Optimal Blowup Rates for the Minimal Energy Null Control for the Structurally Damped Abstract Wave Equation

George Avalos
Department of Mathematics
University of Nebraska-Lincoln
Lincoln, NE 68588

Irena Lasiecka
Department of Mathematics
University of Virginia
Charlottesville, VA 22901

July 2, 2002

Abstract
The null controllability problem for a structurally damped abstract wave equation—a so-called elastic model—is considered with a view towards obtain optimal rates of blowup for the associated minimal energy function $E_{\min}(T)$, as terminal time $T \downarrow 0$. Key use is made of the underlying analyticity of the elastic generator \mathcal{A}, as well as of the explicit characterization of its domain of definition. We ultimately find that the blowup rate for $E_{\min}(T)$, as T goes to zero, depends on the extent of structural damping.

1 Introduction

Let $\mathcal{A} : D(\mathcal{A}) \subset H \to H$ be a strictly positive, self-adjoint operator; of course, H is Hilbert. Therewith, we consider the structurally damped and controlled abstract model

\[
\begin{aligned}
& v_{tt} + \mathcal{A} v + \rho \mathcal{A}^\alpha v_t = u \quad \text{on } (0, T) \\
& [v(0), v_t(0)] = [v_0, v_1] \in D(\mathcal{A}^\frac{1}{2}) \times H
\end{aligned}
\]

(1)

where here, $0 \leq \alpha < 1$, and $\rho > 0$. Also, the “control” $u(t)$ is a function in $L^2(0, T; H)$. So as it appears, this model constitutes an abstract wave equation, under the influence of the structural damping term $\rho \mathcal{A}^\alpha v_t$. (This form of interior damping is referred to as being of Kelvin-Voight type.) It is now wellknown that for damping parameter α in the range $\frac{1}{2} \leq \alpha \leq 1$, the system’s underlying generator $\mathcal{A} : D(\mathcal{A}) \subset D(\mathcal{A}^\frac{1}{2}) \times H \to D(\mathcal{A}^\frac{1}{2}) \times H$ is of analytic character (see [3]). Consequently, those controlled partial differential equations which can be described by the abstract system (1) manifest parabolic-like dynamics.

For this model, we wish to consider the null controllability problem. This problem can be broadly stated as that of finding a control function u, such that the corresponding solution of (1) is brought from the initial state to rest at terminal time T. Because the abstract system (1) models parabolic-like behaviour, including an infinite speed of propagation, one should expect that if this system is indeed null controllable within the given class of control inputs u, the property should hold true in arbitrary short time $T > 0$. This expectation is fully in line with what is known about the canonical parabolic controllability problem; namely the problem of controlling the heat equation, be it via boundary or interior control (see e.g., [2], [12], [15]). Denoting

\[
\mathcal{X} = D(\mathcal{A}^\frac{1}{2}) \times H,
\]

(2)

we are accordingly led to our working definition of null controllability: