An Inverse Obstacle Problem: A Uniqueness Theorem for Spheres

Changmei Liu*

IMA, University of Minnesota
514 Vincent Hall
206 Church Street S.E.
Minneapolis, MN 55455

May, 1995

Abstract

In the scattering of time-harmonic acoustic or electromagnetic waves, whether an impenetrable sound-soft obstacle \(\Omega \) can be completely determined by the scattering amplitude (or the far field pattern) \(A_\Omega(\xi, k) \) given for \(|\xi|^2 = |k|^2 \) at fixed wave number \(|k| \) and fixed incident plane wave direction \(k \) is still a question. In this paper, we show that any sphere in \(\mathbb{R}^n (n \geq 3) \) can be uniquely determined by its scattering amplitude \(A_\Omega(\cdot, k) \) given at two linearly independent incident directions \(\hat{k}_1 \) and \(\hat{k}_2 \) with one fixed wave number \(|k| \). We also show that two spheres in \(\mathbb{R}^n (n \geq 2) \) with same scattering amplitude \(A_\Omega(\cdot, k) \) at only one fixed \(k \in \mathbb{R}^n \) must coincide.

*Research supported by the NSF through IMA.