A NOTE ON BOUNDARY BLOW-UP PROBLEM OF $\Delta u = u^p$

SEICK KIM

Abstract. Assume that Ω is a bounded domain in \mathbb{R}^n with $n \geq 2$. We study positive solutions to the problem, $\Delta u = u^p$ in Ω, $u(x) \to \infty$ as $x \to \partial \Omega$, where $p > 1$. Such solutions are called boundary blow-up solutions of $\Delta u = u^p$. We show that a boundary blow-up solution exists in any bounded domain if $1 < p < \frac{n}{n-2}$. In particular, when $n = 2$, there exists a boundary blow-up solution to $\Delta u = u^p$ for all $p \in (1, \infty)$. We also prove the uniqueness under the additional assumption that the domain satisfies the condition $\partial \Omega = \partial \Omega$.

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455