OPERATOR MATRICES WITH CHORDAL INVERSE PATTERNS

By

Charles R. Johnson

and

Michael Lundquist

IMA Preprint Series # 885

October 1991
OPERATOR MATRICES WITH CHORDAL INVERSE PATTERNS*

CHARLES R. JOHNSON**† AND MICHAEL LUNDQUIST‡

Abstract. We consider invertible operator matrices whose conformally partitioned inverses have 0 blocks in positions corresponding to a chordal graph. In this event, we describe a) block entry formulae that express certain blocks (in particular, those corresponding to 0 blocks in the inverse) in terms of others, under a regularity condition, and b) in the Hermitian case, a formula for the inertia in terms of inertias of certain key blocks.

1. Introduction. For Hilbert spaces $\mathcal{H}_i, i = 1, \ldots, n$, let \mathcal{H} be the Hilbert space defined by $\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n$. Suppose, further, that $A : \mathcal{H} \to \mathcal{H}$ is a linear operator in matrix form, partitioned as

$$A = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
A_{21} & \ddots & \vdots \\
\vdots & \ddots & \ddots \\
A_{n1} & \cdots & A_{nn}
\end{bmatrix},$$

in which $A_{ij} : \mathcal{H}_j \to \mathcal{H}_i, i, j = 1, \ldots, n$. (We refer to such an A as an operator matrix.) We assume throughout that A is invertible and that $A^{-1} = B = [B_{ij}]$ is partitioned conformably. We are interested in the situation in which some of the blocks B_{ij} happen to be zero. In this event we present (1) some formulaic relations among blocks of A (under a further regularity condition) and (2) a formula for the inertia of A, in terms of that of certain principal submatrices, when A is Hermitian. For this purpose we define an undirected graph $G = G(B)$ on vertex set $N \equiv \{1, \ldots, n\}$ as follows: there is an edge $\{i, j\}, i \neq j$, in $G(B)$ unless both B_{ij} and B_{ji} are 0.

An undirected graph G is called chordal if no subgraph induced by 4 or more vertices is a cycle. Note that if $G(B)$ is not complete, then there is a chordal graph G (that is also not complete) such that $G(B)$ is contained in G. Thus, if there is any symmetric sparsity in B, our results will apply (perhaps by ignoring the fact that some blocks are 0), even if $G(B)$ is not chordal.

A clique in an undirected graph G is a set of vertices whose vertex induced subgraph in G is complete (i.e. contains all possible edges $\{i, j\}, i \neq j$). A clique is maximal if it is not a proper subset of any other clique. Let $\mathcal{C} = \mathcal{C}(G) = \{\alpha_1, \ldots, \alpha_p\}$ be the collection

*This manuscript was prepared while both authors were visitors at the Institute for Mathematics and its Applications, Minneapolis, Minnesota.

**Department of Mathematics, College of William and Mary, Williamsburg, VA 23185.

†The work of this author was supported by National Science Foundation grant DMS90-00839 and by Office of Naval Research contract N00014-90-J-1739.

‡Department of Mathematics, Brigham Young University, Provo, Utah 84602.
of maximal cliques of the graph G. The intersection graph \mathcal{S} of the maximal cliques is an
undirected graph with vertex set \mathcal{C} and an edge between α_i and α_j, $i \neq j$ if $\alpha_i \cap \alpha_j \neq \emptyset$. The graph G is connected and chordal if and only if \mathcal{S} has a spanning tree \mathcal{T} that satisfies
the intersection property: $\alpha_i \cap \alpha_j \subseteq \alpha_k$ whenever α_k lies on the unique simple path in
\mathcal{T} from α_i to α_j. Such a tree \mathcal{T} is called a clique tree for G and is generally not unique
[BJL]. (See [Go] for general background facts about chordal graphs.) A clique tree is an
important tool for understanding the structure of a chordal graph. For example, for a pair
of nonadjacent vertices u, v in G, a u, v separator is a set of vertices of G whose removal
along with all edges incident with them) leaves u and v in different connected components
of the result. A u, v separator is called minimal if no proper subset of it is a u, v separator. A set of vertices is called a minimal vertex separator if it is a minimal u, v separator for some pair of vertices u, v. (Note that it is possible for a proper subset of a minimal vertex separator to also be a minimal vertex separator.) If α_i and α_j are adjacent cliques in a
clique tree for a chordal graph G then $\alpha_i \cap \alpha_j$ is a minimal vertex separator for G. The
collection of such intersections (including multiplicities) is independent of the clique tree
and all minimal vertex separators for G occur among such intersections.

Given an n-by-n operator matrix $A = (A_{ij})$, we denote the operator submatrix lying in
block rows $\alpha \subseteq N$ and block columns $\beta \subseteq N$ by $A[\alpha, \beta]$. When the submatrix is principal
(i.e. $\beta = \alpha$), we abbreviate $A[\alpha, \alpha]$ to $A[\alpha]$.

We define the inertia of an Hermitian operator B on a Hilbert space K as follows. The
triple $i(B) = (i_+(B), i_-(B), i_0(B))$ has components defined by

- $i_+(B) \equiv$ the maximum dimension of an invariant subspace of B on which the quadratic
 form is positive.
- $i_-(B) \equiv$ the maximum dimension of an invariant subspace of B on which the quadratic
 form is negative.

and

- $i_0(B) \equiv$ the dimension of the kernel of B ($\ker B$).

Each component of $i(B)$ may be a nonnegative integer, or ∞ in case the relevant dimension
is not finite. We say that two Hermitian operators B_1 and B_2 on K are congruent if there
is an invertible operator $C : K \to K$ such that

$$B_2 = C^* B_1 C.$$

According to the spectral theorem, if the bounded linear operator $A : \mathcal{H} \to \mathcal{H}$ is
Hermitian, then A is unitarily congruent (similar) to a direct sum:

$$U^* A U = \begin{bmatrix} A_+ & 0 & 0 \\ 0 & A_- & 0 \\ 0 & 0 & 0 \end{bmatrix},$$
in which \(A_+ \) is positive definite and \(A_- \) is negative definite. As \(i(A) = i(U^* A U) \), \(i_+(A) \) is the "dimension" of the direct summand \(A_+ \), \(i_-(A) \) the dimension of \(A_- \), and \(i_o(A) \) the dimension of the 0 direct summand, including the possibility of \(\infty \) in each case. It is easily checked that the following three statements are then equivalent:

(i) \(A \) is congruent to
\[
\begin{bmatrix}
I & 0 & 0 \\
0 & -I & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
in which the sizes of the diagonal blocks are \(i_+(A) \), \(i_-(A) \) and \(i_0(A) \), respectively;

(ii) each of \(A_+ \) and \(A_- \) is invertible;

and

(iii) \(A \) has closed range.

We shall frequently need to make use of congruential representations of the form (i) and, so, assume throughout that each key principal submatrix (i.e. those corresponding to maximal cliques and minimal separators in the chordal graph \(G \) of the inverse of an invertible Hermitian matrix) has closed range. This may be a stronger assumption than is necessary for our formulae in section 3; so there is an open question here.

Chordal graphs have played a key role in the theory of positive definite completions of matrices and in determinantal formulae. For example, in [GJSW] it was shown that if the undirected graph of the specified entries of a partial positive definite matrix (with specified diagonal) is chordal, then a positive definite completion exists. (See e.g. [Jo] for definitions and background.) Furthermore, if the graph of the specified entries is not chordal, then there is partial positive definite data for which there is no positive definite completion. (These facts carry over in a natural way to operator matrices.) If there is a positive definite completion, then there is a unique determinant maximizing one that is characterized by having 0's in the inverse in all positions corresponding to originally unspecified entries. Thus, if the graph of the specified entries is chordal, then the ordinary (undirected) graph of the inverse of the determinant maximizer is (generically) the same chordal graph. (In the partial positive definite operator matrix case such a zeros in-the-inverse completion still exists when the data is chordal and is an open question otherwise.) This was one of the initial motivations for studying matrices with chordal inverse (nonzero) patterns. Other motivation includes the structure of inverses of banded matrices, and this is background for section 2.

If an invertible matrix \(A \) has an inverse pattern contained in a chordal graph \(G \), then \(\det A \) may be expressed in terms of certain key principal minors [BJ], as long as all relevant minors are nonzero:

\[
\det A = \frac{\prod_{\alpha \in \mathcal{C}} \det A[\alpha]}{\prod_{\{\alpha, \beta\} \in \mathcal{E}} \det A[\alpha \cap \beta]}.
\]

Here \(\mathcal{C} \) is the collections of maximal cliques of \(G \), and \(\mathcal{J} = (\mathcal{C}, \mathcal{E}) \) is a clique tree for \(G \).
Thus, the numerator is the product of principal minors associated with maximal cliques, while the denominator has those associated with minimal vertex separators (with proper multiplicities). There is no natural analog of this determinantal formula in the operator case, but the inertia formula presented in section 3 has a logarithmic resemblance to it.

2. Entry Formulae. Let $G = (N,E)$ be a chordal graph. We will say that an operator matrix $A = [A_{ij}]$ is G-regular if $A[\alpha]$ is invertible whenever $\alpha \subseteq V$ is either a maximal clique of G or a minimal vertex separator of G. In this section we will establish explicit formulae for some of the block entries of A when $G(A^{-1}) \subseteq G$. Specifically, those entries are the ones corresponding to edges that are absent from E (see Theorem 3).

Lemma 1. Let $A = [A_{ij}]$ be a 3-by-3 operator matrix, and assume that

$$M_1 = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad M_2 = \begin{bmatrix} A_{22} & A_{23} \\ A_{32} & A_{33} \end{bmatrix} \text{ and } A_{22} \text{ are each invertible.}$$

Then $B = A^{-1}$ exists and satisfies $B_{13} = 0$ if and only if $A_{13} = A_{12}A_{22}^{-1}A_{23}$.

Proof. Let us compute the Schur complement of A_{22} in A:

$$
\begin{bmatrix}
I & -A_{12}A_{22}^{-1} & 0 \\
0 & I & 0 \\
0 & -A_{32}A_{22}^{-1} & I
\end{bmatrix}
\begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix}
\begin{bmatrix}
I & 0 & 0 \\
-A_{22}^{-1}A_{21} & I & -A_{22}^{-1}A_{23} \\
0 & 0 & I
\end{bmatrix}
\begin{bmatrix}
A_{11} - A_{12}A_{22}^{-1}A_{21} & 0 & A_{13} - A_{12}A_{22}^{-1}A_{23} \\
0 & A_{22} & 0 \\
A_{31} - A_{32}A_{22}^{-1}A_{21} & 0 & A_{33} - A_{32}A_{22}^{-1}A_{23}
\end{bmatrix}.
$$

(1)

If $B = A^{-1}$ exists, then

$$
\begin{bmatrix}
B_{11} & B_{13} \\
B_{31} & B_{33}
\end{bmatrix}
= \begin{bmatrix}
A_{11} - A_{12}A_{22}^{-1}A_{21} & A_{13} - A_{12}A_{22}^{-1}A_{23} \\
A_{31} - A_{32}A_{22}^{-1}A_{21} & A_{33} - A_{32}A_{22}^{-1}A_{23}
\end{bmatrix}^{-1},
$$

and hence if $B_{13} = 0$, then necessarily we have $A_{13} = A_{12}A_{22}^{-1}A_{23}$. Conversely, if $A_{13} = A_{12}A_{22}^{-1}A_{23}$, then the (1,3) entry of the matrix on the right-hand side of (1) is zero. Note that $A_{11} - A_{12}A_{22}^{-1}A_{21}$ and $A_{33} - A_{32}A_{22}^{-1}A_{23}$ are invertible, because they are the Schur complements of A_{22} in M_1 and M_2. Hence A is invertible, and by (2) we have $B_{13} = 0$. □

Under the conditions of the preceding lemma, if we would like $B_{31} = 0$ then we must also have $A_{31} = A_{32}A_{22}^{-1}A_{21}$. Notice that the graph of B in this case is a path:

$$G = \begin{array}{ccc} 1 & \rightarrow & 2 \\ \rightarrow & & \rightarrow \\ 3 & \rightarrow & 3 \end{array}.$$

Suppose now that $A = [A_{ij}]$ is an invertible $n \times n$ operator matrix, that $1 < k \leq m < n$, and that $A^{-1} = [B_{ij}]$ satisfies $B_{ij} = 0$ and $B_{ji} = 0$ whenever $i < k$ and $j > m$. In this case B has the block form

$$B = \begin{bmatrix}
\tilde{B}_{11} & \tilde{B}_{12} & 0 \\
\tilde{B}_{21} & \tilde{B}_{22} & \tilde{B}_{23} \\
0 & \tilde{B}_{32} & \tilde{B}_{33}
\end{bmatrix},$$
in which $\tilde{B}_{11} = B[[1, \ldots, k-1]]$, $\tilde{B}_{22} = B[[k, \ldots, m]]$ and $\tilde{B}_{33} = B[[m+1, \ldots, m]]$. Let $A = [\hat{A}_{ij}]$ be partitioned conformably. If in addition to the above conditions we also have that $A[[1, \ldots, m]]$, $A[[k, \ldots, n]]$ and $A[[k, \ldots, m]]$ are invertible, then we simply have the case covered in the preceding Lemma, and we may deduce that

$$A[[1, \ldots, k-1], [m+1, \ldots, n]] = A[[1, \ldots, k-1], [k, \ldots, m]] A[[k, \ldots, m]]^{-1} A[[k, \ldots, m], [m+1, \ldots, n]],$$

with a similar formula holding for $A[[m+1, \ldots, n], [1, \ldots, k-1]]$. From this we may write explicit formulae for individual entries in A. For example, we may express any entry A_{ij} for which $i < k$ and $j > m$ as

$$A_{ij} = A[[i], [k, \ldots, m]] A[[k, \ldots, m]]^{-1} A[[k, \ldots, m], [j]].$$

There is an obvious similarity between this situation and that covered in Lemma 1, which one sees simply by looking at the block structure of A^{-1}. But there are also some similarities which may be observed by looking at graphs. In the block case we just considered, the graph $G(B)$ is a chordal graph consisting of exactly two maximal cliques, the sets $\alpha_1 = \{1, \ldots, m\}$ and $\alpha_2 = \{k, \ldots, n\}$. The intersection $\beta = \{k, \ldots, m\}$ of α_1 and α_2 is a minimal vertex separator of G (in fact, the only minimal vertex separator in this graph). The formula (3) may then be written

$$A_{ij} = A[[i], \beta] A[\beta]^{-1} A[\beta, [j]].$$

Note now in the 3-by-3 case that the equation $A_{13} = A_{12} A_{22}^{-1} A_{23}$ has the same form as (4) when we let $\beta = \{2\}$. In fact, since $\beta = \{2\}$ is a minimal separator of the vertices 1 and 3 in the graph

$$\begin{array}{c}
1 \quad 2 \quad 3,
\end{array}$$

we see that $\{2\}$ plays the same role in the 3-by-3 case as $\{k, \ldots, m\}$ does in the $n \times n$ case.

In Theorem 3 we will encounter expressions of the form

$$A_{ij} = A[[i], \beta_1] A[\beta_1]^{-1} A[\beta_1, \beta_2] A[\beta_2]^{-1} \cdots A[\beta_m]^{-1} A[\beta_m, [j]]$$

in which each β_k is a minimal vertex separator in a chordal graph. The sequence $(\beta_1, \ldots, \beta_m)$ is obtained by looking at a clique tree for the chordal graph, indentifying a path $(\alpha_0, \alpha_1, \ldots, \alpha_m)$ in the tree, and setting $\beta_k = \alpha_{k-1} \cap \alpha_k$.

These expressions turn out to be the natural generalization of (4) to cases in which the graph of B is any chordal graph. In addition, the results of this section generalize results of [JL2] from the scalar case to the operator case.
LEMMA 2. Let $A : \mathcal{H} \to \mathcal{H}$ be an invertible operator matrix, with $B = A^{-1}$. Let $G = (N, E)$ be the undirected graph of B. Let $\{i, j\} \notin E$ and let $\beta \subseteq N$ be any i,j separator for which $A[\beta]$ is invertible. Then

$$A_{ij} = A[\{i\}, \beta]A[\beta]^{-1}A[\beta, \{j\}].$$

Proof. Without loss of generality we may assume that $\beta = \{k, \ldots, m\}$, with $k \leq m$, and that β separates any vertices r and s for which $r < k$ and $s > m$. Assuming then that $i < k$ and $j > m$, we may write B as

$$
\begin{bmatrix}
\bar{B}_{11} & \bar{B}_{12} & 0 \\
\bar{B}_{21} & \bar{B}_{22} & \bar{B}_{23} \\
0 & \bar{B}_{22} & \bar{B}_{33}
\end{bmatrix}.
$$

The result now follows from Lemma 1 and the remarks that follow it. □

If G is chordal and i and j are nonadjacent vertices then an i,j clique path will mean a path in any clique tree associated with G that joins a clique containing vertex i to a clique containing vertex j. One important property of any i,j clique path is that it will "contain" every minimal i,j separator in the following sense: If $(\alpha_0, \ldots, \alpha_m)$ is any i,j clique path, and if β is any minimal i,j separator then $\beta = \alpha_{k-1} \cap \alpha_k$ for some $k, 1 \leq k \leq m$. Another important property of an i,j clique path is that every set $\beta_k = \alpha_{k-1} \cap \alpha_k$, $1 \leq k \leq m$, is an i,j separator. It is not the case, however, that every β_k is a minimal i,j separator (see [JL2]).

THEOREM 3. Let $G = (N, E)$ be a connected chordal graph, and let $A : \mathcal{H} \to \mathcal{H}$ be a G-regular operator matrix. then the following assertions are equivalent:

(i) A is invertible and $G(A^{-1}) \subseteq G$;

(ii) for every $\{i, j\} \notin E$ there exists a minimal i,j separator β such that

$$A_{ij} = A[\{i\}, \beta]A[\beta]^{-1}A[\beta, \{j\}];$$

(iii) for every $\{i, j\} \notin E$ and every minimal i,j separator β we have

$$A_{ij} = A[\{i\}, \beta]A[\beta]^{-1}A[\beta, \{j\}];$$

(iv) for every $\{i, j\} \notin E$, every i,j clique path $(\alpha_0, \alpha_1, \ldots, \alpha_m)$ and any $k, 1 \leq k \leq m$ we have

$$A_{ij} = A[\{i\}, \beta_k]A[\beta_k]^{-1}A[\beta_k, \{j\}],$$

in which $\beta_k = \alpha_{k-1} \cap \alpha_k$;
and

(v) for every \(\{i, j\} \not\in E \) and every \(i, j \) clique path \((\alpha_0, \alpha_1, \ldots, \alpha_m) \) we have

\[
A_{ij} = A[\{i\}, \beta_1] A[\beta_1]^{-1} A[\beta_1, \beta_2] \cdots A[\beta_m]^{-1} A[\beta_m, \{j\}],
\]

in which \(\beta_k = \alpha_{k-1} \cap \alpha_k \).

Proof. We will establish the following implications:

\[
(iv) \implies (iii) \implies (ii) \implies (iv);
\]

\[
(i) \iff (iv) \iff (v).
\]

\(iv) \implies (iii)\) follows from the observation that every minimal \(i, j \) separator equals \(\beta_k \) for some \(k, 1 \leq k \leq m \).

\(iii) \implies (ii)\) is immediate.

For \((ii) \implies (iv)\), let \(\{i, j\} \not\in E \), and let \((\alpha_0, \alpha_1, \ldots, \alpha_m) \) be a shortest \(i, j \) clique path.

We will induct on \(m \). For \(m = 1 \) there is nothing to show, since in this case \(\beta_1 = \alpha_0 \cap \alpha_1 \) is the only minimal \(i, j \) separator. Now let \(m \geq 2 \), and suppose that \((iv) \) holds for all nonadjacent pairs of vertices for which the shortest clique path has length less than \(m \).

Since every minimal \(i, j \) separator equals \(\beta_k \) for some \(k \), we have, by \((ii)\),

\[
A_{ij} = A[\{i\}, \beta_k] A[\beta_k]^{-1} A[\beta_k, \{j\}]
\]

for some \(k, 1 \leq k \leq m \). It will therefore suffice to show that for \(k = 1, 2, \ldots, m - 1 \) we have

\[
A[\{i, \beta_k\}, A[\beta_k]^{-1} A[\beta_k, \{j\}] = A[\{i\}, \beta_{k+1}] A[\beta_{k+1}]^{-1} A[\beta_{k+1}, \{j\}]
\]

Let us first observe that for \(k = 1, \ldots, m - 1 \),

\[
A[\beta_k, \{j\}] = A[\beta_k, \beta_{k+1}] A[\beta_{k+1}]^{-1} A[\beta_{k+1}, \{j\}]
\]

Indeed, suppose \(r \in \beta_k \). Then \((\alpha_k, \alpha_{k+1}, \ldots, \alpha_m)\) is an \(r, j \) clique path of length \(m - k \), and by the induction hypothesis we may write

\[
A_{rj} = A[\{r\}, \beta_{k+1}] A[\beta_{k+1}]^{-1} A[\beta_{k+1}, \{j\}],
\]

and equation (7) follows. A similar argument shows that for \(k = 2, \ldots, m \) we have

\[
A[\{i\}, \beta_{k+1}] = A[\{i\}, \beta_k] A[\beta_k]^{-1} A[\beta_k, \beta_{k+1}].
\]
By (7) and (8), both sides of (6) are equal to

\[A[\{i\}, \beta_k] A[\beta_k]^{-1} A[\beta_k, \beta_{k+1}] A[\beta_{k+1}]^{-1} A[\beta_{k+1}, \{j\}] \]

and hence (6) holds, as required.

(i) \implies (iv) follows from Lemma 2.

For (iv) \implies (i), let the maximal cliques of \(G \) be \(\alpha_1, \alpha_2, \ldots, \alpha_p, p \geq 2 \). We will induct on \(p \). In case \(p = 2 \) then the result follows from Lemma 1, so let \(p > 2 \) and suppose that the implication holds whenever the maximal cliques number fewer than \(p \). Let \(\mathcal{T} \) be a clique tree associated with \(G \), let \(\{\alpha_k, \alpha_{k+1}\} \) be any edge of \(\mathcal{T} \), and suppose the vertex sets of the two connected components of \(\mathcal{T} - \{\alpha_k, \alpha_{k+1}\} \) are \(\mathcal{C}_1 = \{\alpha_1, \ldots, \alpha_k\} \) and \(\mathcal{C}_2 = \{\alpha_{k+1}, \ldots, \alpha_p\} \). Set \(V_1 = \cup_{i=1}^{k} \alpha_i \) and \(V_2 = \cup_{i=k+1}^{p} \alpha_i \). (Let \(G_V \) be the subgraph of \(G \) induced by the subset \(V \) of vertices.) Since induced subgraphs of a chordal graph are necessarily chordal, \(G_{V_1} \) and \(G_{V_2} \) are chordal graphs, and since (iv) holds for the matrix \(A \), (iv) holds as well for \(A[V_1] \) and \(A[V_2] \). By the induction hypothesis, \(A[V_1] \) and \(A[V_2] \) are invertible. Note also that \(V_1 \cap V_2 = \alpha_k \cap \alpha_{k+1} \), which follows from the intersection property. Since \(A[V_1 \cap V_2] \) is invertible, we may now apply Lemma 1 to the matrix \(A \) (in which \(A_{11} \) is replaced by \(A[V_1 \backslash V_2] \), \(A_{22} \) by \(A[V_1 \cap V_2] \) and \(A_{33} \) by \(A[V_2 \backslash V_1] \)), and conclude that \(A^{-1}[V_1 \backslash V_2, V_2 \backslash V_1] = 0 \) and \(A^{-1}[V_2 \backslash V_1, V_1 \backslash V_2] = 0 \). In other words, if we set \(B = A^{-1} \) then \(B_{ij} = 0 \) and \(B_{ji} = 0 \) whenever \(i \in V_1 \backslash V_2 \) and \(j \in V_2 \backslash V_1 \). Now if \(\{i, j\} \notin E \) then \(\alpha_k \) and \(\alpha_{k+1} \) may be chosen (renumbering the \(\alpha \)'s if necessary) so that \(i \in V_1 \backslash V_2 \) and \(j \in V_2 \backslash V_1 \). Hence it must be that \(B_{ij} = 0 \) and \(B_{ji} = 0 \) whenever \(\{i, j\} \notin E \).

For (iv) \implies (v), let \(\{i, j\} \notin E \), and let \((\alpha_0, \alpha_1, \ldots, \alpha_m) \) be any \(i, j \) clique path. First, we must observe that for any \(k, 1 \leq k \leq m \),

\[A[\beta_k, \{j\}] = A[\beta_k, \beta_{k+1}] A[\beta_{k+1}]^{-1} A[\beta_{k+1}, \{j\}] \]

Indeed, by assumption, for any \(r \in \beta_k \) we have

\[A_{rj} = A[\{r\}, \beta_{k+1}] A[\beta_{k+1}]^{-1} A[\beta_{k+1}, \{j\}] \]

and (9) follows from this. By successively applying (9) we obtain

\[A_{ij} = A[\{i\}, \beta_1] A[\beta_1]^{-1} A[\beta_1, \{j\}] = A[\{i\}, \beta_1] A[\beta_1]^{-1} A[\beta_1, \beta_2] A[\beta_2]^{-1} A[\beta_2, \{j\}] \]

\[\vdots \]

\[= A[\{i\}, \beta_1] A[\beta_1]^{-1} A[\beta_1, \beta_2] \cdots A[\beta_{m-1}, \beta_m] A[\beta_m]^{-1} A[\beta_m, \{j\}] \]

as required.
For \((v) \implies (iv)\), let \(\{i, j\} \not\in E\), and let \((\alpha_0, \ldots, \alpha_m)\) be an \(i, j\) clique path. Let \(r \in \alpha_{k-1}, 1 < k \leq m\). We may write [because of assumption \((v)\)]

\[
A_{ir} = A[\{i\}, \beta_1]A[\beta_1]^{-1} \cdots A[\beta_{k-1}]^{-1}A[\beta_{k-1}, \{r\}],
\]

and because \(r \in \beta_k \implies r \in \alpha_k\) we thus have

\[
A[\{i\}, \beta_k] = A[\{i\}, \beta_1]A[\beta_1]^{-1} \cdots A[\beta_{k-1}]^{-1}A[\beta_{k-1}, \beta_k]. \tag{10}
\]

It may be similarly shown that

\[
A[\beta_k, \{j\}] = A[\beta_k, \beta_{k+1}]A[\beta_{k+1}]^{-1} \cdots A[\beta_m]^{-1}A[\beta_m, \{j\}] \tag{11}.
\]

By using (10) and (11) we therefore obtain

\[
A_{ij} = A[\{i\}, \beta_1] \cdots A[\beta_{k-1}, \beta_k]A[\beta_k]^{-1}A[\beta_k, \beta_{k+1}] \cdots A[\beta_m, \{j\}] = A[\{i\}, \beta_k]A[\beta_k]^{-1}A[\beta_k, \{j\}],
\]

as required. \(\square\)

3. Inertia Formula. In [JL1], it was shown that if \(A \in M_n(C)\) is an invertible Hermitian matrix and if \(G = G(A^{-1})\) is a chordal graph, then the inertia of \(A\) may be expressed in terms of the inertias of certain principal submatrices of \(A\). Precisely, let \(C\) denote the collection of maximal cliques of \(G\), and let \(T = (C, E)\) be a clique tree associated with \(G\). If \(G(A^{-1}) = G\), then it turns out that

\[
i(A) = \sum_{\alpha \in C} i(A[\alpha]) - \sum_{(\alpha, \beta) \in E} i(A[\alpha \cap \beta]). \tag{11}\]

It is helpful to think of (11) as a generalization of the fact that if \(A^{-1}\) is block diagonal (meaning, of course, that \(A\) is block diagonal) then the inertia of \(A\) is simply the sum of the inertias of the diagonal blocks of \(A\). To see what (11) tells us in a specific case, suppose that \(A^{-1}\) has a pentadiagonal nonzero-pattern, as in

\[
A^{-1} \sim \begin{bmatrix}
X & X & X & & \\
X & X & X & X & \\
X & X & X & X & X \\
& X & X & X & \\
& & X & X & X
\end{bmatrix}
\]

The graph of \(A^{-1}\) is then

\[
G = \begin{array}{cccc}
1 & 3 & \\
& 4 & \\
& & 5
\end{array}
\]
which is chordal. The maximal cliques of G are $\alpha_1 = \{1, 2, 3\}$, $\alpha_2 = \{2, 3, 4\}$ and $\alpha_3 = \{3, 4, 5\}$, and the clique tree associated with the graph G is

$$
\begin{array}{ccc}
\alpha_1 & \alpha_2 & \alpha_3 \\
\end{array}
$$

Equation (11) now tells us that the inertia of A is given by

$$
i(A) = i(A[\{1, 2, 3\}]) + i(A[\{2, 3, 4\}]) + i(A[\{3, 4, 5\}])
- i(A[\{2, 3\}]) - i(A[\{3, 4\}]).$$

Thus, we may compute the inertia of A by adding the inertia of these submatrices:

$$
\begin{bmatrix}
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
\end{bmatrix}
$$

and subtracting the inertias of these:

$$
\begin{bmatrix}
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
X & X & X & X & X \\
\end{bmatrix}
$$

Our goal in this section is to generalize formula (11) to the case in which $A = [A_{ij}]$ is an invertible n-by-n Hermitian operator matrix. We will be concerned with the case in which one of the components of inertia is finite, so that in (11) we will replace i by i_+, i_- or i_o.

For a chordal graph $G = (N, E)$, we will say that an invertible n-by-n operator matrix A is weakly G-regular (or simply weakly regular) if for every maximal clique or minimal vertex separator α both $A[\alpha]$ and $A^{-1}[\alpha^c]$ have closed range.

Lemma 4. Let $M : \mathcal{H}_1 \oplus \mathcal{H}_2 \to \mathcal{H}_1 \oplus \mathcal{H}_2$ be represented by the 2-by-2 matrix

$$
M = \begin{bmatrix}
A & B \\
C & D
\end{bmatrix}.
$$

Suppose that A is invertible, and that

$$
M^{-1} = \begin{bmatrix}
P & Q \\
R & S
\end{bmatrix}.
$$
Then \(\dim \ker A = \dim \ker S \).

Proof. Let \(x_1, x_2, \ldots, x_n \) be linearly independent elements of \(\ker A \). Then for \(1 \leq k \leq n \) we have

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\begin{bmatrix}
x_k \\
o
\end{bmatrix}
= \begin{bmatrix}
o \\
y_k
\end{bmatrix},
\]

in which \(y_k = Cx_k \), \(k = 1, \ldots, n \). Since \(M \) is invertible it follows that \(y_1, y_2, \ldots, y_n \) are linearly independent. Observe now that

\[
\begin{bmatrix}
P & Q \\
R & S
\end{bmatrix}
\begin{bmatrix}
o \\
y_k
\end{bmatrix}
= \begin{bmatrix}
x_k \\
o
\end{bmatrix},
\]

from which it follows that \(y_k \in \ker S \). It follows now that \(\dim \ker S \geq \dim \ker A \); by reversing the argument we find that \(\dim \ker A \geq \dim \ker S \). Thus \(\dim \ker A = \dim \ker S \). \(\Box \)

Lemma 5. Let \(M : \mathcal{H}_1 \oplus \mathcal{H}_2 \rightarrow \mathcal{H}_1 \oplus \mathcal{H}_2 \) be Hermitian and invertible, and suppose that

\[
M = \begin{bmatrix}
A & B \\
B^* & C
\end{bmatrix}.
\]

If \(i_+(M) < \infty \), then \(i_0(A) < \infty \).

Proof. Clearly \(i_+(A) < \infty \), so let \(n = i_+(A) \). Let \(H \) be an invertible operator for which \(H^*AH = I_n \oplus -I \oplus O \), in which \(I_n \) denotes the identity operator on an \(n \)-dimensional subspace, and \(-I\) and \(O \) are operators on spaces of respective dimensions \(i_-(A) \) and \(i_0(A) \). Then

\[
\begin{bmatrix}
H^* & O \\
o & I
\end{bmatrix}
\begin{bmatrix}
A & B \\
B^* & C
\end{bmatrix}
\begin{bmatrix}
H & 0 \\
o & I
\end{bmatrix}
= \begin{bmatrix}
I_n & B_1 \\
-I & B_2 \\
B_1^* & B_2^* & B_3^* & C
\end{bmatrix}.
\]

We may reduce this further by another congruence:

\[
\begin{bmatrix}
I_n & O \\
-I & O \\
o & B_3
\end{bmatrix}
= \begin{bmatrix}
I_n & B_1 \\
-I & B_2 \\
B_1^* & B_2^* & B_3^* & C
\end{bmatrix}.
\]

in which \(S = C - B_1^*B_1 + B_2^*B_2 \). Hence

\[
i_+(M) = n + i_+ \left(\begin{bmatrix}
o \\
B_3^*
\end{bmatrix}, S \right),
\]

11
and thus

\[i_+ \left(\begin{bmatrix} O & B_3 \\ B_3^* & S \end{bmatrix} \right) < \infty. \]

But this implies that the zero block in this matrix must act on a space of finite dimension. Recalling that this dimension equals \(i_o(A) \), we obtain the desired conclusion. \(\square \)

The following Lemma generalizes a result of [Ha] for finite-dimensional matrices (see also [JL1]).

Lemma 6. Let \(M : \mathcal{H}_1 \oplus \mathcal{H}_2 \to \mathcal{H}_1 \oplus \mathcal{H}_2 \) be Hermitian and invertible, with

\[
M = \begin{bmatrix} A & B \\ B^* & C \end{bmatrix} \quad \text{and} \quad M^{-1} = \begin{bmatrix} P & Q \\ Q^* & R \end{bmatrix}.
\]

If \(i_+(M) < \infty \), and if \(A \) and \(R \) both have closed range, then

\[i_+(M) = i_+(A) + i_o(A) + i_+(R). \]

Proof. If \(i_o(A) = O \) then \(A \) is invertible and the result follows from the fact that \(R \) is the inverse of the Schur complement \(C - B^* A^{-1} B \) and that \(i_+(M) = i_+(A) + i_+(C - B^* A^{-1} B) \).

Hence, suppose that \(i_o(A) > O \). Since \(i_+(M) < \infty \) we have as well from Lemma 5 that \(i_o(A) < \infty \).

Hence, let \(n = i_o(A) \), and let us consider the special case in which \(R = O \). Since we require, by Lemma 4, that \(i_o(R) = i_o(A) = n \), \(R \) must act on an \(n \)-dimensional space. Hence we have

\[
M^{-1} = \begin{bmatrix} P & Q \\ Q^* & O_n \end{bmatrix}
\]

where \(O_n \) denotes the zero operator on \(n \)-dimensional Hilbert space. By an appropriately chosen congruence of the form \(T_1 = H \oplus I \), we may reduce \(M \) to the form

\[
M_1 = T_1^* M T_1 = \begin{bmatrix} I_k & B_1 \\ -I & B_2 \\ B_1^* & B_2^* & B_3^* & C \end{bmatrix},
\]

where \(k = i_+(A) \). With

\[
T_2 = \begin{bmatrix} I_k & -B_1 \\ -I & B_2 \\ I_n & O \\ I & I \end{bmatrix},
\]

we then have

\[
M_2 = T_2^* M_1 T_2 = \begin{bmatrix} I_k & O \\ -I & O \\ O_n & B_3 \\ O & O & B_3^* & S \end{bmatrix},
\]

12
in which \(S = C - B_1^*B_1 + B_2^*B_2 \). The matrix

\[
\begin{bmatrix}
 O_n & B_3 \\
 B_3^* & S
\end{bmatrix}
\]

is an invertible operator on a 2n-by-2n Hilbert space, and in this case its inertia must be \((n, n, 0)\). From the form of \(M_2 \) we see that we must have

\[
i_+(M) = k + i_+ \left(\begin{bmatrix} O_k & B_3 \\ B_3^* & S \end{bmatrix} \right) \\
= k + n \\
= i_+(A) + i_o(A).
\]

Since \(i_+(R) = 0 \), this last expression equals \(i_+(A) + i_o(A) + i_+(R) \).

Now let us consider the general case, in which we make no assumption concerning the dimension of the space on which \(R \) acts. Choose an invertible matrix of the form \(T_1 = I \oplus H \) so that \(T_1^*M^{-1}T_1 \) has the form

\[
M_1^{-1} = T_1^*M^{-1}T_1 = \begin{bmatrix}
 P & Q_1 & Q_2 & Q_3 \\
 Q_1^* & I_\ell & I_\ell \\
 Q_2^* & I & -I \\
 Q_3^* & O & O_n
\end{bmatrix}
\]

in which \(\ell = i_+(R) \) and \(n = i_o(R) \) \([= i_o(A)]\). Then with

\[
T_2 = \begin{bmatrix}
 I \\
 -Q_1^* & I_{\ell} \\
 Q_2^* & I \\
 O & I_n
\end{bmatrix}
\]

we obtain

\[
M_2^{-1} = T_2^*M_1^{-1}T_2 = \begin{bmatrix}
 S & O & O & Q_3 \\
 O & I_{\ell} & O & -I \\
 O^* & -I & O & O_n \\
\end{bmatrix}
\]

From the form of \(M_2^{-1} \), and by simple calculations, we find that \(M_2 = T_2^{-1}T_1^{-1}M(T_1^{-1})^*(T_2^{-1})^* \) has the form

\[
M_2 = \begin{bmatrix}
 A & O & O & B_2 \\
 O & I_{\ell} & -I \\
 B_2^* & O & C_2 \\
\end{bmatrix}
\]
for some operators B_2 and C_2. Hence we have

\[(12) \quad i_+(M) = i_+(R) + i_+ \left[\begin{bmatrix} A & B_2 \\ B_2^* & C_2 \end{bmatrix} \right].\]

Observe that

\[
\begin{bmatrix} A & B_2 \\ B_2^* & C_2 \end{bmatrix}^{-1} = \begin{bmatrix} S & Q_3 \\ Q_3^* & O_n \end{bmatrix},
\]

and thus by the special case we considered previously,

\[(13) \quad i_+ \left[\begin{bmatrix} A & B_2 \\ B_2^* & C_2 \end{bmatrix} \right] = i_+(A) + i_o(A).\]

Thus combining (12) and (13) we obtain

\[
i_+(M) = i_+(A) + i_o(A) + i_+(R),
\]

as required. [Q]

The following lemma will be used in the proof of the main result of this section. First, let $G = (V, E)$ be any connected chordal graph, and let $T = (C, E)$ be any clique tree associated with G. For any pair of maximal cliques α and β that are adjacent in T, let T_α and T_β be the subtrees of $T - \{\alpha, \beta\}$ that contain, respectively, α and β, and let C_α and C_β be the vertex sets of T_α and T_β. Define

\[
V_{\alpha \setminus \beta} = \left(\bigcup_{\gamma \in C_\alpha} \gamma \right) \setminus \beta,
\]

with $V_{\beta \setminus \alpha}$ defined similarly.

Lemma 7. [BJL] Under the assumptions of the preceding paragraph, the following hold:

(i) $V_{\alpha \setminus \beta} \cap V_{\beta \setminus \alpha} = \emptyset$;

(ii) $(\alpha \cap \beta)^c = V_{\alpha \setminus \beta} \cup V_{\beta \setminus \alpha}$;

and

(iii) α^c is the disjoint union

\[
\alpha^c = \bigcup_{\beta \in \text{adj} \alpha} V_{\beta \setminus \alpha},
\]

in which $\text{adj} \alpha = \{\beta \in C : \{\alpha, \beta\} \in E\}$.

We should note the following consequences of Lemma 7. Suppose $B = [B_{ij}]$ is a matrix satisfying $G(B) \subseteq G$, in which G is a chordal graph, and let T be a clique tree associated with G. If $\{\alpha, \beta\}$ is an edge of T, then $B[(\alpha \cap \beta)^c]$ is essentially a direct sum of the matrices $B[V_{\alpha \setminus \beta}]$ and $B[V_{\beta \setminus \alpha}]$. The reason for this is that there are no edges between vertices in $V_{\alpha \setminus \beta}$ and vertices in $V_{\beta \setminus \alpha}$, and hence $B_{ij} = O$ whenever $i \in V_{\alpha \setminus \beta}$ and $j \in V_{\beta \setminus \alpha}$. Similarly, if α is any maximal clique of G then $B[\alpha^c]$ is essentially a direct sum matrices of the form $B[V_{\beta \setminus \alpha}]$ as β runs through all cliques that are adjacent in T to α.

14
LEMMA 8. Let $\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n$, let $A : \mathcal{H} \to \mathcal{H}$ be an invertible operator matrix, and let $G = G(A^{-1})$ be a connected chordal graph. If $\mathcal{T} = (\mathcal{C}, \mathcal{E})$ is any clique tree associated with G, then
\begin{equation}
\sum_{\alpha \in \mathcal{C}} \dim \ker A[\alpha] = \sum_{\{\alpha, \beta\} \in \mathcal{E}} \dim \ker A[\alpha \cap \beta].
\end{equation}

Proof. Let us look first at the left-hand side of (14). by Lemma 4 and by Lemma 7 we have
\begin{equation}
\sum_{\alpha \in \mathcal{C}} \dim \ker A[\alpha] = \sum_{\alpha \in \mathcal{C}} \dim \ker A^{-1}[\alpha^c]
= \sum_{\alpha \in \mathcal{C}} \sum_{\beta \in \text{adj} \alpha} \dim \ker A^{-1}[V_{\beta \setminus \alpha}].
\end{equation}

On the other hand, by applying Lemmas 4 and 7 we may see that the right-hand side of (14) is
\begin{equation}
\sum_{\{\alpha, \beta\} \in \mathcal{E}} \dim \ker A[\alpha \cap \beta] = \sum_{\{\alpha, \beta\} \in \mathcal{E}} \dim \ker A^{-1}[(\alpha \cap \beta)^c]
= \sum_{\{\alpha, \beta\} \in \mathcal{E}} (\dim \ker A^{-1}[V_{\beta \setminus \alpha}] + \dim \ker A^{-1}[V_{\alpha \setminus \beta}]).
\end{equation}

Observe that with every edge $\{\alpha, \beta\}$ of \mathcal{T} we may associate exactly two terms in the right-most expression of (15), namely $\dim \ker A^{-1}[V_{\beta \setminus \alpha}]$ and $\dim \ker A^{-1}[V_{\alpha \setminus \beta}]$. But this just means that (15) and (16) contain all the same terms, and hence (14) is established. \]

THEOREM 9. Let $G = (N, E)$ be a connected chordal graph, let $A = [A_{ij}]$ be an n-by-n weakly G-regular Hermitian operator matrix, and suppose that $G(A^{-1}) \subseteq G$. If $i_+(A) < \infty$, then for any clique tree $\mathcal{T} = (\mathcal{C}, \mathcal{E})$ associated with G we have
\begin{equation}
i_+(A) = \sum_{\alpha \in \mathcal{C}} i_+(A[\alpha]) - \sum_{\{\alpha, \beta\} \in \mathcal{E}} i_+(A[\alpha \cap \beta]).\end{equation}

Proof. Since $i_+(A) < \infty$, we must have $i_+(A[\alpha]) < \infty$ for any $\alpha \subseteq N$, and by Lemma 5 we know that $i_+(A[\alpha]) < \infty$ for any $\alpha \subseteq N$. By Lemma 6 we may write
\begin{equation}
\sum_{\alpha \in \mathcal{C}} i_+(A[\alpha]) - \sum_{\{\alpha, \beta\} \in \mathcal{E}} i_+(A[\alpha \cap \beta])
= \sum_{\alpha \in \mathcal{C}} [i_+(A) - i_+(A^{-1}[\alpha^c]) - i_+(A[\alpha])]
- \sum_{\{\alpha, \beta\} \in \mathcal{E}} [i_+(A) - i_+(A^{-1}[(\alpha \cap \beta)^c]) - i_+(A[\alpha \cap \beta])]
= \sum_{\alpha \in \mathcal{C}} i_+(A) - \sum_{\{\alpha, \beta\} \in \mathcal{E}} i_+(A) - \sum_{\alpha \in \mathcal{C}} i_+(A^{-1}[\alpha^c])
+ \sum_{\{\alpha, \beta\} \in \mathcal{E}} i_+(A^{-1}[(\alpha \cap \beta)^c]) - \sum_{\alpha \in \mathcal{C}} i_+(A[\alpha]) + \sum_{\{\alpha, \beta\} \in \mathcal{E}} i_+(A[\alpha \cap \beta]).\end{equation}
The last two terms of the last expression in (17) cancel by Lemma 8, and the two middle terms cancel by an argument similar to that used in the proof of Lemma 8. Finally, since \(\mathcal{I} \) has exactly one more vertex than the number of edges, the right-hand side of (17) equals \(i_+(A) \). This proves the theorem. \(\square \)

Of course, a similar statement is true for \(i_-(A) \), and the corresponding statement for \(i_o(A) \) is already contained in Lemma 8.

Acknowledgement. The authors wish to thank M. Bakonyi and I. Spitkovski for helpful discussions of some operator theoretic background for the present paper.

REFERENCES

<table>
<thead>
<tr>
<th>#</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>801</td>
<td>Hi Jun Choe</td>
<td>Regularity for solutions of nonlinear variational inequalities with gradient constraints</td>
</tr>
<tr>
<td>802</td>
<td>Peter Shi and Yongzhi Xu</td>
<td>Quasistatic linear thermoelasticity on the unit disk</td>
</tr>
<tr>
<td>803</td>
<td>Satyanad Kichenassamy and Peter J. Olver</td>
<td>Existence and non-existence of solitary wave solutions to higher order model evolution equations</td>
</tr>
<tr>
<td>804</td>
<td>Dening Li</td>
<td>Regularity of solutions for a two-phase degenerate Stefan Problem</td>
</tr>
<tr>
<td>805</td>
<td>Marek Fila, Bernhard Kawohl and Howard A. Levine</td>
<td>Quenching for quasilinear equations</td>
</tr>
<tr>
<td>806</td>
<td>Yoshikazu Giga, Shun'ichi Goto and Hitoshi Ishii</td>
<td>Global existence of weak solutions for interface equations coupled with diffusion equations</td>
</tr>
<tr>
<td>807</td>
<td>Mark J. Friedman and Eusebius J. Doedel</td>
<td>Computational methods for global analysis of homoclinic and heteroclinic orbits: a case study</td>
</tr>
<tr>
<td>808</td>
<td>Mark J. Friedman</td>
<td>Numerical analysis and accurate computation of heteroclinic orbits in the case of center manifolds</td>
</tr>
<tr>
<td>809</td>
<td>Peter W. Bates and Songnu Zheng</td>
<td>Inertial manifolds and inertial sets for the phase-field equations</td>
</tr>
<tr>
<td>810</td>
<td>J. Lópeze Gómez, V. Márquez and N. Wolanski</td>
<td>Global behavior of positive solutions to a semilinear equation with a nonlinear flux condition</td>
</tr>
<tr>
<td>811</td>
<td>Xinfu Chen and Fahuai Yi</td>
<td>Regularity of the free boundary of a continuous casting problem</td>
</tr>
<tr>
<td>812</td>
<td>Eden, A., Foias, C., Nicolaenko, B. and Temam, R.</td>
<td>Inertial sets for dissipative evolution equations Part I: Construction and applications</td>
</tr>
<tr>
<td>813</td>
<td>Jose–Francisco Rodrigues and Boris Zaltzman</td>
<td>On classical solutions of the two-phase steady-state Stefan problem in strips</td>
</tr>
<tr>
<td>814</td>
<td>Viorel Barbu and Srdjan Stojanovic</td>
<td>Controlling the free boundary of elliptic variational inequalities on a variable domain</td>
</tr>
<tr>
<td>815</td>
<td>Viorel Barbu and Srdjan Stojanovic</td>
<td>A variational approach to a free boundary problem arising in electrophotography</td>
</tr>
<tr>
<td>816</td>
<td>B.H. Gilding and R. Kersner</td>
<td>Diffusion-convection-reaction, free boundaries, and an integral equation</td>
</tr>
<tr>
<td>817</td>
<td>Shoshana Kamin, Lambertus A. Peletier and Juan Luis Vazquez</td>
<td>On the Barenblatt equation of elastoplastic filtration</td>
</tr>
<tr>
<td>818</td>
<td>Avner Friedman and Bei Hu</td>
<td>The Stefan problem with kinetic condition at the free boundary</td>
</tr>
<tr>
<td>819</td>
<td>M.A. Grinfeld</td>
<td>The stress driven instabilities in crystals: mathematical models and physical manifestations</td>
</tr>
<tr>
<td>820</td>
<td>Bei Hu and Lihe Wang</td>
<td>A free boundary problem arising in electrophotography: solutions with connected toner region</td>
</tr>
<tr>
<td>821</td>
<td>Yongzhi Xu, T. Craig Poling, and Trent Brundage</td>
<td>Direct and inverse scattering of time harmonic acoustic waves in an inhomogeneous shallow ocean</td>
</tr>
<tr>
<td>822</td>
<td>Steven J. Altschuler</td>
<td>Singularities of the curve shrinking flow for space curves</td>
</tr>
<tr>
<td>823</td>
<td>Steven J. Altschuler and Matthew A. Grayson</td>
<td>Shortening space curves and flow through singularities</td>
</tr>
<tr>
<td>824</td>
<td>Tong Li</td>
<td>On the Riemann problem of a combustion model</td>
</tr>
<tr>
<td>825</td>
<td>L.A. Peletier & W.C. Troy</td>
<td>Self-similar solutions for diffusion in semiconductors</td>
</tr>
<tr>
<td>827</td>
<td>Minkyu Kwak</td>
<td>Finite dimensional description of convective reaction-diffusion equations</td>
</tr>
<tr>
<td>828</td>
<td>Minkyu Kwak</td>
<td>Finite dimensional inertial forms for the 2D Navier–Stokes equations</td>
</tr>
<tr>
<td>829</td>
<td>Victor A. Galaktionov and Sergey A. Posashkov</td>
<td>On some monotonicity in time properties for a quasilinear parabolic equation with source</td>
</tr>
<tr>
<td>830</td>
<td>Victor A. Galaktionov</td>
<td>Remark on the fast diffusion equation in a ball</td>
</tr>
<tr>
<td>831</td>
<td>Hi Jun Choe and Lihe Wang</td>
<td>A regularity theory for degenerate vector valued variational inequalities</td>
</tr>
<tr>
<td>832</td>
<td>Vladimir I. Oliker and Nina N. Ural'tseva</td>
<td>Evolution of nonparametric surfaces with speed depending on curvature, II. The mean curvature case</td>
</tr>
<tr>
<td>833</td>
<td>S. Kamin and W. Liu</td>
<td>Large time behavior of a nonlinear diffusion equation with a source</td>
</tr>
<tr>
<td>834</td>
<td>Shoshana Kamin and Juan Luis Vazquez</td>
<td>Singular solutions of some nonlinear parabolic equations</td>
</tr>
<tr>
<td>835</td>
<td>Bernhard Kawohl and Robert Kersner</td>
<td>On degenerate diffusion with very strong absorption</td>
</tr>
<tr>
<td>836</td>
<td>Avner Friedman and Fernando Reitich</td>
<td>Parameter identification in reaction-diffusion models</td>
</tr>
<tr>
<td>837</td>
<td>E.G. Kalnins, H.L. Manocha and Willard Miller, Jr.</td>
<td>Models of q-algebra representations I. Tensor products of special unitary and oscillator algebras</td>
</tr>
<tr>
<td>838</td>
<td>Robert J. Sacker and George R. Sell</td>
<td>Dichotomies for linear evolutionary equations in Banach spaces</td>
</tr>
<tr>
<td>839</td>
<td>Oscar P. Bruno and Fernando Reitich</td>
<td>Numerical solution of diffraction problems: a method of variation of boundaries</td>
</tr>
<tr>
<td>840</td>
<td>Oscar P. Bruno and Fernando Reitich</td>
<td>Solution of a boundary value problem for Helmholtz equation via variation of the boundary into the complex domain</td>
</tr>
<tr>
<td>841</td>
<td>Victor A. Galaktionov and Juan L. Vazquez</td>
<td>Asymptotic behaviour for an equation of superslow diffusion. The Cauchy problem</td>
</tr>
<tr>
<td>842</td>
<td>Joseplus Hulshof and Juan Luis Vazquez</td>
<td>The Dipole solution for the porous medium equation in several</td>
</tr>
</tbody>
</table>
Shoshana Kamin and Juan Luis Vazquez, The propagation of turbulent bursts
Miguel Escobedo, Juan Luis Vazquez and Enrike Zuazua, Source-type solutions and asymptotic behaviour for a diffusion-convection equation
Marco Biroli and Umberto Mosco, Discontinuous media and Dirichlet forms of diffusion type
Stathis Filippas and Jong-Shenq Guo, Quenching profiles for one-dimensional semilinear heat equations
H. Scott Dumas, A Nekhoroshev-like theory of classical particle channeling in perfect crystals
R. Natalini and A. Tesei, On a class of perturbed conservation laws
Paul K. Newton and Shinya Watanabe, The geometry of nonlinear Schrödinger standing waves
S.S. Sritharan, On the nonsmooth verification technique for the dynamic programming of viscous flow
Mario Taboada and Yuncheng You, Global attractor, inertial manifolds and stabilization of nonlinear damped beam equations
Shigeru Sakaguchi, Critical points of solutions to the obstacle problem in the plane
F. Abergel, D. Hilhorst and F. Issard-Roch, On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution
Eraçmus Langer, Numerical simulation of MOS transistors
Haim Brezis and Shoshana Kamin, Sublinear elliptic equations in \mathbb{R}^n
Johannes C.C. Nitsche, Boundary value problems for variational integrals involving surface curvatures
Chao–Nien Chen, Multiple solutions for a semilinear elliptic equation on \mathbb{R}^N with nonlinear dependence on the gradient
D. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential attractor for the phase field model
Joseph D. Fehribach, Mullins-Sekerka stability analysis for melting-freezing waves in helium-4
Walter Schempp, Quantum holography and neurocomputer architectures
D.V. Anosov, An introduction to Hilbert’s 21st problem
Herbert E Huppert and M Grae Worster, Vigorous motions in magma chambers and lava lakes
Robert L. Pego and Michael I. Weinstein, A class of eigenvalue problems, with applications to instability of solitary waves
Mahmoud Affouf, Numerical study of a singular system of conservation laws arising in enhanced oil reservoirs
Darin Beigie, Anthony Leonard and Stephen Wiggins, The dynamics associated with the chaotic of tangles two dimensional quasiperiodic vector fields: theory and applications
Gui–Qian Chen and Tai–Ping Liu, Zero relaxation and dissipation limits for hyperbolic conservation laws
Gui–Qian Chen and Jian–Guo Liu, Convergence of second–order schemes for isentropic gas dynamics
Aleksander M. Simon and Zbigniew J. Grywna, On the Larché–Cahn theory for stress-induced diffusion
Jerzy Łuczka, Adam Gadmowski and Zbigniew J. Grywna, Growth driven by diffusion
Mitchell Luskin and Tsong-Rung-Whay Pan, Nonplanar shear flows for nonaligning nematic liquid crystals
Mahmoud Affouf, Unique global solutions of initial-boundary value problems for thermodynamic phase transitions
Richard A. Brualdi, Keith L. Chavey and Bryan L. Shader, Rectangular L-matrices
Xinfu Chen, Avner Friedman and Bei Hu, The thermistor problem with zero–one conductivity II
Raoul LePage, Controlling a diffusion toward a large goal and the Kelly principle
Raoul LePage, Controlling for optimum growth with time dependent returns
Marc Hallin and Madan L. Puri, Rank tests for time series analysis a survey
V.A. Solonnikov, Solvability of an evolution problem of thermocapillary convection in an infinite time interval
Horia I. Ene and Bogdan Vernescu, Viscosity dependent behaviour of viscoelastic porous media
Kaushik Bhattacharya, Self-accommodation in martensite
D. Lewis, T. Ratiu, J.C. Simo and J.E. Marsden, The heavy top: a geometric treatment
Leonid V. Kalachev, Some applications of asymptotic methods in semiconductor device modeling
David C. Dobson, Phase reconstruction via nonlinear least-squares
Patricio Aviles and Yoshikazu Giga, Minimal currents, geodesics and relaxation of variational integrals on mappings of bounded variation
Patricio Aviles and Yoshikazu Giga, Partial regularity of least gradient mappings
Charles R. Johnson and Michael Lundquist, Operator matrices with chordal inverse patterns
B.J. Bayly, Infinitely conducting dynamos and other horrible eigenproblems
Charles M. Elliott and Stefan Luckhaus, A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy
Christian Schmeiser and Andreas Unterreiter, The derivation of analytic device models by asymptotic methods
LeRoy B. Beasley and Norman J. Pullman, Linear operators that strongly preserve the index of imprimitivity
Jerry Donato, The Boltzmann equation with lie and cartan
Thomas R. Hoffend Jr., Peter Smereka and Roger J. Anderson, Method for resolving the laser induced local heating of moving magneto-optical recording media