same (with $P_0 \equiv$ the identity map on $L^2(\Omega)$), the sole exception being that the requisite regularity lemma is applied only on a portion of the boundary. Thus, instead of Lemma 2, we will use

Lemma 3 the component ω of the unique solution $[\omega, \omega_t, \theta]$ to (1)–(76) satisfies $\Delta \omega|_{\Gamma} \in L^2(0, T; L^2(\Gamma_0))$ with the estimate

\[
\int_0^T \|\Delta \omega\|^2_{L^2(\Gamma_0)} dt \leq C \left(\int_0^T \left[a(\omega, \omega) + \|\nabla \theta\|^2_{L^2(\Omega)} \right] dt + E(T) + E(0) \right),
\]

(77)

where $E(t) \equiv a(\omega(t), \omega(t)) + \|\omega_t(t)\|^2_{L^2(\Omega)} + \beta \|\theta(t)\|^2_{L^2(\Omega)}$, and $a(\cdot, \cdot)$ is as defined in (8).

References

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1276</td>
<td>Z. Chen & R.E. Ewing</td>
<td>Stability and convergence of a finite element method for reactive transport in ground water</td>
</tr>
<tr>
<td>1277</td>
<td>Z. Chen & Do Y. Kwak</td>
<td>The analysis of multigrid algorithms for nonconforming and mixed methods for second order elliptic problems</td>
</tr>
<tr>
<td>1278</td>
<td>Z. Chen</td>
<td>Expanded mixed finite element methods for quasilinear second order elliptic problems II</td>
</tr>
<tr>
<td>1279</td>
<td>M.A. Horn & W. Littman</td>
<td>Boundary control of a Schrödinger equation with nonconstant principal part</td>
</tr>
<tr>
<td>1281</td>
<td>S. Maliassov</td>
<td>Substructuring preconditioning for finite element approximations of second order elliptic problems. II. Mixed method for an elliptic operator with scalar tensor</td>
</tr>
<tr>
<td>1282</td>
<td>V. Jakšić & C.-A. Pillet</td>
<td>On model for quantum friction II. Fermi's golden rule and dynamics at positive temperatures</td>
</tr>
<tr>
<td>1283</td>
<td>V. M. Malkin</td>
<td>Kolmogorov and nonstationary spectra of optical turbulence</td>
</tr>
<tr>
<td>1284</td>
<td>E.G. Kalnins, V.B. Kuznetsov & W. Miller, Jr.</td>
<td>Separation of variables and the XXZ Gaudin magnet</td>
</tr>
<tr>
<td>1285</td>
<td>E.G. Kalnins & W. Miller, Jr.</td>
<td>A note on tensor products of q-algebra representations and orthogonal polynomials</td>
</tr>
<tr>
<td>1286</td>
<td>E.G. Kalnins & W. Miller, Jr.</td>
<td>q-algebra representations of the Euclidean, pseudo-Euclidean and oscillator algebras, and their tensor products</td>
</tr>
<tr>
<td>1287</td>
<td>L.A. Pastur</td>
<td>Spectral and probabilistic aspects of matrix models</td>
</tr>
<tr>
<td>1288</td>
<td>K. Kastella</td>
<td>Discrimination gain to optimize detection and classification</td>
</tr>
<tr>
<td>1289</td>
<td>L.A. Peletier & W.C. Troy</td>
<td>Spatial patterns described by the Extended Fisher-Kolmogorov (EFK) equation: Periodic solutions</td>
</tr>
<tr>
<td>1290</td>
<td>A. Friedman & Y. Liu</td>
<td>Propagation of cracks in elastic media</td>
</tr>
<tr>
<td>1291</td>
<td>A. Friedman & C. Huang</td>
<td>Averaged motion of charged particles in a curved strip</td>
</tr>
<tr>
<td>1292</td>
<td>G. R. Sell</td>
<td>Global attractors for the 3D Navier-Stokes equations</td>
</tr>
<tr>
<td>1293</td>
<td>C. Liu</td>
<td>A uniqueness result for a general class of inverse problems</td>
</tr>
<tr>
<td>1294</td>
<td>H.O. Kreiss</td>
<td>Numerical solution of problems with different time scales II</td>
</tr>
<tr>
<td>1295</td>
<td>B. Cockburn, G. Gripenberg, S-O. Londen</td>
<td>On convergence to entropy solutions of a single conservation law</td>
</tr>
<tr>
<td>1296</td>
<td>S-H. Yu</td>
<td>On stability of discrete shock profiles for conservative finite difference scheme</td>
</tr>
<tr>
<td>1297</td>
<td>H. Behncke & P. Rejto</td>
<td>A limiting absorption principle for separated Dirac operators with Wigner Von Neumann type potentials</td>
</tr>
<tr>
<td>1298</td>
<td>R. Lipton B. Vernescu</td>
<td>Composites with imperfect interface</td>
</tr>
<tr>
<td>1299</td>
<td>E. Casas</td>
<td>Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations</td>
</tr>
<tr>
<td>1300</td>
<td>G.R. Sell</td>
<td>References on dynamical systems</td>
</tr>
<tr>
<td>1301</td>
<td>J. Zhang</td>
<td>Swelling and dissolution of polymer: A free boundary problem</td>
</tr>
<tr>
<td>1302</td>
<td>J. Zhang</td>
<td>A nonlinear nonlocal multi-dimensional conservation law</td>
</tr>
<tr>
<td>1303</td>
<td>M.E. Taylor</td>
<td>Estimates for approximate solutions to acoustic inverse scattering problems</td>
</tr>
<tr>
<td>1304</td>
<td>J. Kim & D. Sheen</td>
<td>A priori estimates for elliptic boundary value problems with nonlinear boundary conditions</td>
</tr>
<tr>
<td>1305</td>
<td>B. Engquist & E. Luo</td>
<td>New coarse grid operators for highly oscillatory coefficient elliptic problems</td>
</tr>
<tr>
<td>1306</td>
<td>A. Boutet de Monvel & I. Egorova</td>
<td>On the almost periodicity of solutions of the nonlinear Schrödinger equation with the cantor type spectrum</td>
</tr>
<tr>
<td>1307</td>
<td>A. Boutet de Monvel & V. Georgescu</td>
<td>Boundary values of the resolvent of a self-adjoint operator: Higher order estimates</td>
</tr>
<tr>
<td>1308</td>
<td>S.K. Patch</td>
<td>Diffuse tomography modulo Graßmann and Laplace</td>
</tr>
<tr>
<td>1309</td>
<td>A. Friedman & J.J.L. Velázquez</td>
<td>Liouville type theorems for fourth order elliptic equations in a half plane</td>
</tr>
<tr>
<td>1310</td>
<td>T. Aktosun, M. Klaus & C. van der Mee</td>
<td>Recovery of discontinuities in a nonhomogeneous medium</td>
</tr>
<tr>
<td>1311</td>
<td>V. Bondarevsky</td>
<td>On the global regularity problem for 3-dimensional Navier-Stokes equations</td>
</tr>
<tr>
<td>1312</td>
<td>M. Cheney & D. Isaacson</td>
<td>Inverse problems for a perturbed dissipative half-space</td>
</tr>
<tr>
<td>1313</td>
<td>B. Cockburn, D.A. Jones & E.S. Titi</td>
<td>Determining degrees of freedom for nonlinear dissipative equations</td>
</tr>
<tr>
<td>1314</td>
<td>B. Engquist & E. Luo</td>
<td>Convergence of a multigrid method for elliptic equations with highly oscillatory coefficients</td>
</tr>
<tr>
<td>1315</td>
<td>L. Pastur & M. Shcherbina</td>
<td>Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles</td>
</tr>
<tr>
<td>1316</td>
<td>V. Jakšić, S. Molchanov & L. Pastur</td>
<td>On the propagation properties of surface waves</td>
</tr>
<tr>
<td>1317</td>
<td>J. Nečas, M. Ružička & V. Šverák</td>
<td>On self-similar solutions of the Navier-Stokes equations</td>
</tr>
<tr>
<td>1318</td>
<td>S. Stojanovic</td>
<td>Remarks on $W^{2,p,\omega}$-solutions of bilateral obstacle problems</td>
</tr>
<tr>
<td>1319</td>
<td>E. Luo & H-O. Kreiss</td>
<td>Pseudospectral vs. Finite difference methods for initial value problems with discontinuous coefficients</td>
</tr>
<tr>
<td>1320</td>
<td>V.E. Grikurov</td>
<td>Soliton's rebuilding in one-dimensional Schrödinger model with polynomial nonlinearity</td>
</tr>
<tr>
<td>1321</td>
<td>J.M. Harrison & R.J. Williams</td>
<td>A multiclass closed queueing network with unconventional heavy traffic behavior</td>
</tr>
</tbody>
</table>
1322 M.E. Taylor, Microlocal analysis on Morrey spaces
1323 C. Huang, Homogenization of biharmonic equations in domains perforated with tiny holes
1324 C. Liu, An inverse obstacle problem: A uniqueness theorem for spheres
1325 M. Luskin, Approximation of a laminated microstructure for a rotationally invariant, double well energy density
1326 Rakesh & P. Sacks, Impedance inversion from transmission data for the wave equation
1327 O. Lafitte, Diffraction for a Neumann boundary condition
1328 E. Sobel, K. Lange, J.R. O’Connell & D.E. Weeks, Haplotyping algorithms
1329 B. Cockburn, D.A. Jones & E.S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems
1330 T. Aktosun, Inverse Schrödinger scattering on the line with partial knowledge of the potential
1331 T. Aktosun & C. van der Mee, Partition of the potential of the one-dimensional Schrödinger equation
1332 B. Engquist & E. Luo, Convergence of the multigrid method with a wavelet coarse grid operator
1333 V. Jakšić & C.-A. Pillet, Ergodic properties of the Spin-Boson system
1334 S.K. Patch, Recursive solution for diffuse tomographic systems of arbitrary size
1335 J.C. Bronski, Semiclassical eigenvalue distribution of the non self-adjoint Zakharov-Shabat eigenvalue problem
1336 J.C. Cockburn, Bitangential structured interpolation theory
1337 S. Kichenassamy, The blow-up problem for exponential nonlinearities
1338 F.A. Grünbaum & S.K. Patch, How many parameters can one solve for in diffuse tomography?
1339 R. Lipton, Reciprocal relations, bounds and size effects for composites with highly conducting interface
1340 H.A. Levine & J. Serrin, A global nonexistence theorem for quasilinear evolution equations with dissipation
1341 A. Boutet de Monvel & R. Purice, The conjugate operator method: Application to DIRAC operators and to stratified media
1342 G. Michele Graf, Stability of matter through an electrostatic inequality
1343 G. Avalos, Sharp regular estimates for solutions of the wave equation and their traces with prescribed Neumann data
1344 G. Avalos, The exponential stability of a coupled hyperbolic/parabolic system arising in structural acoustics
1345 G. Avalos & I. Lasiecka, A differential Riccati equation for the active control of a problem in structural acoustics
1346 G. Avalos, Well-posedness for a coupled hyperbolic/parabolic system seen in structural acoustics
1347 G. Avalos & I. Lasiecka, The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system
1348 A.V. Fursikov, Certain optimal control problems for Navier-Stokes system with distributed control function
1349 F. Gesztesy, R. Nowell & W. Pötz, One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics
1350 F. Gesztesy & H. Holden, On trace formulas for Schrödinger-type operators
1351 X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation
1352 X. Chen, Lorenz equations, Part I: Existence and nonexistence of homoclinic orbits
1353 X. Chen, Lorenz equations Part II: “Randomly” rotated homoclinic orbits and chaotic trajectories
1354 X. Chen, Lorenz equations, Part III: Existence of hyperbolic sets
1355 R. Abeyaratne, C. Chu & R.D. James, Kinetics of materials with wiggly energies: Theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy
1356 C. Liu, The Helmholtz equation on Lipschitz domains
1357 G. Avalos & I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation
1358 R. Lipton, Heat conduction in fine scale mixtures with interfacial contact resistance
1359 V. Odisharia & J. Peradze, Solvability of a nonlinear problem of Kirchhoff shell
1360 P.J. Olver, G. Sapiro & A. Tannenbaum, Affine invariant edge maps and active contours
1361 R.D. James, Hysteresis in phase transformations
1362 A. Sei & W. Symes, A note on consistency and adjointness for numerical schemes
1363 A. Friedman & B. Hu, Head-media interaction in magnetic recording
1364 A. Friedman & J.J.L. Velázquez, Time-dependent coating flows in a strip, part I: The linearized problem
1365 X. Ren & M. Winter, Young measures in a nonlocal phase transition problem
1366 K. Bhattacharya & R.V. Kohn, Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials
1367 G.A. Chechkin, Operator pencil and homogenization in the problem of vibration of fluid in a vessel with a fine net on the surface
1368 M. Carmona & B. Mukherjee, On Poiseuille flow of liquid crystals
1369 M.A. Pinsky & M.E. Taylor, Pointwise Fourier inversion: A wave equation approach
1370 D. Brandon & R.C. Rogers, Order parameter models of elastic bars and precursor oscillations
1371 H.A. Levine & B.D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks
1372 B. Cockburn, P.-A. Gremaud, A priori error estimates for numerical methods for scalar conservation laws. Part II: Flux-splitting monotone schemes on irregular Cartesian grids