THE EXponential STABILITY OF A COUPLED
HYPERBOLIC/PARABOLIC SYSTEM ARISING IN STRUCTURAL
ACOUSTICS

By

George Avalos

IMA Preprint Series # 1344
October 1995

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA
514 Vincent Hall
206 Church Street S.E.
Minneapolis, Minnesota 55455
The Exponential Stability of a Coupled Hyperbolic/Parabolic System Arising in Structural Acoustics

George Avalos*

Abstract

We show here the uniform stabilization of a coupled system of hyperbolic and parabolic PDE's which describes a particular fluid/structure interaction system. This system has the wave equation, which is satisfied on the interior of a bounded domain Ω, coupled to a "parabolic-like" beam equation holding on $\partial\Omega$, and wherein the coupling is accomplished through velocity terms on the boundary. Our result is an analog of that in [12] which shows the exponential stability of the wave equation via Neumann feedback control, and like that work, depends upon a trace regularity estimate for solutions of hyperbolic equations.

1 Introduction

1.1 Statement of the Problem and Motivation

Let Ω be a bounded domain of \mathbb{R}^n, $n \geq 2$, with Lipshitz boundary $\Gamma = \Gamma_0 \cup \Gamma_1$, Γ_i open, Γ_0 and Γ_1 both nonempty, with $\Gamma_0 \cap \Gamma_1 = \emptyset$. This paper is a continuation of our study, initiated in ([1]), of the following system consisting of a coupling between a wave and plate-like equation:

\[
\begin{align*}
z_{tt} &= \Delta z & \text{on } (0, \infty) \times \Omega \\
z(0, x) &= z_0, \quad z_t(0, x) = z_1 & \text{on } \Omega \\
z(t, x) &= 0 & \text{on } (0, \infty) \times \Gamma_0 \\
\frac{\partial z(t, x)}{\partial \nu} + \alpha z_t(t, x) &= v_t & \text{on } (0, \infty) \times \Gamma_1 \text{ with } \alpha \geq 0; \\
v_{tt} &= -\Delta^2 v - \Delta^2 v_t - z_t & \text{on } (0, \infty) \times \Gamma_1 \\
v(0, x) &= v_0, \quad v_t(0, x) = v_1 & \text{on } \Gamma_1 \\
v(t, x) &= \frac{\partial v(t, x)}{\partial \nu} = 0 & \text{on } (0, \infty) \times \partial \Gamma_1.
\end{align*}
\]

(1)

(2)

Note how this coupling above of two qualitatively different equations is accomplished by the velocity terms z_t and v_t on the active portion of the boundary Γ_1.

In [2], issues of well-posedness for (1)-(2) were settled, with initial data $[z_0, v_0] \equiv [z_0, z_1, v_0, v_1]$ determining the solution $[z, v] \equiv [z, z_t, v, v_t]$ to be in $H^{1}_{\Gamma_0}(\Omega) \times L^2(\Omega) \times H^2_0(\Gamma_1) \times L^2(\Gamma_1)$ (where $H^{1}_{\Gamma_0}(\Omega) = \{ z \in H^1(\Omega) \, \| \, z = 0 \text{ on } \Gamma_0 \}$. Here, we are concerned with the exponential decay of the

*Institute for Mathematics and its Applications, University of Minnesota, 514 Vincent Hall, 206 Church Street S. E., Minneapolis, MN 55455-0436
solution \([\mathbf{x}, \mathbf{v}]\) to (1)-(2). Specifically, we wish to know: Defining the energy \(E(\mathbf{x}, \mathbf{v}, t)\) of the system as

\[
E(\mathbf{x}, \mathbf{v}, t) = \int_{\Omega} \left(|\nabla z(t)|^2 + |z_t(t)|^2 \right) d\Omega + \int_{\Gamma_1} \left(|\Delta v(t)|^2 + |v_t(t)|^2 \right) d\Gamma_1,
\]

(3)
does there exist positive constants \(C\) and \(\omega\) such that

\[
E(\mathbf{x}, \mathbf{v}, t) \leq Ce^{-\omega t} \left\| \begin{bmatrix} z_0 \\ \frac{\partial z_0}{\partial \nu} \end{bmatrix} \right\|^2
\]

(where the norm above denotes that of the \(H^1_0(\Omega) \times L^2(\Omega) \times H^2_0(\Gamma_1) \times L^2(\Gamma_1)\)-topology). This "structural acoustics" model is a variation of that derived by H.T. Banks et al (see [4],[5]) to mathematically describe the interaction between an acoustic field and its vibrating boundary, a physical phenomenon much studied nowadays within the realm of smart materials and structures and its accompanying numerical analysis. A simple PDE argument will reveal that the original system of Banks et al does not exhibit uniform decay, and hence the necessity for the supplanting with (1)-(2). We furthermore focus here on the case that the parameter \(\alpha > 0\).

A demonstration of exponential stability for the system (1)-(2) has important physical implications, as one would consequently be free to study the associated Linear Quadratic Regulator Problem (LQR) on Infinite Horizon. In the LQR for the structural acoustics model, boundary control is implemented via the placement of linear combinations of derivatives of delta functions in the beam equation of (2), so as to model the use of piezoelectric ceramic patches in inducing acoustic noise reduction (the LQR for finite time has been given a thorough treatment in [1]). Note here that the input operator which models the control action is "badly" unbounded, and the LQR is consequently not amenable to the recently developed treatments in [9]. The exponential stability of (1)-(2) is requisite in the analysis of the LQR for infinite time, which in turn could potentially yield a viable numerical approach (via a formulation of the appropriate Algebraic Riccati Equation) for obtaining approximations of the structural acoustics control problem. Moreover, the uniform stabilization of (1)-(2) is indispensable in future considerations of non-linear versions of the model.

1.2 Preliminaries

In dealing with (1)-(2), we will consider throughout its equivalence with an abstract evolution equation, for the defining of which we will need the following background material:

- Let the operator \(A : L^2(\Omega) \supset D(A) \to L^2(\Omega)\) be defined by

\[
Az = -\Delta z, \quad D(A) = \left\{ z \in H^2(\Omega) \; \exists \; z|_{\Gamma_0} = 0, \left. \frac{\partial z}{\partial \nu} \right|_{\Gamma_1} = 0 \right\}.
\]

(4)

Note that \(A\) is self-adjoint, positive definite, and hence the fractional powers of \(A\) are well defined.

- By [10], we have the following characterization:

\[
D(A^{\frac{1}{2}}) = H^1_0(\Omega) = \left\{ z \in H^1(\Omega) \; \exists \; z = 0 \; {\text{on}} \; \Gamma_0 \right\},
\]

(5)

with \(|z|^2_{D(A^{\frac{1}{2}})} = \left\| A^{\frac{1}{2}} z \right\|_{L^2(\Omega)}^2 = \int_{\Omega} |\nabla z|^2 d\Omega = \|z\|_{H^1_0}^2 \; \forall \; z \in D(A^{\frac{1}{2}}),\]

(6)

where the last equality in (6) follows from Poincaré's inequality.
• We define the map N by

$$
\begin{aligned}
z = Ng & \iff \\
\begin{cases}
\Delta z = 0 & \text{on } \Omega \\
z|_{\Gamma_0} = 0 & \text{on } \Gamma_0 \\
\frac{\partial z}{\partial \nu}_{|_{\Gamma_1}} = g & \text{on } \Gamma_1;
\end{cases}
\end{aligned}
$$

(7)

elliptic theory will then yield that

$$
N \in L(L^2(\Gamma_1), D(A^\frac{1}{2} - \epsilon)) \quad \forall \epsilon > 0.
$$

(8)

• Let $\gamma : H^1(\Omega) \to H^\frac{1}{2}(\Gamma_1)$ be the restriction to Γ_1 of the familiar Sobolev trace map; viz.

$$
\forall z \in H^1(\Omega), \quad \gamma(z) = \begin{cases}
z|_{\Gamma_1} & \text{on } \Gamma_1 \\
0 & \text{on } \Gamma_0.
\end{cases}
$$

(9)

Then as is shown in [14], we have

$$
N^*A = \gamma(z) \quad \forall z \in D(A^\frac{1}{2}).
$$

(10)

• We set $\hat{A} : L^2(\Gamma_1) \supset D(\hat{A}) \to L^2(\Gamma_1)$ to be

$$
\hat{A} = \Delta^2, \quad D(\hat{A}) = H^4(\Gamma_1) \cap H^2_0(\Gamma_1);
$$

(11)

\hat{A} is also self–adjoint, positive definite, and again by [10], we have the characterization

$$
D(\hat{A}^\theta) = H^{4\theta}_0(\Gamma_1), \quad 0 < \theta < 1,
$$

(12)

with

$$
\|\hat{A}^{\frac{1}{2}} v\|_{L^2(\Gamma_1)}^2 = \int_{\Gamma_1} |\Delta v|^2 \, d\Omega = \|v\|_{H^2(\Gamma_1)}^2 \quad \forall v \in D(\hat{A}^{\frac{1}{2}}).
$$

(13)

• We define the energy spaces

$$
H_1 \equiv D(A^\frac{1}{2}) \times L^2(\Omega); \quad H_0 \equiv D(\hat{A}^{\frac{1}{2}}) \times L^2(\Gamma_1).
$$

(14)

(15)

• We define $A_1 : H_1 \supset D(A_1) \to H_1$ and $A_0 : H_0 \supset D(A_0) \to H_0$ to be

$$
A_1 \equiv \begin{bmatrix} 0 & I \\ -A & -\alpha AN^* A \end{bmatrix} \quad \text{with}
$$

$$
D(A_1) = \left\{ [z_1, z_2]^T \in \left[D(A^\frac{1}{2}) \right]^2 \ | z_1 + \alpha NN^* A z_2 \in D(A) \right\};
$$

(17)

$$
A_0 \equiv \begin{bmatrix} 0 & I \\ -\hat{A} & -\hat{A} \end{bmatrix} \quad \text{with}
$$

$$
D(A_0) = \left\{ [v_1, v_2]^T \in \left[D(\hat{A}^\frac{1}{2}) \right]^2 \ | v_1 + v_2 \in D(\hat{A}) \right\}.
$$

(19)
With γ as defined in (28) we set

$$C = \begin{bmatrix} 0 & 0 \\ 0 & \gamma^* \end{bmatrix} \in \mathcal{L}(H_0, D(A^{1/2}) \times D(A^{1/2})') \tag{20}.$$

With the above operator definitions, we set

$$A = \begin{bmatrix} A_1 & C \\ -C^* & A_0 \end{bmatrix} \quad \text{with}$$

$$D(A) = \left\{ (z_1, z_2, v, v_2)^T \in D(A^{1/2})^2 \times D(A^{1/2})^2 \right\}$$

such that $-z_1 - \alpha NN^* A z_2 + N v_2 \in D(A)$ and $v_1 + v_2 \in D(\tilde{A}) \tag{21}$.

If we take the initial data $[\overline{z}_0, \overline{v}_0]$ to be in $H_1 \times H_0$ (as defined in (14)-(15)), we can use the definitions above to rewrite (1)-(2) abstractly as

$$\frac{d}{dt} \begin{bmatrix} z \\ z_t \\ v \\ v_t \end{bmatrix} = A \begin{bmatrix} \overline{z} \\ \overline{v} \end{bmatrix} \tag{22}$$

$$[z(0), v(0)] = [\overline{z}_0, \overline{v}_0].$$

Remark 1 The structure of A given in (22) clearly reflects the coupled nature of this particular system; the operator A_1 which models hyperbolic dynamics is linked via an unbounded coupling with the “elastic” operator A_0 which exhibits parabolic characteristics, and the coupling here is accomplished by the “trace” operators C and C^*.

From (22), the differential equations in (1)-(2) then have the following abstract representation:

$$z_{tt} = -Az - ANN^* Az_t + AN v_t \quad \text{on} \ (0, \infty) \times \Omega; \tag{23}$$

$$v_{tt} = -\tilde{A} v - \tilde{A} v_t - N A^* z_t \quad \text{on} \ (0, \infty) \times \Gamma_1. \tag{24}$$

Regarding the well–posedness and strong stability of (1)-(2) and its equivalent form (22), we have the following recent result:

Theorem A (see [2]). With $\alpha \geq 0$ in (1),

(i) A given by (21) generates a C_0-semigroup of contractions $\{e^{At}\}_{t \geq 0}$ on the energy space $H_1 \times H_0$.

(ii) The semigroup $\{e^{At}\}_{t \geq 0}$ is strongly stable; that is,

$$\forall \ [\overline{z}_0, \overline{v}_0] \equiv [z_0, z_1, v_0, v_1] \in H_1 \times H_0, \text{ one has} \tag{25}$$

$$\lim_{t \to \infty} e^{At} \begin{bmatrix} \overline{z}_0 \\ \overline{v}_0 \end{bmatrix} \to 0.$$

1.3 Literature

The exponential stability for the individual components A_1 and A_0 have been well–established these past few years, but that of the entire structure A has not been addressed. Concerning the beam equation modelled by the “elastic” operator A_0, we have the result of S. Chen and Triggiani in [8] that A_0 generates an analytic semigroup, which automatically provides for the exponential decay of
the solution \([v, v_t]\) of the second-order system
\[
v_{tt} = -\Delta^2 v - \Delta^2 v_t \text{ on } (0, \infty) \times \Gamma_1
\]
\[
v(t, x) = v(t, x) = \frac{\partial v(t, x)}{\partial n} = \frac{\partial v(t, x)}{\partial \nu} = 0 \text{ on } \partial \Gamma_1
\]
\([v(0), v_t(0)] = [v_0, v_1] \in H_1 \times H_0.
\]
For the wave equation with \(L^2(0, T; L^2(\Omega))\)-Neumann feedback control; viz.
\[
z_{tt} = \Delta z \quad \text{on } (0, \infty) \times \Omega
\]
\[
z(0, x) = z_0, \quad z_t(0, x) = z_1 \quad \text{on } \Omega
\]
\[
z(t, x) = 0 \quad \text{on } (0, \infty) \times \Gamma_0
\]
\[
\frac{\partial z(t, x)}{\partial \nu} = -\alpha z_t(t, x) \quad \text{on } (0, \infty) \times \Gamma_1 \quad \alpha > 0;
\]
(27)
G. Chen in [7] proved the exponential stability of solutions (27) under the geometrical conditions that \(\Omega\) be "star-shaped". Lagnese in [11], and subsequently, Triggiani in [14] through an alternate proof, showed the uniform stabilization of (27) under the lessened constraint that there exist a \(C^2(\overline{\Omega})\)-vector field \(h(x)\) such that
(h.i) \(h \cdot \nu \leq 0\) on \(\Gamma_0\)
where \(\nu\) denotes the unit-normal vector to \(\Gamma\);
(h.ii) \(h\) is parallel to \(\nu\) on \(\Gamma_1\);
(h.iii) The Jacobian matrix \(H(x)\) of \(h(x)\) is uniformly positive definite on \(\overline{\Omega}\).

Also, C. Bardos, G. Lebeau and J. Rauch in [6] have derived stability results for wave equations with more general boundary conditions than those in (27), under the assumptions of geometric optics; however the techniques used in the proofs therein are not easily adaptable to our particular situation, based as they are on microlocal analysis and the propagation of singularities. Instead, we shall use the approach of I. Lasiecka and R. Triggiani in [12], who have shown the exponential decay of solutions of (27) without the constraint (h.ii). This result is proved by using the standard multipliers \(h \cdot \nabla z\) and \(z \div h\), and invoking a deep (pseudodifferential) trace estimate which we state here for future reference:

Lemma A(see [12]). Let \(\epsilon > 0\) be arbitrarily small. Let \(z\) solve an arbitrary second-order hyperbolic equation on \((0, T)\) with smooth space-dependent coefficients. Then with \(Q_T = (0, T) \times \Omega\),

\[
\int_0^T \int_{\Gamma_1} \left(\frac{\partial z}{\partial \tau} \right)^2 d\Gamma_1 dt < C_{T, \epsilon} \left\{ \int_0^T \int_{\Gamma_1} \left(\left(\frac{\partial z}{\partial \nu} \right)^2 + z_t^2 \right) d\Gamma_1 dt + \|z\|_{H^{1+\epsilon}(Q_T)}^2 \right\},
\]

(28)
where the \(\epsilon\) on the left of (28) need not be the same as the \(\epsilon\) for the \(Q_T\)-norm on the right, and where \(\frac{\partial}{\partial \tau}\) denotes the tangential, and \(\frac{\partial}{\partial \nu}\) the co-normal derivative.

It is this control of the tangential derivative provided above that allows one to forego the condition (h.ii) and generate the desired bound on the energy. In what follows, we will use critically the fact that **Lemma A** is applicable to the wave equation given in (1).
1.4 Statement of Main Result

Theorem 1 With \(\alpha > 0 \) in (1), suppose there exists a \(C^2(\Omega) \) vector field satisfying (h.i) and (h.iii) only. Then, the semigroup \(\{ e^{At} \}_{t \geq 0} \) generated by the operator \(A \) (defined in (21)) is exponentially stable; that is, there exists positive constants \(C \) and \(\omega \) such that the solution \([\overline{z}, \overline{v}] \) of (1)–(2) satisfies

\[
E(\overline{z}, \overline{v}, t) = \left\| e^{At} \left[\begin{array}{c} \overline{z} \\ \overline{v} \end{array} \right] \right\|^2_{H_1 \times H_0} \leq Ce^{-\omega t} \left\| \begin{array}{c} \overline{z}_0 \\ \overline{v}_0 \end{array} \right\|^2_{H_1 \times H_0}. \tag{29}
\]

Note that the proof of Theorem 1.1 is independent of the strong stability result posted in Lemma A, wherein there is no imposition of geometrical conditions. As will be explained below, to demonstrate the exponential stability, it will suffice to show that there exists a \(T, 0 < T < \infty \) and corresponding constant \(C_T \) such that

\[
E(\overline{z}, \overline{v}, T) \leq C_T \int_0^T \left(\|z_t\|^2_{L^2(\Gamma_1)} + \left\| \mathbb{A}^{\frac{1}{2}} v_t \right\|^2_{L^2(\Gamma_1)} \right) dt. \tag{30}
\]

To obtain (30), we will rely on the strong damping provided by the beam equation in (2) combined with a multiplier method for the wave equation in (1) to extract a preliminary upper bound on the energy \(E(\overline{z}, \overline{v}, T) \). This upper bound, besides containing the RHS of (30), also includes the tangential derivative of \(z \) and lower order terms. We then use Lemma A, in a very similar way as was done in [12], to estimate \(\frac{\partial z}{\partial t} \) in terms of the RHS of (30) and more lower order terms, and finally eliminate the lower order terms through a compactness/uniqueness argument.

Remark 2 In estimating the energy contribution of (1), one could also proceed as in [11] and [14] to eventually arrive at the uniform stabilization of (1)–(2) under all the geometrical conditions (h.i)–(h.iii). To reiterate, it is the abstract trace estimate (28) which helps to yield the stronger result by eliminating the condition (h.ii).

In proving Theorem 1, we will, without loss of generality, take \(\alpha \equiv 1 \), as one will see in the proofs below that the value of \(\alpha \) is irrelevant, so long as it is positive.

2 Proof of Main Result

Throughout, the initial data \([\overline{z}_0, \overline{v}_0] \) is taken to be in \(D(A) \), which provides that \([z, z_t, v, v_t] \in C([0, T]; D(A)) \), and \([z_t, z_{tt}, v_t, v_{tt}] \in C([0, T]; H_1 \times H_0) \). Proving the results below and subsequently Theorem 1.1 in this special case will be conclusive, as we can then extend the results by density to hold for all initial data in \(H_1 \times H_0 \).

We first give a preliminary result concerning the \(a \text{ priori} \) regularity of the velocity terms \(z_t \) and \(v_t \) which will be used frequently in the work ahead.

Proposition 1 With \([\overline{z}, \overline{v}] \) the solution of (1)–(2) (guaranteed by Theorem A.(i)), we have

The map \(\{ \overline{z}_0, \overline{v}_0 \} \rightarrow \{ z_t|_{\Gamma_1}, v_t \} \in \mathcal{L} \left(H_1 \times H_0, L^2 \left(0, \infty; L^2(\Gamma_1) \times D(\mathbb{A}^{\frac{1}{2}}) \right) \right) \). Indeed, we have \(\forall 0 < T < \infty \),

\[
2 \int_0^T \left(\| z_t|_{\Gamma_1} \|^2_{L^2(\Gamma_1)} + \left\| \mathbb{A}^{\frac{1}{2}} v_t \right\|^2_{L^2(\Gamma_1)} \right) dt = E(\overline{z}, \overline{v}, 0) - E(\overline{z}, \overline{v}, T). \tag{31}
\]
Proof: We have by multiplying (23) by z_t, (24) by v_t, and integrating from 0 to T:

$$\int_0^T \|N^* A z_t\|^2_{L^2(\Gamma_1)} dt = \int_0^T \langle AN v_t, z_t \rangle = [D(A^\frac{1}{2})'] \times D(A^\frac{1}{2})$$

$$+ \frac{1}{2} \left(\| A^\frac{1}{2} z_0 \|^2_{L^2(\Omega)} + \| z_t \|^2_{L^2(\Omega)} - \| A^\frac{1}{2} z(T) \|^2_{L^2(\Omega)} - \| z_t(T) \|^2_{L^2(\Omega)} \right) ;$$

$$\int_0^T \| A^\frac{1}{2} v_t \|^2_{L^2(\Gamma_1)} - t \left(N^* A z_t, v_t \right)_{L^2(\Gamma_1)} dt$$

$$+ \frac{1}{2} \left(\| A^\frac{1}{2} v_0 \|^2_{L^2(\Gamma_1)} + \| v_t \|^2_{L^2(\Gamma_1)} - \| A^\frac{1}{2} v(T) \|^2_{L^2(\Gamma_1)} - \| v_t(T) \|^2_{L^2(\Gamma_1)} \right) .$$

Considering the definition of E given in (3) and the characterizations (6), (13) and (10), the desired relation (31) is obtained after the addition of (32)–(33). The asserted continuity of the map \(\{ x_0, \bar{v}_0 \} \rightarrow \{ z_t |_{\Gamma_1}, v_t \} \) is consequently deduced from (31) and the contraction of the semigroup \(\{ e^{A t} \} _{t \geq 0} . \)

2.1 Proof of Theorem 1.1

A standard argument has that to show the exponential decay (29), it suffices to show that exists a time $0 < T < \infty$ and a corresponding positive constant C_T such that for all initial data in $H_1 \times H_0$:

$$E(\overline{\mathcal{V}}, \overline{\mathcal{V}}, T) \leq \eta E(\overline{\mathcal{V}}, \overline{\mathcal{V}}, 0) \quad \forall \eta < 1; \quad (34)$$

given Proposition 2.1, it will in turn suffice to show that there exists a time $0 < T < \infty$ and a corresponding positive constant C_T such that

$$E(\overline{\mathcal{V}}, \overline{\mathcal{V}}, T) \leq C_T \int_0^T \left[\| z_t |_{\Gamma_1} \|^2_{L^2(\Gamma_1)} + \| A^\frac{1}{2} v_t \|^2_{L^2(\Gamma_1)} \right] dt, \quad (35)$$

to which end we proceed to work.

We will make use throughout of the denotations $Q_T := (0, T) \times \Omega$, $\Sigma_T := (0, T) \times \Gamma$ and $\Sigma_iT := (0, T) \times \Gamma_i, i = 0, 1.$

Lemma 1 There exists a positive constant C, independent of time, such that $\forall 0 < T < \infty$

$$\int_0^T \left[\| A^\frac{1}{2} v \|^2_{L^2(\Gamma_1)} + \| v_t \|^2_{L^2(\Gamma_1)} \right] dt \leq C \left[E(\overline{\mathcal{V}}, \overline{\mathcal{V}}, T) + E(\overline{\mathcal{V}}, \overline{\mathcal{V}}, 0) + \int_0^T \left[\| z_t |_{\Gamma_1} \|^2_{L^2(\Gamma_1)} + \| A^\frac{1}{2} v_t \|^2_{L^2(\Gamma_1)} \right] dt + \| v \|^2_{L^2(\Gamma_1)} \right] . \quad (36)$$

Proof: Trivially, we have that

$$\int_0^T \| v_t \|^2_{L^2(\Gamma_1)} dt \leq \int_0^T \| A^\frac{1}{2} v_t \|^2_{L^2(\Gamma_1)} dt. \quad (37)$$

Moreover, multiplying (24) by v and integrating from 0 to T yields

$$\int_0^T \| A^\frac{1}{2} v \|^2_{L^2(\Gamma_1)} dt = \int_0^T \| v_t \|^2_{L^2(\Gamma_1)} dt - \left[(v_t, v)_{L^2(\Gamma_1)} \right]_0^T$$

$$+ \frac{1}{2} \left[\| A^\frac{1}{2} v \|^2_{L^2(\Gamma_1)} \right]_0^T - \int_0^T (N^* A z_t, v)_{L^2(\Gamma_1)} dt ; \quad (38)$$
using (37). Poincare’s inequality, the definition of the energy E, and Cauchy–Schwarz on the RHS of (38) yields

$$
\int_0^T \left\| \mathbf{A}^{\frac{1}{2}} v_t \right\|_{L^2(\Gamma_1)}^2 dt \leq C \left[\int_0^T \left(\left\| N^* A z_t \right\|_{L^2(\Gamma_1)}^2 + \left\| \mathbf{A}^{\frac{1}{2}} v_t \right\|_{L^2(\Gamma_1)}^2 \right) dt \right] \\
+ E(\mathbf{z}^\ast, \mathbf{v}^\ast, T) + E(\mathbf{z}^\ast, \mathbf{v}^\ast, 0) + \left\| v_t \right\|_{L^2(\Sigma_{1T})}^2,
$$

(39)

where C is independent of time. The result follows upon adding (37) and (39), and recalling the characterization (10). □

Lemma 2 There exists a constant C, independent of time, such that

$$
\int_{Q_T} z_t^2 \, dQ_T \leq C \left[\int_0^T \left(\left\| z_t \right\|_{L^2(\Gamma_1)}^2 + \left\| \mathbf{A}^{\frac{1}{2}} v_t \right\|_{L^2(\Gamma_1)}^2 \right) dt \right] \\
+ \int_{\Sigma_{1T}} \left(\frac{\partial z}{\partial T} \right)^2 d\Sigma_{1T} + E(\mathbf{z}^\ast, \mathbf{v}^\ast, T) + E(\mathbf{z}^\ast, \mathbf{v}^\ast, 0) + \left\| z \right\|_{L^2(Q_T)}^2.
$$

(40)

Proof. With the given vector field $h(x)$ satisfying (h.i) and (h.iii), we have upon multiplying the wave equation in (1) by $h \cdot \nabla z$ the standard identity (see [14], Appendix A):

$$
\int_{Q_T} H \nabla z \cdot \nabla z \, dQ_T = \int_{\Sigma_T} \frac{\partial z}{\partial \nu} \cdot h \cdot \nabla z \, d\Sigma_T \\
+ \frac{1}{2} \int_{\Sigma_T} z_t^2 \, h \cdot \nu \, d\Sigma_T - \frac{1}{2} \int_{\Sigma_T} |\nabla z|^2 \, h \cdot \nu \, d\Sigma_T \\
- \frac{1}{2} \int_{Q_T} \left\{ z_t^2 - |\nabla z|^2 \right\} \, \text{div} \, h \, dQ_T - \left[(z_t, h \cdot \nabla z)_{L^2(\Omega)} \right]^T_0.
$$

(41)

As $[z, z_t] \in D(\mathbf{A}^{\frac{1}{2}}) \times D(\mathbf{A}^{\frac{1}{2}})$, we then note that

on Σ_{0T} $z_t = 0; \quad \frac{\partial z}{\partial \nu} = |\nabla z|; \quad h \cdot \nabla z = h \cdot \nu \frac{\partial z}{\partial \nu};$

and thus

$$
\int_{\Sigma_{0T}} \frac{\partial z}{\partial \nu} \cdot h \cdot \nabla z \, d\Sigma_{0T} + \frac{1}{2} \int_{\Sigma_{0T}} z_t^2 \, h \cdot \nu \, d\Sigma_{0T} - \frac{1}{2} \int_{\Sigma_{0T}} |\nabla z|^2 \, h \cdot \nu \, d\Sigma_{0T} \\
= \frac{1}{2} \int_{\Sigma_{0T}} |\nabla z|^2 \, h \cdot \nu \, d\Sigma_{0T} \leq 0,
$$

(42)

after using the condition (h.i). Inserting the inequality (42) into (41) will therefore yield

$$
\int_{Q_T} H \nabla z \cdot \nabla z \, dQ_T \leq \int_{\Sigma_{1T}} \frac{\partial z}{\partial \nu} \cdot h \cdot \nabla z \, d\Sigma_{1T} + \frac{1}{2} \int_{\Sigma_{1T}} z_t^2 \, h \cdot \nu \, d\Sigma_{1T} \\
- \frac{1}{2} \int_{\Sigma_{1T}} |\nabla z|^2 \, h \cdot \nu \, d\Sigma_{1T} - \frac{1}{2} \int_{Q_T} \left\{ z_t^2 - |\nabla z|^2 \right\} \, \text{div} \, h \, dQ_T \\
- \left[(z_t, h \cdot \nabla z)_{L^2(\Omega)} \right]^T_0;
$$

(43)
hence, using the condition (h.iii), the Neumann B.C. in (1), the definition of E and Cauchy–Schwarz gives us after estimating both sides of (43)

$$\rho \int_{Q_T} |\nabla z|^2 \, dQ_T \leq C \left[\int_{\Sigma_{1T}} \left[z_t^2 + v_t^2 \right] \, d\Sigma_{1T} + \int_{\Sigma_{1T}} |\nabla z|^2 \, d\Sigma_{1T} \right] + E(\overline{z}, \overline{v}, T) + E(\overline{z}, \overline{v}, 0) - \frac{1}{2} \int_{Q_T} \left[z_t^2 - |\nabla z|^2 \right] \, \text{div} \, h \, dQ_T. \tag{44}$$

Now, to handle the last term on the RHS of (44), we multiply the wave equation (1) by $z \, \text{div} \, h$ and integrate by parts to obtain

$$\int_{Q_T} \left\{ z_t^2 - |\nabla z|^2 \right\} \, \text{div} \, h \, dQ_T = \left[(z_t, z \, \text{div} \, h)_{L^2(\Omega)} \right]_0^T \tag{45}$$

$$+ \int_{Q_T} z \nabla (\text{div} \, h) \cdot \nabla z \, dQ_T - \int_{\Sigma_{1T}} \frac{\partial z}{\partial \nu} z \, \text{div} \, h \, d\Sigma_{1T},$$

after using Green’s Theorem and the identity $\nabla (z \, \text{div} \, h) \cdot \nabla z = z \nabla (\text{div} \, h) \cdot \nabla z + |\nabla z|^2 \, \text{div} \, h$. We thus have upon majorizing the RHS of (45) with the use of Poincaré’s inequality and the Neumann B.C. in (1),

$$\left| \int_{Q_T} \left\{ z_t^2 - |\nabla z|^2 \right\} \, \text{div} \, h \, dQ_T \right| \leq C_1 \left[\int_{Q_T} z_t^2 \, dQ_T + \int_{\Sigma_{1T}} \left[z_t^2 + v_t^2 \right] \, d\Sigma_{1T} \right] + E(\overline{z}, \overline{v}, T) + E(\overline{z}, \overline{v}, 0) + C_0 \int_{Q_T} |\nabla z|^2 \, dQ_T, \tag{46}$$

where $\epsilon > 0$ is arbitrarily small, and where the noncrucial dependence of C_1 upon ϵ has not been noted. Thus for ϵ small enough, adding the inequalities (44) and (46) together yields

$$(\rho - \epsilon C_0) \int_{Q_T} |\nabla z|^2 \, dQ_T \leq C_1 \left[\int_{\Sigma_{1T}} \left[z_t^2 + v_t^2 \right] \, d\Sigma_{1T} + \int_{\Sigma_{1T}} |\nabla z|^2 \, d\Sigma_{1T} \right]$$

$$+ E(\overline{z}, \overline{v}, T) + E(\overline{z}, \overline{v}, 0) + C_0 \int_{Q_T} z_t^2 \, dQ_T. \tag{47}$$

Moreover, (46) and (47) together give

$$(\rho - \epsilon C_0) \int_{Q_T} z_t^2 \, dQ_T \leq C_1 \left[\int_{\Sigma_{1T}} \left[z_t^2 + v_t^2 \right] \, d\Sigma_{1T} + \int_{\Sigma_{1T}} |\nabla z|^2 \, d\Sigma_{1T} \right]$$

$$+ E(\overline{z}, \overline{v}, T) + E(\overline{z}, \overline{v}, 0) + \int_{Q_T} z_t^2 \, dQ_T, \tag{48}$$

(where the constants C_0 and C_1 above are not necessarily the same throughout). Using (37) and the fact that $|\nabla z|^2 = \left(\frac{\partial z}{\partial \nu} \right)^2 + \left(\frac{\partial z}{\partial T} \right)^2$, we obtain the desired estimate (40) upon the addition of (47) and (48), and the use of the Neumann B.C. \(\square\)

With estimates (36) and (40) in conjunction with the relation

$$\int_0^T \left\| A^{\frac{1}{2}} z \right\|_{L^2(\Omega)}^2 \, dt = \int_{Q_T} z_t^2 - (z_t, z)_{L^2(\Omega)} \bigg|_0^T$$

$$- \int_0^T (z_t, z)_{L^2(\Gamma_1)} \, dt + \int_0^T (v_t, z)_{L^2(\Gamma_1)} \, dt \tag{49}$$

(obtained by multiplying (23) by z and integrating), we then deduce the preliminary inequality

$$9$$
\[
\int_{\gamma}^{T} E(\overline{z}^\epsilon, \overline{\nu}^\epsilon, t) \, dt \leq C \left[\int_{0}^{T} \left[\| z_t |_{\Gamma_1} \|_{L^2(\Gamma_1)}^2 + \| \overline{A}^\frac{1}{2} v_t \|_{L^2(\Gamma_1)}^2 \right] \, dt \right.
\]
\[+ \int_{\Sigma_{tr}} \frac{\partial z}{\partial t} \, d\Sigma_{tr} + E(\overline{z}^\epsilon, \overline{\nu}^\epsilon, T) + E(\overline{z}^\epsilon, \overline{\nu}^\epsilon, 0) + \| v \|_{L^2(\Sigma_{tr})}^2 + \| z \|_{L^2(Q_T)}^2 \right] ; \tag{50} \]

Repeating the same argument on the interval \((\epsilon, T - \epsilon)\), using the estimate (28) of Lemma A for the tangential derivative as well as the Neumann B.C. in (1), we arrive at
\[
\int_{\epsilon}^{T-\epsilon} E(\overline{z}^\epsilon, \overline{\nu}^\epsilon, t) \, dt \leq C_T \left[\int_{0}^{T} \left[\| z_t |_{\Gamma_1} \|_{L^2(\Gamma_1)}^2 + \| \overline{A}^\frac{1}{2} v_t \|_{L^2(\Gamma_1)}^2 \right] \, dt \right.
\]
\[+ \| v \|_{L^2(\Sigma_{tr})}^2 + \| z \|_{H^\frac{1}{2}+ (Q_T)}^2 \right] + C \left[E(\overline{z}^\epsilon, \overline{\nu}^\epsilon, T) + E(\overline{z}^\epsilon, \overline{\nu}^\epsilon, 0) \right], \tag{51} \]

where the constant \(C_T\) in (51) depends upon \(T\), but \(C\) does not. Using the relation (31) and its inherent dissipativity property, viz. \(E(\overline{z}^\epsilon, \overline{\nu}^\epsilon, T) \leq E(\overline{z}^\epsilon, \overline{\nu}^\epsilon, t) \forall \ 0 \leq t \leq T\), we have for \(T > 2C + 2\epsilon\),
\[
E(\overline{z}^\epsilon, \overline{\nu}^\epsilon, T) \leq \frac{C_T + 2C}{T - 2C - 2\epsilon} \left[\int_{0}^{T} \left[\| z_t |_{\Gamma_1} \|_{L^2(\Gamma_1)}^2 + \| \overline{A}^\frac{1}{2} v_t \|_{L^2(\Gamma_1)}^2 \right] \, dt \right.
\]
\[+ \| v \|_{L^2(\Sigma_{tr})}^2 + \| z \|_{H^\frac{1}{2}+ (Q_T)}^2 \right] . \tag{52} \]

So with (52) in hand, the proof of Theorem 1.1 will be complete if we can “absorb” the lower order terms \(\| v \|_{L^2(\Sigma_{tr})}^2\) and \(\| z \|_{H^\frac{1}{2}+ (Q_T)}^2\), which we now proceed to do.

Lemma 3 Again, with the initial data \([\overline{z}_0^\epsilon, \overline{\nu}_0^\epsilon]\) in \(D(A)\) and with \(T\) sufficiently large, inequality (52) implies that there exists a positive constant \(C_T\) such that
\[
\| v \|_{C([0,T];L^2(\Gamma_1))} + \| z \|_{H^\frac{1}{2}+ (Q_T)} \leq C_T \left\{ \int_{0}^{T} \left[\| z_t \|_{L^2(\Gamma_1)}^2 + \| \overline{A}^\frac{1}{2} v_t \|_{L^2(\Gamma_1)}^2 \right] \, dt \right\}. \tag{53} \]

Proof: We make use here of a compactness/uniqueness argument. If the lemma is false, then there exists a sequence \(\left\{ \overline{z}_n, \overline{v}_n \right\}_{n=1}^{\infty} \subseteq D(A)\), and a corresponding solution sequence \(\left\{ \overline{z}_n, \overline{v}_n \right\}_{n=1}^{\infty}\) which satisfies
\[
\| v_n \|_{C([0,T];L^2(\Gamma_1))} + \| z_n \|_{H^\frac{1}{2}+ (Q_T)} = 1 \forall \ n, \tag{54} \]
\[
\int_{0}^{T} \left[\| z_n \|_{L^2(\Gamma_1)}^2 + \| \overline{A}^\frac{1}{2} v_n \|_{L^2(\Gamma_1)}^2 \right] \, dt \to 0 \text{ as } n \to \infty. \tag{55} \]

(55) and (52) then implies that the sequence \(\left\{ E(\overline{z}_n, \overline{v}_n, T) \right\}_{n=1}^{\infty}\) is bounded (uniformly in \(n\)), and consequently, (31) will have that \(\left\{ E(\overline{z}_n, \overline{v}_n, 0) \right\}_{n=1}^{\infty}\) is bounded. There then exists a subsequence, still denoted by \(\left\{ \overline{z}_n, \overline{v}_n \right\}_{n=1}^{\infty}\) and \(\overline{z}_0, \overline{v}_0 \in H_1 \times H_0\), such that
\[
\overline{z}_n \to \overline{z}_0 \text{ in } H_1 \text{ weakly;} \tag{56} \]
\[
\overline{v}_n \to \overline{v}_0 \text{ in } H_0 \text{ weakly.} \tag{57} \]
If we denote \([\tilde{z}, \tilde{v}, \tilde{u}, \tilde{v}_t] \equiv \begin{bmatrix} \tilde{z} \\ \tilde{v} \end{bmatrix}\) as the solution pair corresponding to the weak limits \([\tilde{z}_0, \tilde{v}_0]\), then \textit{a fortiori}

\[
\begin{bmatrix} z^{(n)}(t) \\ v^{(n)}(t) \end{bmatrix} \rightharpoonup \begin{bmatrix} \tilde{z} \\ \tilde{v} \end{bmatrix} \text{ in } L^\infty(0, T; H_1 \times H_0) \text{ weak star.}
\] (58)

Thus, \(z^{(n)} \rightharpoonup \tilde{z}\) weakly in \(H^1(Q_T)\), and consequently by the classic compactness theorem of Aubin.

\[
z^{(n)} \rightarrow \tilde{z} \text{ in } H^{1+\epsilon}(Q_T) \text{ strongly.}
\] (59)

Moreover, we deduce from (58) and a recent compactness result of Simon's (see [13], Corollary 4) that

\[
v^{(n)} \rightarrow \tilde{v} \text{ in } C([0, T]; L^2(\Gamma_1)) \text{ strongly.}
\] (60)

Consequently, taking the limit in (54),

\[
||\tilde{v}||_{C([0, T]; L^2(\Gamma_1))}^2 + ||\tilde{z}||_{H^{1+\epsilon}(Q_T)}^2 = 1 \quad \forall n.
\] (61)

Furthermore, the continuity of the map defined in \textbf{Proposition 2.1} and the convergence in (56)-(57) provide that

\[
\begin{align*}
\frac{\partial z^{(n)}}{\partial t} |_{\Gamma_1} & \rightarrow \tilde{z}_t |_{\Gamma_1} \text{ weakly in } L^2(\Sigma_1 T); \\
\tilde{A}^{1/2}v^{(n)} & \rightarrow \tilde{A}^{1/2}\tilde{v}_t \text{ weakly in } L^2(\Sigma_1 T);
\end{align*}
\] (62)\hspace{1cm} (63)

this convergence above, considered with that in (55) and the uniqueness of weak limits, allows one to deduce that

\[
\begin{align*}
\tilde{z}_t |_{\Gamma_1} &= 0; \\
\tilde{v}_t &= 0.
\end{align*}
\] (64)\hspace{1cm} (65)

From (65) then \(\tilde{v} = \text{constant}\), and combining this with the B.C. in (2) we have

\[
\tilde{v} = 0.
\] (66)

In dealing with the term \(\tilde{z}\), we bring forth the representation of the Hilbert space adjoint \(A^*\) given in [2] by

\[
A^* = \begin{bmatrix}
0 & -\mathbf{I} & 0 & 0 \\
A & -\alpha AN N^* A & 0 & -AN \\
0 & 0 & 0 & -\mathbf{I} \\
0 & N^* A & \tilde{A} & -\tilde{A}
\end{bmatrix},
\] (67)

\(\text{with } D(A^*) = \left\{[z_1, z_2, v_1, v_2] \in D(A^{1/2}) \times D(A^{1/2}) \times D(\tilde{A}^{1/2}) \times D(\tilde{A}^{1/2}) \\
such that } z_1 - \alpha NN^* Az_2 - Nv_2 \in D(A) \text{ and } v_1 - v_2 \in D(\tilde{A}) \right\}.\)

As \(\begin{bmatrix} \tilde{z} \\ \tilde{v} \end{bmatrix}\) is hence a weak solution of (1) from (65)-(66) and \(\tilde{z}_t |_{\Gamma_1} = 0\), we deduce from Ball's Theorem (see [3]) and the structure of \(A^*\) the following equation which holds pointwise for all \(z \in D(A^{1/2})\):

\[
\frac{d}{dt} \langle \tilde{z}_t(t), z \rangle_{L^2(\Omega)} = - \langle A^{1/2} \tilde{z}(t), A^{1/2} z \rangle_{L^2(\Omega)};
\] (68)
viz. \(\tilde{z}_t = -A\tilde{z} \in \big[D(A^{1/2}) \big]' \), and if we make the change of variable \(p = A^{-1}\tilde{z}_t \) then \(p \in D(A) \), \(p|_{\Gamma_1} = 0 \), and so \(p \) solves the following wave equation:

\[
\begin{cases}
p_{tt} = \Delta p & \text{on } Q_T \\
p|_{\Gamma} = 0 & \text{on } \Sigma_T \\
\frac{\partial p}{\partial n}|_{\Gamma_1} = 0 & \text{on } \Sigma_{1T};
\end{cases}
\]

(69)

for \(T \) sufficiently large, we will hence have by Holmgren's Uniqueness Theorem that \(p = 0 \) which implies that \(\tilde{z} = 0 \), which coupled with (66) contradicts the equality (61), and the lemma is proved. \(\square \)

With Lemma 2.4 in hand, the proof of Theorem 1.1 is now complete.

References

Recent IMA Preprints

<table>
<thead>
<tr>
<th>#</th>
<th>Author/s</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1260</td>
<td>Mary Ann Horn & I. Lasiecka</td>
<td>Nonlinear boundary stabilization of parallelly connected Kirchhoff plates</td>
</tr>
<tr>
<td>1261</td>
<td>B. Cockburn & H. Gau</td>
<td>A posteriori error estimates for general numerical methods for scalar conservation laws</td>
</tr>
<tr>
<td>1262</td>
<td>B. Cockburn & P-A. Gremaud</td>
<td>A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach</td>
</tr>
<tr>
<td>1263</td>
<td>R. Spigler & M. Vianello</td>
<td>Convergence analysis of the semi-implicit euler method for abstract evolution equations</td>
</tr>
<tr>
<td>1264</td>
<td>R. Spigler & M. Vianello</td>
<td>WKB-type approximation for second-order differential equations in C^*-algebras</td>
</tr>
<tr>
<td>1265</td>
<td>M. Menshikov & R.J. Williams</td>
<td>Passage-time moments for continuous non-negative stochastic processes and applications</td>
</tr>
<tr>
<td>1266</td>
<td>C. Mazza</td>
<td>On the storage capacity of nonlinear neural networks</td>
</tr>
<tr>
<td>1267</td>
<td>Z. Chen, R.E. Ewing & R. Lazarov</td>
<td>Domain decomposition algorithms for mixed methods for second order elliptic problems</td>
</tr>
<tr>
<td>1268</td>
<td>Z. Chen, M. Espedal & R.E. Ewing</td>
<td>Finite element analysis of multiphase flow in groundwater hydrology</td>
</tr>
<tr>
<td>1269</td>
<td>Z. Chen, R.E. Ewing, Y.A. Kuznetsov, R.D. Lazarov & S. Maliassov</td>
<td>Multilevel preconditioners for mixed methods for second order elliptic problems</td>
</tr>
<tr>
<td>1270</td>
<td>S. Kichenassamy & G.K. Srinivasan</td>
<td>The structure of WTC expansions and applications</td>
</tr>
<tr>
<td>1271</td>
<td>A. Zinger</td>
<td>Positiveness of Wigner quasi-probability density and characterization of Gaussian distribution</td>
</tr>
<tr>
<td>1272</td>
<td>V. Malkin & G. Papanicolaou</td>
<td>On self-focusing of short laser pulses</td>
</tr>
<tr>
<td>1273</td>
<td>J.N. Kutz & W.L. Kath</td>
<td>Stability of pulses in nonlinear optical fibers using phase-sensitive amplifiers</td>
</tr>
<tr>
<td>1274</td>
<td>S.K. Patch</td>
<td>Recursive recovery of a family of Markov transition probabilities from boundary value data</td>
</tr>
<tr>
<td>1275</td>
<td>C. Liu</td>
<td>The completeness of plane waves</td>
</tr>
<tr>
<td>1276</td>
<td>Z. Chen & R.E. Ewing</td>
<td>Stability and convergence of a finite element method for reactive transport in ground water</td>
</tr>
<tr>
<td>1277</td>
<td>Z. Chen & Do Y. Kwak</td>
<td>The analysis of multigrid algorithms for nonconforming and mixed methods for second order elliptic problems</td>
</tr>
<tr>
<td>1278</td>
<td>Z. Chen</td>
<td>Expanded mixed finite element methods for quasilinear second order elliptic problems II</td>
</tr>
<tr>
<td>1279</td>
<td>M.A. Horn & W. Littman</td>
<td>Boundary control of a Schrödinger equation with nonconstant principal part</td>
</tr>
<tr>
<td>1281</td>
<td>S. Maliassov</td>
<td>Substructuring preconditioning for finite element approximations of second order elliptic problems. II. Mixed method for an elliptic operator with scalar tensor</td>
</tr>
<tr>
<td>1282</td>
<td>V. Jakšić & C.A. Pillet</td>
<td>On model for quantum friction II. Fermi’s golden rule and dynamics at positive temperatures</td>
</tr>
<tr>
<td>1283</td>
<td>V. M. Malkin</td>
<td>Kolmogorov and nonstationary spectra of optical turbulence</td>
</tr>
<tr>
<td>1284</td>
<td>E.G. Kalnins, V.B. Kuznetsov & W. Miller, Jr.,</td>
<td>Separation of variables and the XXZ Gaudin magnet</td>
</tr>
<tr>
<td>1285</td>
<td>E.G. Kalnins & W. Miller, Jr.,</td>
<td>A note on tensor products of q-algebra representations and orthogonal polynomials</td>
</tr>
<tr>
<td>1286</td>
<td>E.G. Kalnins & W. Miller, Jr.,</td>
<td>q-algebra representations of the Euclidean, pseudo-Euclidean and oscillator algebras, and their tensor products</td>
</tr>
<tr>
<td>1287</td>
<td>L.A. Pastur</td>
<td>Spectral and probabilistic aspects of matrix models</td>
</tr>
<tr>
<td>1288</td>
<td>K. Kastella</td>
<td>Discrimination gain to optimize detection and classification</td>
</tr>
<tr>
<td>1289</td>
<td>L.A. Peletier & W.C. Troy</td>
<td>Spatial patterns described by the Extended Fisher-Kolmogorov (EFK) equation: Periodic solutions</td>
</tr>
<tr>
<td>1290</td>
<td>A. Friedman & Y. Liu</td>
<td>Propagation of cracks in elastic media</td>
</tr>
<tr>
<td>1291</td>
<td>A. Friedman & C. Huang</td>
<td>Averaged motion of charged particles in a curved strip</td>
</tr>
<tr>
<td>1292</td>
<td>G. R. Sell</td>
<td>Global attractors for the 3D Navier-Stokes equations</td>
</tr>
<tr>
<td>1293</td>
<td>C. Liu</td>
<td>A uniqueness result for a general class of inverse problems</td>
</tr>
<tr>
<td>1294</td>
<td>H-O. Kreiss</td>
<td>Numerical solution of problems with different time scales II</td>
</tr>
<tr>
<td>1295</td>
<td>B. Cockburn, G. Gripenberg, S-O. Londen</td>
<td>On convergence to entropy solutions of a single conservation law</td>
</tr>
<tr>
<td>1296</td>
<td>S-H. Yu</td>
<td>On stability of discrete shock profiles for conservative finite difference scheme</td>
</tr>
<tr>
<td>1297</td>
<td>H. Behncke & P. Rejto</td>
<td>A limiting absorption principle for separated Dirac operators with Wigner Von Neumann type potentials</td>
</tr>
<tr>
<td>1298</td>
<td>R. Lipton B. Vernescu</td>
<td>Composites with imperfect interface</td>
</tr>
<tr>
<td>1299</td>
<td>E. Casas</td>
<td>Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations</td>
</tr>
<tr>
<td>1300</td>
<td>G.R. Sell</td>
<td>References on dynamical systems</td>
</tr>
<tr>
<td>1301</td>
<td>J. Zhang</td>
<td>Swelling and dissolution of polymer: A free boundary problem</td>
</tr>
<tr>
<td>1302</td>
<td>J. Zhang</td>
<td>A nonlinear nonlocal multi-dimensional conservation law</td>
</tr>
<tr>
<td>1303</td>
<td>M.E. Taylor</td>
<td>Estimates for approximate solutions to acoustic inverse scattering problems</td>
</tr>
<tr>
<td>1304</td>
<td>J. Kim & D. Sheen</td>
<td>A priori estimates for elliptic boundary value problems with nonlinear boundary conditions</td>
</tr>
<tr>
<td>1305</td>
<td>B. Engquist & E. Luo</td>
<td>New coarse grid operators for highly oscillatory coefficient elliptic problems</td>
</tr>
</tbody>
</table>
1306 A. Boutet de Monvel & I. Egorova, On the almost periodicity of solutions of the nonlinear Schrödinger equation with the-cantor type spectrum
1307 A. Boutet de Monvel & V. Georgescu, Boundary values of the resolvent of a self-adjoint operator: Higher order estimates
1308 S.K. Patch, Diffuse tomography modulo Graßmann and Laplace
1309 A. Friedman & J.J.L. Vélázquez, Liouville type theorems for fourth order elliptic equationsin a half plane
1310 T. Aktosun, M. Klaus & C. van der Mee, Recovery of discontinuities in a nonhomogeneous medium
1311 V. Bondarevsky, On the global regularity problem for 3-dimensional Navier-Stokes equations
1312 M. Cheney & D. Isaacson, Inverse problems for a perturbed dissipative half-space
1313 B. Cockburn, D.A. Jones & E.S. Titi, Determining degrees of freedom for nonlinear dissipative equations
1314 B. Engquist & E. Luo, Convergence of a multigrid method for elliptic equations with highly oscillatory coefficients
1315 L. Pastur & M. Shcherbina, Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles
1316 V. Jakšić, S. Molchanov & L. Pastur, On the propagation properties of surface waves
1317 J. Nečas, M. Ružička & V. Šverák, On self-similar solutions of the Navier-Stokes equations
1318 S. Stojanovic, Remarks on $W^{2,p}$-solutions of bilateral obstacle problems
1319 E. Luo & H-O. Kreiss, Pseudospectral vs. Finite difference methods for initial value problems with discontinuous coefficients
1320 V.E. Grikurov, Soliton’s rebuilding in one-dimensional Schrödinger model with polynomial nonlinearity
1321 J.M. Harrison & R.J. Williams, A multiclass closed queueing network with unconventional heavy traffic behavior
1322 M.E. Taylor, Microlocal analysis on Morrey spaces
1323 C. Hwang, Homogenization of biharmonic equations in domains perforated with tiny holes
1324 C. Liu, An inverse obstacle problem: A uniqueness theorem for spheres
1325 M. Luskin, Approximation of a laminated microstructure for a rotationally invariant, double well energy density
1326 Rakesh & P. Sacks, Impedance inversion from transmission data for the wave equation
1327 O. Lafitte, Diffraction for a Neumann boundary condition
1328 E. Sobel, K. Lange, J.R. O’Connell & D.E. Weeks, Haplotyping algorithms
1329 B. Cockburn, D.A. Jones & E.S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems
1330 T. Aktosun, Inverse Schrödinger scattering on the line with partial knowledge of the potential
1331 T. Aktosun & C. van der Mee, Partition of the potential of the one-dimensional Schrödinger equation
1332 B. Engquist & E. Luo, Convergence of the multigrid method with a wavelet coarse grid operator
1333 V. Jakšić & C.-A. Pillet, Ergodic properties of the Spin-Boson system
1334 S.K. Patch, Recursive solution for diffuse tomographic systems of arbitrary size
1335 J.C. Bronski, Semiclassical eigenvalue distribution of the non self-adjoint Zakharov-Shabat eigenvalue problem
1336 J.C. Cockburn, Bitangential structured interpolation theory
1337 S. Kichenassamy, The blow-up problem for exponential nonlinearities
1338 F.A. Grünbaum & S.K. Patch, How many parameters can one solve for in diffuse tomography?
1339 R. Lipton, Reciprocal relations, bounds and size effects for composites with highly conducting interface
1340 H.A. Levine & J. Serrin, A global nonexistence theorem for quasilinear evolution equations with dissipation
1341 A. Boutet de Monvel & R. Purice, The conjugate operator method: Application to DIRAC operators and to stratified media
1342 G. Michele Graf, Stability of matter through an electrostatic inequality
1343 G. Avalos, Sharp regularity estimates for solutions of the wave equation and their traces with prescribed Neumann data
1344 G. Avalos, The exponential stability of a coupled hyperbolic/parabolic system arising in structural acoustics
1345 G. Avalos & I. Lasiecka, A differential Riccati equation for the active control of a problem in structural acoustics
1346 G. Avalos, Well-posedness for a coupled hyperbolic/parabolic system seen in structural acoustics
1347 G. Avalos & I. Lasiecka, The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system
1348 A.V. Fursikov, Certain optimal control problems for Navier-Stokes system with distributed control function
1349 F. Gesztesy, R. Nowell & W. Pötz, One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics
1350 F. Gesztesy & H. Holden, On trace formulas for Schrödinger-type operators
1351 X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation
1352 X. Chen, Lorenz equations, Part I: Existence and nonexistence of homoclinic orbits
1353 X. Chen, Lorenz equations Part II: "Randomly" rotated homoclinic orbits and chaotic trajectories
1354 X. Chen, Lorenz equations, Part III: Existence of hyperbolic sets
1355 R. Abeyaratne, C. Chu & R.D. James, Kinetics of materials with wiggly energies: Theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy
1356 C. Liu, The Helmholtz equation on Lipschitz domains