AGENT-BASED SYSTEMS: MATHEMATICAL MODELS AND ARMY NEEDS

DR. JOHN LAVERY

MATHEMATICS DIVISION
ARMY RESEARCH OFFICE
ARMY RESEARCH LABORATORY
Current understanding of agent-based systems is roughly at the level where understanding of physics-based mathematics was 150-200 years ago.

- Widely applicable quantitative models based on first/basic principles are not yet available.
- Development of such models requires modeling in complicated frameworks (equations on complicated, perhaps nonsmooth, manifolds?).
- Classical metrics (often rms-based) are insufficient. New metrics based on first/basic principles are needed.
- Analysis in “metrics” that are not mathematical metrics? (L_p for $0 \leq p < 1$, other non-convex “metrics”?)
• Objective is to understand “emergent behavior,” that is, how simple rules of agents result in complex, seemingly intelligent network behavior.

• Once understood, optimize for human goals.

• Once understood and optimized, this behavior will probably no longer be called “emergent behavior”.
Models adopted from physics-based areas risky, for example:

- Classical fluid-flow (Navier-Stokes-like) models for “flows” produced by agent systems have been proposed.

- Classical fluid-flow models are based on conservation of mass and Newtonian mechanics $F = ma$ (+ thermodynamics + electromagnetics).

- Why should agent-based systems be well modeled by conservation of mass and Newtonian mechanics?
• Models based on first/basic principles are needed.

 – Interactions in agent-based systems may lead to models similar to classical physics-based models (if so, great).

 – Interactions in agent-based systems may lead to models different from classical physics-based models.

 – In continuum limit, partial differential/integral equations on manifolds? Maybe, maybe not.

 – What is (are) the “metrics”?
• Many layers
 — Physical substrate (computers, sensors)
 — Network
 — Human interactions
 — Human intentions

• Many disciplines
 — Human factors expertise may need to be included. ("What is the model?" and "What is the metric?" are not just questions about physical issues.)
ARMY INTERESTS IN AGENT-BASED SYSTEMS

• Army/DoD interests
 – Data fusion (large arrays of microsensors—sensorwebs)
 – Dynamics of sensor/actuator networks
 – Information mining (next step beyond data mining)
 – Cooperative information dynamics
 – Discovering collaborative behavior (detection of terrorist collaboration—asymmetric conflict)
 – Network tomography
 – Swarming; social behavior of robots
 – Design of networks for optimal performance under overload