IMA
University of Minnesota

Tools for Modeling and Data Analysis in Finance/Asset Pricing

Derivatives in Commodity Markets

Carlos F. Tolmasky

March 31, 2004
Figure 1: Crude Price Evolution
Figure 2: Gold Price Evolution
Figure 3: Cotton Price Evolution
Figure 4: Soy Beans Price Evolution
Figure 5: Electricity Price Evolution
Figure 6: SP 500
Figure 7: Microsoft
Commodity Prices
Commodity Prices

Similar to stock prices: random walk.
Commodity Prices

Similar to stock prices: random walk.

Different from stock prices: more stationary.
Commodity Prices

Similar to stock prices: random walk.

Different from stock prices: more stationary.

They look more like interest rates.
Commodity Prices

Similar to stock prices: random walk.

Different from stock prices: more stationary.

They look more like interest rates.
Forwards and Futures
Forwards and Futures

Let S_t be the price of a commodity at time t.

(S_t is called the **Spot** or **Cash** price)
Forwards and Futures

Let S_t be the price of a commodity at time t.

(S_t is called the **Spot** or **Cash** price)

Forward Contract: Gives the owner the right to buy a unit of S at a certain time in the future at a pre-specified price F.
Forwards and Futures

Let S_t be the price of a commodity at time t.

(S_t is called the **Spot** or **Cash** price)

Forward Contract: Gives the owner the right to buy a unit of S at a certain time in the future at a pre-specified price F.

Futures Contract: Same as a forward contract but it adds ”mark-to-market”.
Forwards and Futures

Let S_t be the price of a commodity at time t.

(S_t is called the **Spot** or **Cash** price)

Forward Contract: Gives the owner the right to buy a unit of S at a certain time in the future at a pre-specified price F.

Futures Contract: Same as a forward contract but it adds ”mark-to-market”.

Forwards \rightarrow Over-The-Counter

Futures \rightarrow Exchange Traded
Arbitrage

Main tool to price derivatives.
Arbitrage

Main tool to price derivatives.

If two portfolios have the same value at some point in the future then their values have to be the same today.
Arbitrage

Main tool to price derivatives.

If two portfolios have the same value at some point in the future then their values have to be the same today.

Example: Gold Futures

Suppose that we want to invest in gold for a year, we can do two things:
Arbitrage

Main tool to price derivatives.

If two portfolios have the same value at some point in the future then their values have to be the same today.

Example: Gold Futures

Suppose that we want to invest in gold for a year, we can do two things:
1) We can borrow money and use it to buy gold.
Arbitrage

Main tool to price derivatives.

If two portfolios have the same value at some point in the future then their values have to be the same today.

Example: Gold Futures

Suppose that we want to invest in gold for a year, we can do two things:
1) We can borrow money and use it to buy gold.
2) We can buy a 1-year forward contract in gold.
Arbitrage

Main tool to price derivatives.

If two portfolios have the same value at some point in the future then their values have to be the same today.

Example: Gold Futures

Suppose that we want to invest in gold for a year, we can do two things:
1) We can borrow money and use it to buy gold.
2) We can buy a 1–year forward contract in gold.

If the price of an ounce is currently $410, how much should the 1–year forward price be?
Arbitrage

Main tool to price derivatives.

If two portfolios have the same value at some point in the future then their values have to be the same today.

Example: Gold Futures

Suppose that we want to invest in gold for a year, we can do two things:
1) We can borrow money and use it to buy gold.
2) We can buy a 1–year forward contract in gold.

If the price of an ounce is currently $410, how much should the 1–year forward price be?
Arbitrage (Cont.)

Suppose that

\[F(0, T) > e^{r_410}. \]

Then we can follow the following strategy:
Arbitrage (Cont.)

Suppose that

\[F(0, T) > e^r \times 410. \]

Then we can follow the following strategy:

1) Short the forward contract.
Suppose that

\[F(0, T) > e^r 410. \]

Then we can follow the following strategy:

1) Short the forward contract.

2) Borrow $410, buy an ounce of gold.
Arbitrage (Cont.)

Suppose that

\[F(0, T) > e^r \cdot 410. \]

Then we can follow the following strategy:

1) Short the forward contract.

2) Borrow $410, buy an ounce of gold.

3) In a year we repay our loan, deliver the gold and make \(F(0, T) - e^r \cdot 410 > 0 \).
Arbitrage (Cont.)

Suppose that

\[F(0, T) > e^{r}410. \]

Then we can follow the following strategy:

1) Short the forward contract.

2) Borrow $410, buy an ounce of gold.

3) In a year we repay our loan, deliver the gold and make \(F(0, T) - e^{r}410 > 0 \).
Arbitrage (Cont.)

If

\[F(0, T) < e^r 410 \]

we do the opposite:
Arbitrage (Cont.)

If

\[F(0, T) < e^{rT} 410 \]

we do the opposite:

1) Buy the forward contract.
Arbitrage (Cont.)

If

\[F(0, T) < e^{rT} 410 \]

we do the opposite:

1) Buy the forward contract.

2) Borrow an ounce of gold and sell it to the market.
Arbitrage (Cont.)

If

\[F(0, T) < e^r \times 410 \]

we do the opposite:

1) Buy the forward contract.

2) Borrow an ounce of gold and sell it to the market.

3) Invest the $410 at the riskless rate.
Arbitrage (Cont.)

If

$$F(0, T) < e^r 410$$

we do the opposite:

1) Buy the forward contract.

2) Borrow an ounce of gold and sell it to the market.

3) Invest the $410 at the riskless rate.

4) We take delivery of an ounce of gold, pay $F(0, T)$ and collect $e^r 410$.
Arbitrage (Cont.)

If

\[F(0, T) < e^r 410 \]

we do the opposite:

1) Buy the forward contract.

2) Borrow an ounce of gold and sell it to the market.

3) Invest the $410 at the riskless rate.

4) We take delivery of an ounce of gold, pay \(F(0, T) \) and collect \(e^r 410 \).

In this case we will make, free of risk, \(e^r 410 - F(0, T) > 0 \)
By arbitrage, the forward price of a financial asset S_t is given by

$$F(0, T) = S_0 e^{(r-q)T}$$

where T is the expiration of the contract, r is the (continuously compounded) interest rate and q is the dividend yield.
By arbitrage, the forward price of a financial asset S_t is given by

\[F(0, T) = S_0 e^{(r - q)T} \]

where T is the expiration of the contract, r is the (continuously compounded) interest rate and q is the dividend yield.

If r is assumed constant (or deterministic), the forward price is the same as the futures price.
By arbitrage, the forward price of a financial asset S_t is given by

$$F(0, T) = S_0 e^{(r-q)T}$$

where T is the expiration of the contract, r is the (continuously compounded) interest rate and q is the dividend yield.

If r is assumed constant (or deterministic), the forward price is the same as the futures price.

And...we will assume constant interest rates.
By arbitrage, the forward price of a financial asset S_t is given by

$$F(0, T) = S_0 e^{(r-q)T}$$

where T is the expiration of the contract, r is the (continuously compounded) interest rate and q is the dividend yield.

If r is assumed constant (or deterministic), the forward price is the same as the futures price.

And...we will assume constant interest rates.

However, since they provide different cash flow profile some care should be taken when trading one vs the other (tail-hedging).
Market Participants
Market Participants

Hedgers: Consumers and producers.
Market Participants

Hedgers: Consumers and producers.

Speculators.
Market Participants

Hedgers: Consumers and producers.

Speculators.

Market Makers.
Market Participants

Hedgers: Consumers and producers.

Speculators.

Market Makers.
Forward Curves
Forward Curves

In most commodity markets: variety of expirations.

Figure 8: Crude Oil Forward Curve
Figure 9: Crude Oil Forward Curve

<table>
<thead>
<tr>
<th>Contract Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRUDE OIL FUTR</td>
</tr>
<tr>
<td>New York Mercantile Exchange</td>
</tr>
<tr>
<td>Pricing Date: 3/26/04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scroll</th>
<th>Last</th>
<th>Change</th>
<th>Time</th>
<th>High</th>
<th>Lou</th>
<th>OpenInt</th>
<th>TotVol</th>
<th>Close</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCLK4</td>
<td>35.73s</td>
<td>+.22</td>
<td>Close</td>
<td>35.82</td>
<td>34.75</td>
<td>195585</td>
<td>122171</td>
<td>35.51</td>
</tr>
<tr>
<td>2CLM4</td>
<td>34.077</td>
<td>+.07</td>
<td>Close</td>
<td>35.00</td>
<td>34.05</td>
<td>77156</td>
<td>52024</td>
<td>34.60</td>
</tr>
<tr>
<td>3CLN4</td>
<td>34.314</td>
<td>+.05</td>
<td>Close</td>
<td>34.46</td>
<td>33.60</td>
<td>43313</td>
<td>12800</td>
<td>34.26</td>
</tr>
<tr>
<td>4CLQ4</td>
<td>33.824</td>
<td>+.05</td>
<td>Close</td>
<td>33.82</td>
<td>33.60</td>
<td>27099</td>
<td>4372</td>
<td>33.77</td>
</tr>
<tr>
<td>5CLU4</td>
<td>33.391</td>
<td>+.04</td>
<td>Close</td>
<td>33.55</td>
<td>32.95</td>
<td>31248</td>
<td>3710</td>
<td>33.35</td>
</tr>
<tr>
<td>6CLV4</td>
<td>33.034</td>
<td>+.02</td>
<td>Close</td>
<td>33.17</td>
<td>32.95</td>
<td>25158</td>
<td>1116</td>
<td>33.01</td>
</tr>
<tr>
<td>7CLX4</td>
<td>32.734</td>
<td>+.02</td>
<td>Close</td>
<td>32.82</td>
<td>32.00</td>
<td>18735</td>
<td>181</td>
<td>32.71</td>
</tr>
<tr>
<td>8CLZ4</td>
<td>32.444</td>
<td>+.01</td>
<td>Close</td>
<td>32.60</td>
<td>32.00</td>
<td>62312</td>
<td>16730</td>
<td>32.43</td>
</tr>
<tr>
<td>9CLF5</td>
<td>32.114</td>
<td>+.01</td>
<td>Close</td>
<td>32.10</td>
<td>31.75</td>
<td>17193</td>
<td>1720</td>
<td>32.10</td>
</tr>
<tr>
<td>10CLG5</td>
<td>31.844</td>
<td>+.01</td>
<td>Close</td>
<td>31.84</td>
<td>31.64</td>
<td>7655</td>
<td>91</td>
<td>31.83</td>
</tr>
<tr>
<td>11CLH5</td>
<td>31.614</td>
<td>+.01</td>
<td>Close</td>
<td>31.61</td>
<td>31.40</td>
<td>8117</td>
<td>370</td>
<td>31.60</td>
</tr>
<tr>
<td>12CLJ5</td>
<td>31.394</td>
<td>+.01</td>
<td>Close</td>
<td>31.39</td>
<td>31.30</td>
<td>5468</td>
<td>34</td>
<td>31.38</td>
</tr>
<tr>
<td>13CLK5</td>
<td>31.184</td>
<td>+.01</td>
<td>Close</td>
<td>31.18</td>
<td>31.05</td>
<td>2611</td>
<td>105</td>
<td>31.17</td>
</tr>
<tr>
<td>14CLM5</td>
<td>30.984</td>
<td>+.01</td>
<td>Close</td>
<td>31.05</td>
<td>31.05</td>
<td>18115</td>
<td>2193</td>
<td>30.97</td>
</tr>
<tr>
<td>15CLN5</td>
<td>30.804</td>
<td>+.01</td>
<td>Close</td>
<td>30.98</td>
<td>30.98</td>
<td>3908</td>
<td>10</td>
<td>30.79</td>
</tr>
<tr>
<td>16CLQ5</td>
<td>30.634</td>
<td>+.01</td>
<td>Close</td>
<td>30.63</td>
<td>30.63</td>
<td>2435</td>
<td>0</td>
<td>30.62</td>
</tr>
<tr>
<td>17CLU5</td>
<td>30.474</td>
<td>+.01</td>
<td>Close</td>
<td>30.47</td>
<td>30.47</td>
<td>4177</td>
<td>13</td>
<td>30.46</td>
</tr>
</tbody>
</table>

Typeset by FoilTEX
Figure 10: Gold Forward Curve
Figure 11: Heating Oil Forward Curve
Figure 12: Natural Gas Forward Curve

<table>
<thead>
<tr>
<th>Contract</th>
<th>Last</th>
<th>Change</th>
<th>Time</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>OpenInt</th>
<th>TotVol</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNGJ4 Apr 04</td>
<td>5.395s</td>
<td>+.059</td>
<td>Close</td>
<td>5.400</td>
<td>5.295</td>
<td>23281</td>
<td>29938</td>
<td>5.336</td>
<td></td>
</tr>
<tr>
<td>3NGK4 May 04</td>
<td>5.496s</td>
<td>+.080</td>
<td>Close</td>
<td>5.510</td>
<td>5.360</td>
<td>53700</td>
<td>23359</td>
<td>5.416</td>
<td></td>
</tr>
<tr>
<td>3NGM4 Jun 04</td>
<td>5.566s</td>
<td>+.082</td>
<td>Close</td>
<td>5.580</td>
<td>5.445</td>
<td>24081</td>
<td>5573</td>
<td>5.484</td>
<td></td>
</tr>
<tr>
<td>4NGN4 Jul 04</td>
<td>5.623s</td>
<td>+.087</td>
<td>Close</td>
<td>5.620</td>
<td>5.500</td>
<td>20454</td>
<td>4684</td>
<td>5.536</td>
<td></td>
</tr>
<tr>
<td>5NGQ4 Aug 04</td>
<td>5.646s</td>
<td>+.085</td>
<td>Close</td>
<td>5.650</td>
<td>5.530</td>
<td>19543</td>
<td>3196</td>
<td>5.563</td>
<td></td>
</tr>
<tr>
<td>6NGR4 Sep 04</td>
<td>5.620s</td>
<td>+.080</td>
<td>Close</td>
<td>5.625</td>
<td>5.500</td>
<td>19606</td>
<td>1975</td>
<td>5.540</td>
<td></td>
</tr>
<tr>
<td>7NGV4 Oct 04</td>
<td>5.642s</td>
<td>+.078</td>
<td>Close</td>
<td>5.655</td>
<td>5.525</td>
<td>18597</td>
<td>2161</td>
<td>5.564</td>
<td></td>
</tr>
<tr>
<td>8NGX4 Nov 04</td>
<td>5.815s</td>
<td>+.075</td>
<td>Close</td>
<td>5.820</td>
<td>5.690</td>
<td>11774</td>
<td>615</td>
<td>5.740</td>
<td></td>
</tr>
<tr>
<td>9NGZ4 Dec 04</td>
<td>5.975s</td>
<td>+.072</td>
<td>Close</td>
<td>6.000</td>
<td>5.875</td>
<td>15635</td>
<td>1453</td>
<td>5.915</td>
<td></td>
</tr>
<tr>
<td>10NFG5 Jan 05</td>
<td>6.177s</td>
<td>+.067</td>
<td>Close</td>
<td>6.120</td>
<td>6.015</td>
<td>13716</td>
<td>1072</td>
<td>6.050</td>
<td></td>
</tr>
<tr>
<td>11NGS5 Feb 05</td>
<td>6.067s</td>
<td>+.067</td>
<td>Close</td>
<td>6.050</td>
<td>5.960</td>
<td>11053</td>
<td>671</td>
<td>6.000</td>
<td></td>
</tr>
<tr>
<td>12NGT5 Mar 05</td>
<td>5.867s</td>
<td>+.067</td>
<td>Close</td>
<td>5.850</td>
<td>5.780</td>
<td>10922</td>
<td>522</td>
<td>5.800</td>
<td></td>
</tr>
<tr>
<td>13NGU5 Apr 05</td>
<td>5.272s</td>
<td>+.072</td>
<td>Close</td>
<td>5.270</td>
<td>5.220</td>
<td>10176</td>
<td>524</td>
<td>5.200</td>
<td></td>
</tr>
<tr>
<td>14NGV5 May 05</td>
<td>5.157s</td>
<td>+.072</td>
<td>Close</td>
<td>5.135</td>
<td>5.120</td>
<td>5876</td>
<td>227</td>
<td>5.085</td>
<td></td>
</tr>
<tr>
<td>15NGW5 Jun 05</td>
<td>5.170s</td>
<td>+.065</td>
<td>Close</td>
<td>5.160</td>
<td>5.100</td>
<td>5352</td>
<td>260</td>
<td>5.105</td>
<td></td>
</tr>
<tr>
<td>16NGX5 Jul 05</td>
<td>5.207s</td>
<td>+.062</td>
<td>Close</td>
<td>5.210</td>
<td>5.180</td>
<td>11394</td>
<td>122</td>
<td>5.145</td>
<td></td>
</tr>
<tr>
<td>17NGY5 Aug 05</td>
<td>5.207s</td>
<td>+.057</td>
<td>Close</td>
<td>5.200</td>
<td>5.150</td>
<td>5781</td>
<td>24</td>
<td>5.150</td>
<td></td>
</tr>
</tbody>
</table>
Forward Curves

Two different structures: Contango and Backwardation.

Gold \rightarrow Contango

Crude \rightarrow Backwardation
Forward Curves

Two different structures: Contango and Backwardation.

Gold \rightarrow Contango

Crude \rightarrow Backwardation

Heating Oil \rightarrow Mixture
Forward Curves

Two different structures: Contango and Backwardation.

Gold → Contango

Crude → Backwardation

Heating Oil → Mixture

We know that $F(0, T) = S_0 e^{(r-q)T}$ where q is the dividend yield.
Forward Curves

Two different structures: Contango and Backwardation.

Gold → Contango

Crude → Backwardation

Heating Oil → Mixture

We know that \(F(0, T) = S_0e^{(r-q)T} \) where \(q \) is the dividend yield.

Owning a physical commodity does not pay any dividend yield.
Forward Curves

Two different structures: Contango and Backwardation.

Gold \rightarrow Contango

Crude \rightarrow Backwardation

Heating Oil \rightarrow Mixture

We know that $F(0, T) = S_0 e^{(r-q)T}$ where q is the dividend yield.

Owning a physical commodity does not pay any dividend yield.

How could a curve be in backwardation?
Convenience Yield

Example:

A food manufacturer for whom corn is an essential input.
Convenience Yield

Example:

A food manufacturer for whom corn is an essential input.

Always keep an inventory of corn.
Convenience Yield

Example:

A food manufacturer for whom corn is an essential input.

Always keep an inventory of corn.

If at some point it is too much will sell the excess.
Convenience Yield

Example:

A food manufacturer for whom corn is an essential input.
Always keep an inventory of corn.
If at some point it is too much will sell the excess.
However, in the opposite situation the consequences can be nontrivial: stop production.
Convenience Yield

Example:

A food manufacturer for whom corn is an essential input.

Always keep an inventory of corn.

If at some point it is too much will sell the excess.

However, in the opposite situation the consequences can be nontrivial: stop production.

There is a value in owning physical corn (as opposed to some paper position hedging the cost).
Convenience Yield

Example:

A food manufacturer for whom corn is an essential input.

Always keep an inventory of corn.

If at some point it is too much will sell the excess.

However, in the opposite situation the consequences can be nontrivial: stop production.

There is a value in owning physical corn (as opposed to some paper position hedging the cost).
Convenience Yield

Rephrasing: Why keep inventories in a backwardated market?
Convenience Yield

Rephrasing: Why keep inventories in a backwardated market?

N. Kaldor introduced the concept in 1939.
Convenience Yield

Rephrasing: Why keep inventories in a backwardated market?
N. Kaldor introduced the concept in 1939.
Unobservable.
Convenience Yield

Rephrasing: Why keep inventories in a backwardated market?

N. Kaldor introduced the concept in 1939.

Unobservable.

In 1933 H. Working had noticed the relationship between stocks and spreads.
Convenience Yield

Rephrasing: Why keep inventories in a backwardated market?

N. Kaldor introduced the concept in 1939.

Unobservable.

In 1933 H. Working had noticed the relationship between stocks and spreads.

There are two explanations for this:
Convenience Yield

Rephrasing: Why keep inventories in a backwardated market?

N. Kaldor introduced the concept in 1939.

Unobservable.

In 1933 H. Working had noticed the relationship between stocks and spreads.

There are two explanations for this:

- Theory of storage (Kaldor, Working)
Convenience Yield

Rephrasing: Why keep inventories in a backwardated market?

N. Kaldor introduced the concept in 1939.

Unobservable.

In 1933 H. Working had noticed the relationship between stocks and spreads.

There are two explanations for this:

• Theory of storage (Kaldor, Working)

• ”Aggegative approach”. (Working aggregated stocks from different locations and grades and plotted them vs spreads in Chicago)
Figure 13: Working Curve. US Stocks vs CL6-CL1
Figure 14: CL1 vs CL6-CL1
Seasonality

Examples: Corn, Natural Gas.
Seasonality

Examples: Corn, Natural Gas.

Corn is produced between September and November.
Seasonality

Examples: Corn, Natural Gas.

Corn is produced between September and November.

For consumption at a different time it has to be stored. So, supply is seasonal, demand is not.
Seasonality

Examples: Corn, Natural Gas.

Corn is produced between September and November.

For consumption at a different time it has to be stored. So, supply is seasonal, demand is not.

If the forward curve is in backwardation there is not incentive to store.
Seasonality

Examples: Corn, Natural Gas.

Corn is produced between September and November.

For consumption at a different time it has to be stored. So, supply is seasonal, demand is not.

If the forward curve is in backwardation there is not incentive to store.

A producer will store when the forward market presents a better opportunity than the cash market.
Seasonality

Examples: Corn, Natural Gas.

Corn is produced between September and November.

For consumption at a different time it has to be stored. So, supply is seasonal, demand is not.

If the forward curve is in backwardation there is not incentive to store.

A producer will store when the forward market presents a better opportunity than the cash market.
Figure 15: Natural Gas Forward Curve
Seasonality (Cont.)

Natural Gas: As opposed to corn, it has constant supply but seasonal demand.
Seasonality (Cont.)

Natural Gas: As opposed to corn, it has constant supply but seasonal demand.

The forward curve is usually in contango between summer and winter and in backwardation between winter and summer.
Seasonality (Cont.)

Natural Gas: As opposed to corn, it has constant supply but seasonal demand.

The forward curve is usually in contango between summer and winter and in backwardation between winter and summer.

The market has to prepare to have enough stocks throughout the winter.
Seasonality (Cont.)

Natural Gas: As opposed to corn, it has constant supply but seasonal demand.

The forward curve is usually in contango between summer and winter and in backwardation between winter and summer.

The market has to prepare to have enough stocks throughout the winter.

How does the market do this?
Seasonality (Cont.)

Natural Gas: As opposed to corn, it has constant supply but seasonal demand.

The forward curve is usually in contango between summer and winter and in backwardation between winter and summer.

The market has to prepare to have enough stocks throughout the winter.

How does the market do this?

By increasing the contango.
Seasonality (Cont.)

Natural Gas: As opposed to corn, it has constant supply but seasonal demand.

The forward curve is usually in contango between summer and winter and in backwardation between winter and summer.

The market has to prepare to have enough stocks throughout the winter.

How does the market do this?

By increasing the contango.

In this way, either more storing takes place or the price in the winter will stay high.
Seasonality (Cont.)

Natural Gas: As opposed to corn, it has constant supply but seasonal demand.

The forward curve is usually in contango between summer and winter and in backwardation between winter and summer.

The market has to prepare to have enough stocks throughout the winter.

How does the market do this?

By increasing the contango.

In this way, either more storing takes place or the price in the winter will stay high.
Seasonality (Cont.)

Electricity: Very different from all the rest...
Electricity: Very different from all the rest...

It is produced from fuels (coal, nat gas, fuel oil) or from nuclear or hydroelectric power.
Electricity: Very different from all the rest...

It is produced from fuels (coal, nat gas, fuel oil) or from nuclear or hydroelectric power.

Can’t be stored.
Seasonality (Cont.)

Electricity: Very different from all the rest...

It is produced from fuels (coal, nat gas, fuel oil) or from nuclear or hydroelectric power.

Can’t be stored.5

Complex seasonal patterns: by season, by day of the week, by hour.
Seasonality (Cont.)

Electricity: Very different from all the rest...

It is produced from fuels (coal, nat gas, fuel oil) or from nuclear or hydroelectric power.

Can’t be stored.5

Complex seasonal patterns: by season, by day of the week, by hour.

There isn’t anything the market can do to prepare for the high season (peak hours), so the shape of the curve could be very extreme.
Swaps

Very similar to forwards.
Swaps

Very similar to forwards.

Deals with a stream of risks (rather than a single one).
Swaps

Very similar to forwards.

Deals with a stream of risks (rather than a single one).

They are traded OTC.
Swaps

Very similar to forwards.
Deals with a stream of risks (rather than a single one).
They are traded OTC.
Example:
We will need to buy 1 bbl of crude oil on 12/1/04 and another on 12/1/05.
Swaps

Very similar to forwards.

Deals with a stream of risks (rather than a single one).

They are traded OTC.

Example:

We will need to buy 1 bbl of crude oil on 12/1/04 and another on 12/1/05.

The fwd price for 12/1/04 is $34 and for 12/1/05 is $31.
Swaps

Very similar to forwards.
Deals with a stream of risks (rather than a single one).
They are traded OTC.

Example:
We will need to buy 1 bbl of crude oil on 12/1/04 and another on 12/1/05.

The fwd price for 12/1/04 is $34 and for 12/1/05 is $31.

How much should we agree to pay for each?
Swaps

Very similar to forwards.
Deals with a stream of risks (rather than a single one).
They are traded OTC.
Example:
We will need to buy 1 bbl of crude oil on 12/1/04 and another on 12/1/05.
The fwd price for 12/1/04 is $34 and for 12/1/05 is $31.
How much should we agree to pay for each?
If the interest rate curve is flat at 1% then

\[
\frac{x}{(1 + .01)} + \frac{x}{(1 + .01)^2} = \frac{34}{(1 + .01)} + \frac{31}{(1 + .01)^2}
\]

(1)
so it is a weighted average of the fwd prices.
so it is a weighted average of the fwd prices.

For some commodities there is no observable fwd price.
so it is a weighted average of the fwd prices.

For some commodities there is no observable fwd price.

Cash indices (Platts, Argus)

Hedgers (both producers and consumers) are exposed to a stream of prices rather than to a single price.
so it is a weighted average of the fwd prices.

For some commodities there is no observable fwd price.
Cash indices (Platts, Argus)

Hedgers (both producers and consumers) are exposed to a stream of prices rather than to a single price.
Therefore, due to its very nature, swaps are very popular in the commodity markets.
so it is a weighted average of the fwd prices.

For some commodities there is no observable fwd price.
Cash indices (Platts, Argus)

Hedgers (both producers and consumers) are exposed to a stream of prices rather than to a single price. Therefore, due to its very nature, swaps are very popular in the commodity markets.
Spreads

Commodities are inputs for the creation of other commodities.
Spreads

Commodities are inputs for the creation of other commodities.

Example: Soybeans \rightarrow 80% meal, 20% oil.
Spreads

Commodities are inputs for the creation of other commodities.

Example: Soybeans \rightarrow 80% meal, 20% oil.

The soybean crush spread represents the margin soybean processors might capture by using the futures markets to hedge their positions.

If the spread is wide it pays to refine.
Spreads

Commodities are inputs for the creation of other commodities.

Example: Soybeans \rightarrow 80% meal, 20% oil.

The soybean crush spread represents the margin soybean processors might capture by using the futures markets to hedge their positions.

If the spread is wide it pays to refine.

So, producers can hedge by mimicking this process using derivatives markets.
Spreads (Cont.)

Crude Oil is refined to make a variety of products.
Spreads (Cont.)

Crude Oil is refined to make a variety of products.

In particular: Heating Oil and Gasoline.

NYMEX: CL, HO, HU
Spreads (Cont.)

Crude Oil is refined to make a variety of products.

In particular: Heating Oil and Gasoline.

NYMEX: CL, HO, HU

Cracks, $3 : 2 : 1 = \frac{2}{3}HU + \frac{1}{3}HO - CL$.
Spreads (Cont.)

Crude Oil is refined to make a variety of products.

In particular: Heating Oil and Gasoline.

NYMEX: CL, HO, HU

Cracks, \(3 : 2 : 1 = \frac{2}{3}HU + \frac{1}{3}HO - CL \).

Spark Spread: cost of converting fuel into power.
Spreads (Cont.)

Crude Oil is refined to make a variety of products.

In particular: Heating Oil and Gasoline.

NYMEX: CL, HO, HU

Cracks, \(3 : 2 : 1 = \frac{2}{3}HU + \frac{1}{3}HO - CL \).

Spark Spread: cost of converting fuel into power.

\[
S_t = E(t) - HG(t)
\]

where \(H \) is the heat rate.
Spreads (Cont.)

Timespreads
We said: "Commodities are inputs for the creation of other commodities."
Spreads (Cont.)

Timespreads

We said: "Commodities are inputs for the creation of other commodities."

One way to "create" a commodity is by storing it.
Spreads (Cont.)

Timespreads
We said: ”Commodities are inputs for the creation of other commodities.”

One way to ”create” a commodity is by storing it.

Corresponds to taking a spread position on the curve.
Spreads (Cont.)

Timespreads

We said: "Commodities are inputs for the creation of other commodities."

One way to "create" a commodity is by storing it.

Corresponds to taking a spread position on the curve.

"Arbs"

A third way is to import it.
Timespreads

We said: "Commodities are inputs for the creation of other commodities."

One way to "create" a commodity is by storing it.

Corresponds to taking a spread position on the curve.

"Arbs"

A third way is to import it.

Buy a futures contract in NY, sell one in London.
Hedging

Two main risks when using derivatives to hedge:
Hedging

Two main risks when using derivatives to hedge:

- quantity
Hedging

Two main risks when using derivatives to hedge:

• quantity

• basis
Hedging

Two main risks when using derivatives to hedge:

• quantity

• basis

Example:

A farmer growing corn does not know the amount of bushels to hedge until harvest.
Hedging

Two main risks when using derivatives to hedge:

• quantity

• basis

Example:
A farmer growing corn does not know the amount of bushels to hedge until harvest.

If F is the current fwd price, S the final price, Q the amount produced and H the amount hedged, the hedged revenue is

$$R = SQ + (H(S - F))$$
We choose H by minimizing the variance of that quantity:

$$H = -\frac{\rho_{SQ, S} \sigma_{SQ}}{\sigma_S}$$
We choose H by minimizing the variance of that quantity:

$$H = -\frac{\rho_{SQ,S} \sigma_{SQ}}{\sigma_S}$$

Also, there might not be a contract trading that is perfectly correlated with the underlying commodity (basis).
We choose H by minimizing the variance of that quantity:

$$H = -\frac{\rho_{S Q, S} \sigma_{S Q}}{\sigma_S}$$

Also, there might not be a contract trading that is perfectly correlated with the underlying commodity (basis).

This difference might be due to quality, geographical difference, delivery time etc.
We choose H by minimizing the variance of that quantity:

$$H = -\frac{\rho_{SQ,S} \sigma_{SQ} \sigma_{S}}{\sigma_{S}}$$

Also, there might not be a contract trading that is perfectly correlated with the underlying commodity (basis).

This difference might be due to quality, geographical difference, delivery time etc.

Stack Hedge: Hedge the exposure with a single contract.
We choose H by minimizing the variance of that quantity:

$$H = -\frac{\rho_{SQ,S} \sigma_{SQ}}{\sigma_{S}}$$

Also, there might not be a contract trading that is perfectly correlated with the underlying commodity (basis).

This difference might be due to quality, geographical difference, delivery time etc.

Stack Hedge: Hedge the exposure with a single contract.

Stack-and-roll: Roll the hedge into the next contract when the one we are using expires.
Metallgesellschaft A.G.

In 1992, MG, a traditional metal company, had evolved into a provider of risk management services.
Metallgesellschaft A.G.

In 1992, MG, a traditional metal company, had evolved into a provider of risk management services.

MGRM (US subsidiary of MG) committed to sell, at prices fixed in 1992, certain amounts of petroleum every month for up to 10 years.
Metallgesellschaft A.G.

In 1992, MG, a traditional metal company, had evolved into a provider of risk management services.

MGRM (US subsidiary of MG) committed to sell, at prices fixed in 1992, certain amounts of petroleum every month for up to 10 years.

MGRM sold forward contracts amounting to the equivalent of 160 million barrels.
In 1992, MG, a traditional metal company, had evolved into a provider of risk management services.

MGRM (US subsidiary of MG) committed to sell, at prices fixed in 1992, certain amounts of petroleum every month for up to 10 years.

MGRM sold forward contracts amounting to the equivalent of 160 million barrels.

MGRM employed a "stack-and-roll" hedging strategy.
Metallgesellschaft A.G.

In 1992, MG, a traditional metal company, had evolved into a provider of risk management services.

MGRM (US subsidiary of MG) committed to sell, at prices fixed in 1992, certain amounts of petroleum every month for up to 10 years.

MGRM sold forward contracts amounting to the equivalent of 160 million barrels.

MGRM employed a ”stack-and-roll” hedging strategy.

It placed the entire hedge in short dated delivery months, rather than spreading this amount over many, longer-dated, delivery months.
Metallgesellschaft A.G.

In 1992, MG, a traditional metal company, had evolved into a provider of risk management services.

MGRM (US subsidiary of MG) committed to sell, at prices fixed in 1992, certain amounts of petroleum every month for up to 10 years.

MGRM sold forward contracts amounting to the equivalent of 160 million barrels.

MGRM employed a "stack-and-roll" hedging strategy.

It placed the entire hedge in short dated delivery months, rather than spreading this amount over many, longer-dated, delivery months.

In general people like to used short-dated contracts because of liquidity
issues.
issues.

They got to be 16% of the open interest.

In September 1993 the market flipped from backwardation to contango.
issues.

They got to be 16% of the open interest.

In September 1993 the market flipped from backwardation to contango.

As a result they consistently lost money (as contracts kept on rolling down the curve)
issues.

They got to be 16% of the open interest.

In September 1993 the market flipped from backwardation to contango.

As a result they consistently lost money (as contracts kept on rolling down the curve)

In December the board decided to liquidate both the supply contracts and the futures positions used to hedge.
issues.

They got to be 16% of the open interest.

In September 1993 the market flipped from backwardation to contango.

As a result they consistently lost money (as contracts kept on rolling down the curve)

In December the board decided to liquidate both the supply contracts and the futures positions used to hedge.

Given that there is enormous basis risk in a deal like this: what is the best strategy to follow?
Options

Suppose that in a risk neutral world:

\[\frac{dS}{S} = (r - q)dt + \sigma dW \]

What is the stochastic differential equation for \(F \) (forward contract)?
Options

Suppose that in a risk neutral world:

\[\frac{dS}{S} = (r - q)dt + \sigma dW \]

What is the stochastic differential equation for \(F \) (forward contract)?
We know that \(F(t, T) = S_t e^{((r-q)(T-t))} \).
Options

Suppose that in a risk neutral world:

\[
\frac{dS}{S} = (r - q)dt + \sigma dW
\]

What is the stochastic differential equation for \(F \) (forward contract) ?

We know that \(F(t, T) = S_te^{(r-q)(T-t)} \).

By Itô:

\[
\frac{dF}{F} = \sigma dW
\]
Options

Intuition:
Options

Intuition:

The drift in the price of a security is given by the interest rate (financing) and dividend yield.
Options

Intuition:

The drift in the price of a security is given by the interest rate (financing) and dividend yield.

To own a futures contract we do not need financing and we do not get any dividend yield.
Options

Intuition:

The drift in the price of a security is given by the interest rate (financing) and dividend yield.

To own a futures contract we do not need financing and we do not get any dividend yield.

So, a futures price should be driftless.
Options

Intuition:

The drift in the price of a security is given by the interest rate (financing) and dividend yield.

To own a futures contract we do not need financing and we do not get any dividend yield.

So, a futures price should be driftless.

The futures price can therefore be treated like a stock paying a dividend yield of \(r \)
Options

European Calls and Puts on Futures can then be valued using Black-Scholes.
Options

European Calls and Puts on Futures can then be valued using Black-Scholes.

\[c = e^{-rT} \left(F_0 N(d_1) - K N(d_2) \right) \]
\[p = e^{-rT} \left(K N(-d_2) - F_0 N(-d_1) \right) \]

where

\[d_1 = \frac{\ln(F_0/K) + \sigma^2 T/2}{\sigma \sqrt{T}} \]
\[d_2 = d_1 - \sigma \sqrt{T} \]
Options (Cont.)

Two ways to get to Black-Scholes’ formulae:
Options (Cont.)

Two ways to get to Black-Scholes’ formulae:

1) Hedging argument.

It uses the fact that the nature of the risk (BM) in the option value is the same as the one in the value of the underlying.
Options (Cont.)

Two ways to get to Black-Scholes’ formulae:

1) Hedging argument.

It uses the fact that the nature of the risk (BM) in the option value is the same as the one in the value of the underlying.

\[dC = \ldots + \ldots dW \quad \text{and} \quad dS = \ldots + \ldots dW \]

Therefore we can form a portfolio that cancels \(dW \).

That portfolio should not return more money than a bank account.

2) Risk Neutral Valuation.
Two ways to get to Black-Scholes’ formulae:

1) Hedging argument.

It uses the fact that the nature of the risk (BM) in the option value is the same as the one in the value of the underlying.

\[dC = \ldots + \ldots dW \text{ and } dS = \ldots + \ldots dW \]

Therefore we can form a portfolio that cancels \(dW \).

That portfolio should not return more money than a bank account.

2) Risk Neutral Valuation.

If prices were to be martingales things would be so easy...
Options (Cont.)

Two ways to get to Black-Scholes’ formulae:
1) Hedging argument.
 It uses the fact that the nature of the risk (BM) in the option value is the same as the one in the value of the underlying.

\[
dC = \ldots + \ldots dW \quad \text{and} \quad dS = \ldots + \ldots dW
\]

Therefore we can form a portfolio that cancels \(dW \).
That portfolio should not return more money than a bank account.
2) Risk Neutral Valuation.
 If prices were to be martingales things would be so easy...
Options (Cont.)

Girsanov’s Theorem:

\[dY(t) = a(t, \omega)dt + dW(t) \]
\[(2) \]

Set

\[M_t = e^{-\int_0^t a(s, \omega)dW(s)} - \frac{1}{2} \int_0^t a^2(s, \omega)ds \]

and assume that \(E(e^{\frac{1}{2} \int_0^T a^2(s, \omega)ds}) < \infty \)

Define a new measure by \(dQ(\omega) = M_T(\omega)dP(\omega) \)

Then \(Y(t) \) is a Brownian Motion wrt \(Q(t \leq T) \).
Options (Cont.)

Risk Neutral Valuation
Options (Cont.)

Risk Neutral Valuation

The value of a call should be:

\[C(S_0, K, T, r) = e^{-rT} \hat{E}(\max(S_T - K, 0)) \]

where \(\hat{E} \) means that we have changed the measure.
Options (Cont.)

Risk Neutral Valuation

The value of a call should be:

\[C(S_0, K, T, r) = e^{-rT} \hat{E}(\max(S_T - K, 0)) \] \hspace{1cm} (3)

where \(\hat{E} \) means that we have changed the measure.

Idea of proof:
Risk Neutral Valuation

The value of a call should be:

\[C(S_0, K, T, r) = e^{-r T} \hat{E}(\max(S_T - K, 0)) \] \hspace{1cm} (3)

where \(\hat{E} \) means that we have changed the measure.

Idea of proof:

- Find a measure that makes \(S_t \) be a martingale (actually the discounted).
Options (Cont.)

Risk Neutral Valuation

The value of a call should be:

\[C(S_0, K, T, r) = e^{-rT} \hat{E}(\max(S_T - K, 0)) \] \hspace{1cm} (3)

where \(\hat{E} \) means that we have changed the measure.

Idea of proof:
- Find a measure that makes \(S_t \) be a martingale (actually the discounted).
- Use it to generate a martingale with the payoff by conditioning with the filtration.
Options (Cont.)

Risk Neutral Valuation

The value of a call should be:

\[C(S_0, K, T, r) = e^{-rT} \hat{E}(\max(S_T - K, 0)) \] \hspace{1cm} (3)

where \(\hat{E} \) means that we have changed the measure.

Idea of proof:

- Find a measure that makes \(S_t \) be a martingale (actually the discounted).
- Use it to generate a martingale with the payoff by conditioning with the filtration.
- Find a replicating portfolio that equals the payoff at the end, its initial value is 3
Asian Options

Payoffs:

\[C(S) = \max\left(\sum_{i=1}^{n} \frac{S(i)}{n} - K, 0\right) \]

\[P(S) = \max(K - \sum_{i=1}^{n} \frac{S(i)}{n}, 0) \]
Asian Options

Payoffs:

\[C'(S) = \max\left(\sum_{i=1}^{n} \frac{S(i)}{n} - K, 0\right) \]
\[P(S) = \max(K - \sum_{i=1}^{n} \frac{S(i)}{n}, 0) \]

Very popular: Producers and end-users of commodities or energies tend to be exposed to average prices over time.
Asian Options

Payoffs:

\[C(S) = \max\left(\sum_{i=1}^{n} \frac{S(i)}{n} - K, 0\right) \]

\[P(S) = \max(K - \sum_{i=1}^{n} \frac{S(i)}{n}, 0) \]

Very popular: Producers and end-users of commodities or energies tend to be exposed to average prices over time.

Path-dependent.
Asian Options

Payoffs:

\[C(S) = \max(\sum_{i=1}^{n} \frac{S(i)}{n} - K, 0) \]

\[P(S) = \max(K - \sum_{i=1}^{n} \frac{S(i)}{n}, 0) \]

Very popular: Producers and end-users of commodities or energies tend to be exposed to average prices over time.

Path-dependent.

Complication for pricing: distribution of the average?
Asian Options

Payoffs:

\[C(S) = \max\left(\sum_{i=1}^{n} \frac{S(i)}{n} - K, 0\right) \]

\[P(S) = \max(K - \sum_{i=1}^{n} \frac{S(i)}{n}, 0) \]

Very popular: Producers and end-users of commodities or energies tend to be exposed to average prices over time.

Path-dependent.

Complication for pricing: distribution of the average?
Asian Options (Cont.)

It would be much easier to define:

\[C(S) = \max(\prod_{i=1}^{n} (S(i))^\frac{1}{n} - K, 0) \]
Asian Options (Cont.)

It would be much easier to define:

\[C(S) = \max\left(\prod_{i=1}^{n} (S(i))^{\frac{1}{n}} - K, 0\right) \]

But the market does not trade those...
Asian Options (Cont.)

It would be much easier to define:

\[C(S) = \max(\prod_{i=1}^{n} (S(i))^{\frac{1}{n}} - K, 0) \]

But the market does not trade those...

European, so no problem with early exercise.
Asian Options (Cont.)

It would be much easier to define:

\[
C(S) = \max\left(\prod_{i=1}^{n} (S(i))^\frac{1}{n} - K, 0\right)
\]

But the market does not trade those...

European, so no problem with early exercise.

Methods used to price:

- Simulations.
Asian Options (Cont.)

It would be much easier to define:

\[C(S) = \max(\prod_{i=1}^{n} S(i)^{\frac{1}{n}} - K, 0) \]

But the market does not trade those...

European, so no problem with early exercise.

Methods used to price:

- Simulations.
- Finite Differences.
Asian Options (Cont.)

It would be much easier to define:

\[C(S) = \max\left(\prod_{i=1}^{n} (S(i))^{\frac{1}{n}} - K, 0\right) \]

But the market does not trade those...

European, so no problem with early exercise.

Methods used to price:

• Simulations.

• Finite Differences.
• Various Approximations (Turnbull-Wakeman, Curran, Levy).
Various Approximations (Turnbull-Wakeman, Curran, Levy).

Edgeworth expansions (Jarrow-Rudd):
Suppose that $F(s)$ is the true distribution for the average.
• Various Approximations (Turnbull-Wakeman, Curran, Levy).

Edgeworth expansions (Jarrow-Rudd):
Suppose that $F(s)$ is the true distribution for the average. $A(s)$ an approximating distribution.
Various Approximations (Turnbull-Wakeman, Curran, Levy).

Edgeworth expansions (Jarrow-Rudd):

Suppose that \(F(s) \) is the true distribution for the average.
\(A(s) \) an approximating distribution.

\[
f(s) = a(s) + \frac{(\kappa_2(F) - \kappa_2(A))}{2!} \frac{d^2a(s)}{ds^2} - \frac{(\kappa_3(F) - \kappa_3(A))}{3!} \frac{d^3a(s)}{ds^3} \\
+ \frac{(\kappa_4(F) - \kappa_4(A)) + 3(\kappa_2(F) - \kappa_2(A))^2}{4!} \frac{d^4a(s)}{ds^4} + \epsilon(s)
\]

where
\[\kappa_1(F) = \mu_1(F), \kappa_2(F) = \mu_2(F), \]

\[\kappa_3(F) = \mu_3(F) \text{ and } \kappa_4(F) = \mu_4(F) - 3\mu_2^2(F) \]

So, the idea is to choose a familiar distribution and match the moments.
\[\kappa_1(F) = \mu_1(F), \kappa_2(F) = \mu_2(F), \]
\[\kappa_3(F) = \mu_3(F) \text{ and } \kappa_4(F) = \mu_4(F) - 3\mu_2^2(F) \]

So, the idea is to choose a familiar distribution and match the moments.

\[\kappa_1(F) = \mu_1(F), \kappa_2(F) = \mu_2(F), \]

\[\kappa_3(F) = \mu_3(F) \text{ and } \kappa_4(F) = \mu_4(F) - 3\mu_2^2(F) \]

So, the idea is to choose a familiar distribution and match the moments.

Curran(1992) proposed an approximation based on conditioning the arithmetic average upon the log-normal geometric average.
\(\kappa_1(F) = \mu_1(F), \kappa_2(F) = \mu_2(F), \)
\(\kappa_3(F) = \mu_3(F) \) and \(\kappa_4(F) = \mu_4(F) - 3\mu_2^2(F) \)

So, the idea is to choose a familiar distribution and match the moments.

Curran(1992) proposed an approximation based on conditioning the arithmetic average upon the log-normal geometric average.
Spread Options

Payoffs:

\[C(S_1(T), S_2(T)) = \max(S_1(T) - S_2(T) - K, 0) \]

\[P(S_1(T), S_2(T)) = \max(K - (S_1(T) - S_2(T)), 0) \]
Spread Options

Payoffs:

\[C(S_1(T), S_2(T)) = \max(S_1(T) - S_2(T) - K, 0) \]

\[P(S_1(T), S_2(T)) = \max(K - (S_1(T) - S_2(T)), 0) \]

Start with the usual Geometric Brownian Motion:

\[\frac{dS_i}{S_i} = \mu_i dt + \sigma_i dW_i \quad \text{with } i = 1, 2. \quad <dW_1, dW_2> = \rho dt \] (4)
Spread Options

Payoffs:

\[C(S_1(T), S_2(T)) = \max (S_1(T) - S_2(T) - K, 0) \]

\[P(S_1(T), S_2(T)) = \max (K - (S_1(T) - S_2(T)), 0) \]

Start with the usual Geometric Brownian Motion:

\[\frac{dS_i}{S_i} = \mu_i dt + \sigma_i dW_i \quad \text{with} \quad i = 1, 2. \quad <dW_1, dW_2> = \rho dt \quad (4) \]

Same argument as in Black-Scholes produces a PDE that can be solved numerically.
To price them several methods have been proposed.
To price them several methods have been proposed. We can extend the tree approach (Boyle, 1988):
create a 3-dimensional tree accounting for the correlation between S_1 and S_2.
To price them several methods have been proposed.

We can extend the tree approach (Boyle, 1988):
create a 3-dimensional tree accounting for the correlation between S_1 and S_2.

Monte Carlo:
use the solutions to 4 to simulate.
To price them several methods have been proposed. We can extend the tree approach (Boyle, 1988): create a 3-dimensional tree accounting for the correlation between S_1 and S_2.

Monte Carlo:
use the solutions to 4 to simulate.

Fast Fourier Transform (Carr-Madan, Dempster-Hong)
Performs well even when 4 is replaced to more general dynamics.
To price them several methods have been proposed.

We can extend the tree approach (Boyle, 1988):

create a 3-dimensional tree accounting for the correlation between S_1 and S_2.

Monte Carlo:

use the solutions to 4 to simulate.

Fast Fourier Transform (Carr-Madan, Dempster-Hong)
Performs well even when 4 is replaced to more general dynamics.

However, people look for approximations that give closed form solutions to be able to compute greeks.
Figure 16: Distribution of Spread between two assets
\((S_1(0) = 100, S_2(0) = 100, \sigma_1 = 50\%, \sigma_2 = 40\%, \rho = 80\%)\)
Using approximations:

Model the spread directly as a normal variable, make the first two moments of the spread match the ones implied by the dynamics of S_1 and S_2.
Using approximations:

Model the spread directly as a normal variable, make the first two moments of the spread match the ones implied by the dynamics of S_1 and S_2.

Kirk (1995) proposed to write the payoff as

$$C(S_1(T), S_2(T)) = (S_2(T) + K)\max\left(\frac{S_1(T)}{S_2(T) + K} - 1, 0\right)$$

and approximating $\frac{S_1}{(S_2+K)}$.

Spread Options (Cont.)
Spread Options (Cont.)

Using approximations:

Model the spread directly as a normal variable, make the first two moments of the spread match the ones implied by the dynamics of \(S_1 \) and \(S_2 \).

Kirk (1995) proposed to write the payoff as

\[
C(S_1(T), S_2(T)) = (S_2(T) + K)\max\left(\frac{S_1(T)}{S_2(T) + K} - 1, 0\right)
\]

and approximating \(\frac{S_1}{S_2+K} \).

Recently Carmona-Durrleman (2003) proposed a formula based on properties of the bivariate normal and convex inequalities.
Spread Options (Cont.)

Using approximations:

Model the spread directly as a normal variable, make the first two moments of the spread match the ones implied by the dynamics of S_1 and S_2.

Kirk (1995) proposed to write the payoff as

$$C(S_1(T), S_2(T)) = (S_2(T) + K)\max\left(\frac{S_1(T)}{S_2(T) + K} - 1, 0\right)$$

and approximating $\frac{S_1}{S_2 + K}$.

Recently Carmona-Durrleman (2003) proposed a formula based on properties of the bivariate normal and convex inequalities.
Spread Options (Cont.)

A particular case: Option to exchange one asset for another (Margrabe).
Spread Options (Cont.)

A particular case: Option to exchange one asset for another (Margrabe).

\[C(S_1(T), S_2(T)) = \max(S_1(T) - S_2(T), 0) \] \hspace{1cm} (5)

First appearance of the ”forward measure approach” in the literature (very popular in the interest rate world).
Spread Options (Cont.)

A particular case: Option to exchange one asset for another (Margrabe).

\[C(S_1(T), S_2(T)) = \max(S_1(T) - S_2(T), 0) \] (5)

First appearance of the "forward measure approach" in the literature (very popular in the interest rate world).

By risk neutral valuation:

\[C(0) = e^{-rT}E(\max(S_1(T) - S_2(T), 0)) \]

Payoff can be rewritten:
\[C(S_1(T), S_2(T)) = \max(S_2(T)(S_1(T)/S_2(T) - 1), 0) \]
\[C(S_1(T), S_2(T)) = \max(S_2(T)(S_1(T)/S_2(T) - 1), 0) \]

Complication: we need joint distribution.
\[C(S_1(T), S_2(T)) = \max(S_2(T)(S_1(T)/S_2(T) - 1), 0) \]

Complication: we need joint distribution.

Idea: Change measure, "absorb" \(S_2(T) \) into it, find out what the distribution of \(S_1(T)/S_2(T) \) is under the new measure.
\[C(S_1(T), S_2(T)) = \max(S_2(T)(S_1(T)/S_2(T) - 1), 0) \]

Complication: we need joint distribution.

Idea: Change measure, ”absorb” \(S_2(T) \) into it, find out what the distribution of \(S_1(T)/S_2(T) \) is under the new measure.

If we are lucky and it is lognormal we will obtain a Black-Scholes-type of formula.

Suppose that

\[\frac{dS_1}{S_1} = rdt + \sigma_1 dW_1 \quad \text{and} \quad \frac{dS_2}{S_2} = rdt + \sigma_2 dW_2 \]
\[C(S_1(T), S_2(T)) = \max(S_2(T)(S_1(T)/S_2(T) - 1), 0) \]

Complication: we need joint distribution.

Idea: Change measure, "absorb" \(S_2(T) \) into it, find out what the distribution of \(S_1(T)/S_2(T) \) is under the new measure.

If we are lucky and it is lognormal we will obtain a Black-Scholes-type of formula.

Suppose that

\[
\frac{dS_1}{S_1} = r dt + \sigma_1 dW_1 \quad \text{and} \quad \frac{dS_2}{S_2} = r dt + \sigma_2 dW_2
\]
By 5 and $S_1(t) = e^{rT} \hat{S}_1(t)$ we see that we can assume $r = 0$
By 5 and \(S_1(t) = e^{rT} \hat{S}_1(t) \) we see that we can assume \(r = 0 \)

\[
S_2(T) = S_2(0)e^{-\frac{1}{2}\sigma_2^2 T + \sigma_2 dW_2(T)}
\]

(6)

so by Girsanov we know that \(d\hat{W}_2 = dW_2(T) - \sigma_2 dt \) is a Brownian Motion under the new measure.

Also, \(d\hat{W}_1 = dW_1(T) - \rho \sigma_2 dt \) is a Brownian Motion.

By Itô

\[
d\left(\frac{S_2}{S_1}\right) = \frac{S_1}{S_2} (\sigma_1^2 - \sigma_1 \sigma_2 \rho) dt + \frac{S_1}{S_2} (\sigma_1 dW_1 - \sigma_2 dW_2)
\]

Under the new measure:
\[d \left(\frac{S_1}{S_2} \right) = \frac{S_1}{S_2} (\sigma_1 d\hat{W}_1 - \sigma_2 d\hat{W}_2) \]

which can be written as

\[d \left(\frac{S_1}{S_2} \right) = \frac{S_1}{S_2} \sigma dW \]

and therefore is lognormal with

\[\sigma = \sqrt{\sigma_1^2 + \sigma^2 + 2 \rho \sigma_1 \sigma_2} \]

giving

\[C(S_1(0), S_2(0)) = S_1(0) N(d_1) - S_2(0) N(d_2) \]

with
\begin{align*}
d_1 &= \frac{S_1(0)/S_2(0) + \sigma^2 T/2}{\sigma \sqrt{T}} \\
d_2 &= d_1 - \sigma \sqrt{T}
\end{align*}
Timespread Options and Storage

Storage allows us to take advantage of contango markets.
Timespread Options and Storage

Storage allows us to take advantage of contango markets.

Recall timespread: spread position on the curve.
Timespread Options and Storage

Storage allows us to take advantage of contango markets.
Recall timespread: spread position on the curve.
”Position” could be bull or bear.
Timespread Options and Storage

Storage allows us to take advantage of contango markets.

Recall timespread: spread position on the curve.

"Position" could be bull or bear.

What position is related to storage? Bull or bear?
Timespread Options and Storage

Storage allows us to take advantage of contango markets.
Recall timespread: spread position on the curve.
"Position" could be bull or bear.
What position is related to storage? Bull or bear?
Bull.
Timespread Options and Storage

Storage allows us to take advantage of contango markets.
Recall timespread: spread position on the curve.
"Position" could be bull or bear.
What position is related to storage? Bull or bear?
Bear.
Renting storage:
market in contango → make money.
Timespread Options and Storage

Storage allows us to take advantage of contango markets.
Recall timespread: spread position on the curve.
”Position” could be bull or bear.
What position is related to storage? Bull or bear?
Bear.
Renting storage:
market in contango \rightarrow make money.
market in backwardation \rightarrow lose rent paid.
Timespread Options and Storage

Storage allows us to take advantage of contango markets.
Recall timespread: spread position on the curve.
"Position" could be bull or bear.
What position is related to storage? Bull or bear?
Bear.

Renting storage:
market in contango \rightarrow make money.
market in backwardation \rightarrow lose rent paid.
So: renting storage \sim put spread option.
Other Options

Natural Gas: Swing Options.
Other Options

Natural Gas: Swing Options.

They provide to the owner the right to buy (or sell) a stock at a predefined strike on k (different) days during the life of the option.
Other Options

Natural Gas: Swing Options.

They provide to the owner the right to buy (or sell) a stock at a predefined strike on k (different) days during the life of the option.

So, if $k=1$ it is just an american option. If $k>1$ this option should be cheaper than k american options.
Other Options

Natural Gas: Swing Options.

They provide to the owner the right to buy (or sell) a stock at a predefined strike on k (different) days during the life of the option.

So, if $k = 1$ it is just an american option. If $k > 1$ this option should be cheaper than k american options.

Price them on a tree.
Other Options

Natural Gas: Swing Options.

They provide to the owner the right to buy (or sell) a stock at a predefined strike on \(k \) (different) days during the life of the option.

So, if \(k = 1 \) it is just an american option. If \(k > 1 \) this option should be cheaper than \(k \) american options.

Price them on a tree.

The first step is similar to usual tree: on the last node of a branch we can (potentially) only exercise once so the payoff is \(\max(S - K, 0) \) (provided that we have not exercised all of them previously).
Other Options

Natural Gas: Swing Options.

They provide to the owner the right to buy (or sell) a stock at a predefined strike on k (different) days during the life of the option.

So, if \(k = 1 \) it is just an american option. If \(k > 1 \) this option should be cheaper than \(k \) american options.

Price them on a tree.

The first step is similar to usual tree: on the last node of a branch we can (potentially) only exercise once so the payoff is \(\max(S - K, 0) \) (provided that we have not exercised all of them previously).

What happens in between?
Other Options

Natural Gas: Swing Options.

They provide to the owner the right to buy (or sell) a stock at a predefined strike on \(k \) (different) days during the life of the option.

So, if \(k = 1 \) it is just an american option. If \(k > 1 \) this option should be cheaper than \(k \) american options.

Price them on a tree.

The first step is similar to usual tree: on the last node of a branch we can (potentially) only exercise once so the payoff is \(\max(S - K, 0) \) (provided that we have not exercised all of them previously).

What happens in between?
Generic situation at a node:
Generic situation at a node:

Assume that we have exercised k_0 out of k times and we want to know whether we should exercise or not.
Generic situation at a node:

Assume that we have exercised \(k_0 \) out of \(k \) times and we want to know whether we should exercise or not.

We then compare the values of:

1) Exercising today + the (disc) future value of having a swing option in which we have exercised \(k_0 + 1 \) times.
Generic situation at a node:

Assume that we have exercised k_0 out of k times and we want to know whether we should exercise or not.

We then compare the values of:

1) Exercising today + the (disc) future value of having a swing option in which we have exercised $k_0 + 1$ times.

2) The (disc) future value of of having a swing option with k_0 swings exercised.
Generic situation at a node:

Assume that we have exercised k_0 out of k times and we want to know whether we should exercise or not.

We then compare the values of:

1) Exercising today $+$ the (disc) future value of having a swing option in which we have exercised $k_0 + 1$ times.

2) The (disc) future value of having a swing option with k_0 swings exercised.

$$\max(S - K + \text{fut}[k_0 + 1], \text{fut}[k_0])$$
Other Options (Cont.)

Swaptions
Other Options (Cont.)

Swaptions
They are options on swaps.
Other Options (Cont.)

Swaptions

They are options on swaps.

For example we can write an option on x from $[1]$
Swaptions
They are options on swaps.
For example we can write an option on \(x \) from \(\text{[1]} \)
How do we value that? What is the process followed by \(x \)?
Swaptions

They are options on swaps.

For example we can write an option on x from 1.

How do we value that? What is the process followed by x?

It is a basket of geometric brownian motions.
Other Options (Cont.)

Swaptions
They are options on swaps.
For example we can write an option on x from 1
How do we value that? What is the process followed by x?
It is a basket of geometric brownian motions.
Problem:
We need implied volatilities for each of the contracts in the swap.
Swaptions

They are options on swaps.

For example we can write an option on x from [1]

How do we value that? What is the process followed by x?

It is a basket of geometric brownian motions.

Problem:

We need implied volatilities for each of the contracts in the swap.

Some of the contracts will expire well after the swaption expires.
Other Options (Cont.)

Swaptions

They are options on swaps.

For example we can write an option on x from 1

How do we value that? What is the process followed by x?

It is a basket of geometric brownian motions.

Problem:

We need implied volatilities for each of the contracts in the swap.

Some of the contracts will expire well after the swaption expires.

And options on futures expire a few days before the futures expiration.
Other Options (Cont.)

Swaptions
They are options on swaps.
For example we can write an option on x from \[1\]
How do we value that? What is the process followed by x?
It is a basket of geometric brownian motions.
Problem:
We need implied volatilities for each of the contracts in the swap.
Some of the contracts will expire well after the swaption expires.
And options on futures expire a few days before the futures expiration.
Term Structure Models

Modelling dynamics of commodity prices: Historically later than the same task for interest rates.
Term Structure Models

Modelling dynamics of commodity prices: Historically later than the same task for interest rates.

Two types of models:

- spot "+" convenience yield (Black-Karasinski, Gibson-Schwartz)
- forward curve (Following Heath-Jarrow-Morton, Miltersen-Shwatz, Amin-Ng-Pirrong)
Term Structure Models

Modelling dynamics of commodity prices: Historically later than the same task for interest rates.

Two types of models:

- spot "+" convenience yield (Black-Karasinski, Gibson-Schwartz)
- forward curve (Following Heath-Jarrow-Morton, Miltersen-Shwatrz, Amin-Ng-Pirrong)

Can we explain the term structure of volatilities?

Remark: Term structure of volatilities in the context of futures means something different from what it means in the context of stocks.
Figure 17: Term Structure of (ATM) Volatilities. Natural Gas.
Term Structure Models. Black-Karasinski

1-factor model. mean reverting in $\log S_t$.
Term Structure Models. Black-Karasinski

1-factor model. mean reverting in $\log S_t$.

\[d \log S_t = \alpha (f(t) - \log S_t) dt + \sigma_t dW_t \]

(7)
Term Structure Models. Black-Karasinski

1-factor model. mean reverting in $\log S_t$.

$$d \log S_t = \alpha(f(t) - \log S_t)dt + \sigma_t dW_t$$ (7)

Solving, we see that $\log(S_T)$ is normally distributed with

$$\text{mean} = e^{-\alpha(T-t)} \log S_t + \alpha e^{-\alpha T} \int_t^T e^{\alpha s} f(s)ds$$
Term Structure Models. Black-Karasinski

1-factor model. mean reverting in $\log S_t$.

$$d \log S_t = \alpha(f(t) - \log S_t)dt + \sigma_t dW_t$$ \hspace{1cm} (7)

Solving, we see that $\log(S_T)$ is normally distributed with

$$\text{mean} = e^{-\alpha(T-t)} \log S_t + \alpha e^{-\alpha T} \int_t^T e^{\alpha s} f(s) ds$$

$$\text{standard deviation} = \sigma e^{-\alpha T} \sqrt{e^{2\alpha T} - e^{2\alpha t} \over 2\alpha}$$
Term Structure Models. Black-Karasinski

1-factor model. mean reverting in $\log S_t$.

\[d \log S_t = \alpha (f(t) - \log S_t) dt + \sigma_t dW_t \tag{7} \]

Solving, we see that $\log(S_T)$ is normally distributed with

mean $= e^{-\alpha(T-t)} \log S_t + \alpha e^{-\alpha T} \int_t^T e^{\alpha s} f(s) ds$

standard deviation $= \sigma e^{-\alpha T} \sqrt{\frac{e^{2\alpha T} - e^{2\alpha t}}{2\alpha}}$
We can write the processes for S_t and for $F(t, T)$ in terms of the initial forward curve:

\begin{align*}
S_t &= F(0, t)e^{-\frac{\sigma^2}{4\alpha}(1-e^{-2\alpha t})}e^{\alpha t}\sqrt{\frac{e^{2\alpha t-1}}{2\alpha}}N(0, 1), \quad (8) \\
F(t, T) &= F(0, T)e^{\frac{\sigma^2}{4\alpha}(e^{-2\alpha T}-e^{-2\alpha(T-t)})}e^{\alpha T}\sqrt{\frac{e^{2\alpha T-1}}{2\alpha}}N(0, 1) \quad (9)
\end{align*}

which can be used to calibrate to the current term structure.
We can write the processes for S_t and for $F(t, T)$ in terms of the initial forward curve:

$$S_t = F(0, t)e^{-\frac{\sigma^2}{4\alpha}(1-e^{-2\alpha t})}e^{\sigma e^{-\alpha t}\sqrt{\frac{e^{2\alpha t-1}}{2\alpha}}N(0,1)}. \quad (8)$$

$$F(t, T) = F(0, T)e^{\frac{\sigma^2}{4\alpha}(e^{-2\alpha T}-e^{-2\alpha(T-t)})}e^{\sigma e^{-\alpha T}\sqrt{\frac{e^{2\alpha t-1}}{2\alpha}}N(0,1)} \quad (9)$$

which can be used to calibrate to the current term structure.

Also:

$$\text{stdev}(\log(F(t_2, T)/F(t_1, T))) \sim \sigma e^{-\alpha(T-t_1)}\sqrt{t_2-t_1}$$
We can write the processes for S_t and for $F(t, T)$ in terms of the initial forward curve:

$$S_t = F(0, t)e^{-\frac{\sigma^2}{4\alpha}(1-e^{-2\alpha t})}e^{\sigma e^{-\alpha t}\sqrt{\frac{e^{2\alpha t}-1}{2\alpha}}N(0,1)}.$$ \hspace{1cm} (8)

$$F(t, T) = F(0, T)e^{\frac{\sigma^2}{4\alpha}(e^{-2\alpha T}-e^{-2\alpha(T-t)})}e^{\sigma e^{-\alpha T}\sqrt{\frac{e^{2\alpha t}-1}{2\alpha}}N(0,1)}$$ \hspace{1cm} (9)

which can be used to calibrate to the current term structure.

Also:

$$\text{stdev}(\log(F(t_2, T)/F(t_1, T))) \sim \sigma e^{-\alpha(T-t_1)}\sqrt{t_2 - t_1}$$

so, instantaneously, the volatility of $F(t, T)$ is $\sigma e^{-\alpha(T-t)}$.
And the volatility for the whole life:

\[\sigma_{F(0,T)} = \sigma e^{-\alpha T} \sqrt{\frac{e^{2\alpha T} - 1}{2\alpha}} \frac{1}{\sqrt{T}} \]
And the volatility for the whole life:

\[\sigma_{F(0,T)} = \sigma e^{-\alpha T} \sqrt{\frac{e^{2\alpha T} - 1}{2\alpha}} \frac{1}{\sqrt{T}} \]

which can be used to calibrate to volatilities.
And the volatility for the whole life:

\[\sigma_{F(0,T)} = \sigma e^{-\alpha T} \sqrt{\frac{e^{2\alpha T} - 1}{2\alpha} \frac{1}{\sqrt{T}}} \]

which can be used to calibrate to volatilities.

Drawback: Perfect correlation.
And the volatility for the whole life:

\[\sigma_{F(0,T)} = \sigma e^{-\alpha T} \sqrt{\frac{e^{2\alpha T} - 1}{2\alpha}} \frac{1}{\sqrt{T}} \]

which can be used to calibrate to volatilities.

Drawback: Perfect correlation.

Common to all 1-factor models.
And the volatility for the whole life:

\[\sigma_{F(0,T)} = \sigma e^{-\alpha T} \sqrt{\frac{e^{2\alpha T} - 1}{2\alpha}} \frac{1}{\sqrt{T}} \]

which can be used to calibrate to volatilities.

Drawback: Perfect correlation.

Common to all 1-factor models.

Solution: More factors.
Term Structure Models. Gibson-Schwartz

2-factor model.

\[dS_t = (r_t - q_t)S_t dt + \sigma S_t dW_t^1 \] \hspace{1cm} (10)

\[dq_t = \alpha(\theta - q_t) dt + \gamma dW_t^2 \] \hspace{1cm} (11)

where \(d < W^1, W^2 >_t = \rho dt. \)

Dynamics of \(S_t = \) Geometric Brownian Motion.

Dynamics of \(q_t = \) Orstein-Uhlenbeck (Mean reverting).
Term Structure Models. Gibson-Schwartz

Carmona-Ludkovski:

Compute implied convenience yield.
Term Structure Models. Gibson-Schwartz

Carmona-Ludkovski:

Compute implied convenience yield.

Find that each futures contract seems to carry its own risk.
Term Structure Models. Gibson-Schwartz

Carmona-Ludkovski:

Compute implied convenience yield.

Find that each futures contract seems to carry its own risk.

This is not surprising: 1–factor models try to adapt Black-Scholes-type of models to the modelling of curves.
Term Structure Models. Gibson-Schwartz

Carmona-Ludkovski:

Compute implied convenience yield.

Find that each futures contract seems to carry its own risk.

This is not surprising: 1—factor models try to adapt Black-Scholes-type of models to the modelling of curves.

2—factor models add some flexibility but, still, what we want to model is the whole curve.
Term Structure Models. Gibson-Schwartz

Carmona-Ludkovski:

Compute implied convenience yield.

Find that each futures contract seems to carry its own risk.

This is not surprising: 1—factor models try to adapt Black-Scholes-type of models to the modelling of curves.

2—factor models add some flexibility but, still, what we want to model is the whole curve.

We need a term structure model in the spirit of HJM.
Term Structure Models. Gibson-Schwartz

Carmona-Ludkovski:

Compute implied convenience yield.

Find that each futures contract seems to carry its own risk.

This is not surprising: 1–factor models try to adapt Black-Scholes-type of models to the modelling of curves.

2–factor models add some flexibility but, still, what we want to model is the whole curve.

We need a term structure model in the spirit of HJM.
Term Structure Models. Heath-Jarrow-Morton

Cortazar-Schwartz (1994) model the whole forward curve simultaneously

\[
\frac{dF(t, T)}{F(t, T)} = \sum_{i=1}^{n} \sigma_i(t, T) dW_i(t) \tag{12}
\]

So,

\[
F(t, T) = F(0, T) e^{-\frac{1}{2} \int_0^t \sum_{i=1}^{n} \sigma_i^2(s, T) ds + \int_0^t \sum_{i=1}^{n} \sigma_i(s, T) dW_i(s)}
\]
Term Structure Models. Heath-Jarrow-Morton

Cortazar-Schwartz (1994) model the whole forward curve simultaneously

\[\frac{dF(t, T)}{F(t, T)} = \sum_{i=1}^{n} \sigma_i(t, T) dW_i(t) \]

(12)

So,

\[F(t, T) = F(0, T) e^{-\frac{1}{2} \int_0^t \sum_{i=1}^{n} \sigma_i^2(s, T) ds + \int_0^t \sum_{i=1}^{n} \sigma_i(s, T) dW_i(s) } \]

The current forward curve is entered as starting point.
Cortazar-Schwartz (1994) model the whole forward curve simultaneously

\[
\frac{dF(t, T)}{F(t, T)} = \sum_{i=1}^{n} \sigma_i(t, T) dW_i(t) \tag{12}
\]

So,

\[
F(t, T) = F(0, T)e^{-\frac{1}{2} \int_0^t \sum_{i=1}^{n} \sigma_i^2(s, T)ds + \int_0^t \sum_{i=1}^{n} \sigma_i(s, T)dW_i(s)}
\]

The current forward curve is entered as starting point.

Setting \(T = t \) we obtain the process for \(S(t) \):

\[
S(t) = F(0, t)e^{-\frac{1}{2} \int_0^t \sum_{i=1}^{n} \sigma_i^2(s, t)ds + \int_0^t \sum_{i=1}^{n} \sigma_i(s, t)dW_i(s)}
\]
Term Structure Models. Heath-Jarrow-Morton (Cont.)

The HJM model for interest rates:
Term Structure Models. Heath-Jarrow-Morton (Cont.)

The HJM model for interest rates:

\(P(t, T) \) a zero coupon bond. We define the zero rate as \(R(0, T) \) so that

\[
P(t, T) = e^{-R(0,T)T}.
\]

Also, we define the forward rate between \(T_1 \) and \(T_2 \) observed at time \(t \) as \(f(t, T_1, T_2) \) so that

\[
e^{R(0,T_2)T_2} = e^{R(0,T_1)T_1} e^{f(0,T_1,T_2)(T_2-T_1)}
\]

So it is the rate that we can lock in today for money borrowed between times \(T_1 \) and \(T_2 \). Then
\[f(0, T_1, T_2) = \frac{\ln P(0, T_1) - \ln P(0, T_2)}{(T_2 - T_1)} \]

Letting \(T_2 \) approach \(T_1 \) we obtain

\[f(0, T) = -\frac{\partial \ln P(0, T)}{\partial T} \]

Now, if we propose the bond model:

\[\frac{dP(t, T)}{P(t, T)} = \sum_{i=1}^{\nu} \sigma_i(t, T) dW_i(t) + r(t) dt \]
\[f(0, T_1, T_2) = \frac{\ln P(0, T_1) - \ln P(0, T_2)}{(T_2 - T_1)} \]

Letting \(T_2 \) approach \(T_1 \) we obtain

\[f(0, T) = -\frac{\partial \ln P(0, T)}{\partial T} \]

Now, if we propose the bond model:

\[\frac{dP(t, T)}{P(t, T)} = \sum_{i=1}^{\nu} \sigma_i(t, T)dW_i(t) + r(t)dt \]

By Itô and differentiating wrt \(T \):
\[f(0, T_1, T_2) = \frac{\ln P(0, T_1) - \ln P(0, T_2)}{(T_2 - T_1)} \]

Letting \(T_2 \) approach \(T_1 \) we obtain

\[f(0, T) = -\frac{\partial \ln P(0, T)}{\partial T} \]

Now, if we propose the bond model:

\[\frac{dP(t, T)}{P(t, T)} = \sum_{i=1}^{\nu} \sigma_i(t, T)dW_i(t) + r(t)dt \]

By Itô and differentiating \(\text{wrt} \ T \):
We obtain:

\[
df(t, T) = \sum_{i=1}^{\nu} \frac{\partial \sigma_i(t, T)}{\partial T} dW_i(t) + \left(\sum_{i=1}^{\nu} \frac{\partial \sigma_i(t, T)}{\partial T} \int_t^T \frac{\partial \sigma_i(t, s)}{\partial s} ds \right) dt
\]

which gives the dynamics for the forward rates in a risk neutral world.
In the same spirit as HJM Miltersen-Schwartz (1999) propose to define forward convenience yields. So the model for the curve is obtained from:

\[
 f(t, s) = f(0, s) + \int_0^t \mu_f(u, s) du + \int_0^t \sigma_f(u, s) \cdot dW_u
\]

\[
 \epsilon(t, s) = \epsilon(0, s) + \int_0^t \mu_\epsilon(u, s) du + \int_0^t \sigma_\epsilon(u, s) \cdot dW_u
\]

\[
 S_t = S_0 + \int_0^t S_u \mu_S(u) du + \int_0^t S_u \sigma_S(u) \cdot dW_u
\]
Term Structure Models

Choosing the Volatility Functions
Term Structure Models

Choosing the Volatility Functions

How do we choose the σ functions in [12]?
Term Structure Models

Choosing the Volatility Functions

How do we choose the σ functions in 12?

Principal Components Analysis.
Term Structure Models

Choosing the Volatility Functions

How do we choose the σ functions in 12?

Principal Components Analysis.

In the case of treasuries Litterman-Scheinkman (1991) found that three factors are enough to explain a lot of the variance (like 95 %).
Term Structure Models

Choosing the Volatility Functions

How do we choose the σ functions in 12?

Principal Components Analysis.

In the case of treasuries Litterman-Scheinkman (1991) found that three factors are enough to explain a lot of the variance (like 95%).

The three factors are

1) Level
Term Structure Models

Choosing the Volatility Functions

How do we choose the σ functions in 12?

Principal Components Analysis.

In the case of treasuries Litterman-Scheinkman (1991) found that three factors are enough to explain a lot of the variance (like 95%).

The three factors are

1) Level

2) Steepness
Term Structure Models

Choosing the Volatility Functions

How do we choose the σ functions in $\textbf{12}$?

Principal Components Analysis.

In the case of treasuries Litterman-Scheinkman (1991) found that three factors are enough to explain a lot of the variance (like 95%).

The three factors are

1) Level
2) Steepness
3) Curvature
Term Structure Models

Choosing the Volatility Functions

How do we choose the σ functions in [12]?

Principal Components Analysis.

In the case of treasuries Litterman-Scheinkman (1991) found that three factors are enough to explain a lot of the variance (like 95%).

The three factors are

1) Level
2) Steepness
3) Curvature

The same phenomenon was found by Cortazar and Schwartz in copper futures, and it is also true in crude oil, Libor rates, etc.
Term Structure Models

Figure 18: First four Principal Components. Crude Oil.
Term Structure Models

Why does this happen? What do all those markets have in common?
Term Structure Models

Why does this happen? What do all those markets have in common?
Nothing.
Term Structure Models

Why does this happen? What do all those markets have in common?
Nothing.
The correlation structure.
Term Structure Models

Why does this happen? What do all those markets have in common?
Nothing.
The correlation structure.
Correlation among different rates is very high.
Term Structure Models

Why does this happen? What do all those markets have in common?
Nothing.
The correlation structure.
Correlation among different rates is very high.
Possible model:
contiguous rates correlation $= \rho$.
Term Structure Models

Why does this happen? What do all those markets have in common? Nothing.

The correlation structure.

Correlation among different rates is very high.

Possible model:

contiguous rates correlation = ρ.

For non-contiguous it decays exponentially.
Term Structure Models

Why does this happen? What do all those markets have in common? Nothing.
The correlation structure.
Correlation among different rates is very high.
Possible model:
contiguous rates correlation $= \rho$.
For non-contiguous it decays exponentially.
If ρ is high we recover the level-slope-curvature structure.
Term Structure Models

More ambitiously: we may try multi-curve term structure models.
Term Structure Models

More ambitiously: we may try multi-curve term structure models.

In that case we could price any structure in a muti-curve market.
Term Structure Models

More ambitiously: we may try multi-curve term structure models.

In that case we could price any structure in a multi-curve market.

We can model something like this by assuming a constant correlation intercurve and a different, also constant, correlation intracurve.
Term Structure Models

More ambitiously: we may try multi-curve term structure models.

In that case we could price any structure in a multi-curve market.

We can model something like this by assuming a constant correlation intercurve and a different, also constant, correlation intracurve.

Depending on how high is the intercurve correlation we will get ”separation” vectors of different orders.
Figure 19: PCA of crude and heating oil together.
Figure 20: Seasonality in the Eigenvalues (o=heating oil, x=crude)
Figure 21: Term Structure of Volatilities. Crude Forward Curve. Different Smiles on 2/25/04.
Smiles

As usual...
Smiles

As usual...

Many methods have been proposed: implied trees, stochastic volatilities, various approximations to the implied distribution.
Smiles

As usual...

Many methods have been proposed: implied trees, stochastic volatilities, various approximations to the implied distribution.

But, as with the vol term structure, the volatility surface has a different meaning here.
Smiles

As usual...

Many methods have been proposed: implied trees, stochastic volatilities, various approximations to the implied distribution.

But, as with the vol term structure, the volatility surface has a different meaning here.

For futures we have a smile per maturity.
Smiles

As usual...

Many methods have been proposed: implied trees, stochastic volatilities, various approximations to the implied distribution.

But, as with the vol term structure, the volatility surface has a different meaning here.

For futures we have a smile per maturity.

The goal of a term structure model would be to model the fwd curve and the "vol surface" simultaneously.
Smiles

As usual...

Many methods have been proposed: implied trees, stochastic volatilities, various approximations to the implied distribution.

But, as with the vol term structure, the volatility surface has a different meaning here.

For futures we have a smile per maturity.

The goal of a term structure model would be to model the fwd curve and the ”vol surface” simultaneously.

Challenge: liquidity, data.
Smiles (Cont.)
The Vol Smile and its Implied Tree (Derman & Kani, 1994)
They modify the stock process in order to match option prices.
Smiles (Cont.)
The Vol Smile and its Implied Tree (Derman & Kani, 1994)
They modify the stock process in order to match option prices.
Introduce the concept of \textit{local volatility}
Smiles (Cont.)

The Vol Smile and its Implied Tree (Derman & Kani, 1994)

They modify the stock process in order to match option prices.

Introduce the concept of **local volatility**

Instead of

\[
\frac{dS}{S} = \mu dt + \sigma dZ
\]

use

\[
\frac{dS}{S} = \mu dt + \sigma(S, t)dZ
\]
Smiles (Cont.)

The Vol Smile and its Implied Tree (Derman & Kani, 1994)

They modify the stock process in order to match option prices.

Introduce the concept of **local volatility**

Instead of

\[
\frac{dS}{S} = \mu dt + \sigma dZ
\]

use

\[
\frac{dS}{S} = \mu dt + \sigma(S, t)dZ
\]

Inverse Problem: Given option prices can we determine \(\sigma \) ?
Smiles (Cont.)

Derman and Kani work in the binomial framework.
Derman and Kani work in the binomial framework. They construct an **implied tree**.
Derman and Kani work in the binomial framework.
They construct an \textit{implied tree}.

Idea:
We know how to construct a tree for constant σ.
Smiles (Cont.)

Derman and Kani work in the binomial framework. They construct an **implied tree**.

Idea:
We know how to construct a tree for constant \(\sigma \).
We now want to distort it to match observed prices.
Smiles (Cont.)

Derman and Kani work in the binomial framework.

They construct an **implied tree**.

Idea:

We know how to construct a tree for constant σ.

We now want to distort it to match observed prices.
Figure 22: Derman-Kani Tree.

Figure 3. The Implied Tree

- Stock price vs. time
Smiles (Cont.)

Stochastic Volatility.

"Black-Scholes Analysis"
Smiles (Cont.)

Stochastic Volatility.

"Black-Scholes Analysis"

Assume that \(S \) satisfies (as always)

\[
\frac{dS}{S} = \mu dt + \sigma dW_1
\]

and \(\sigma \) is also stochastic following

\[
d\sigma = p(S, \sigma, t)dt + q(S, \sigma, t)dW_2
\]
Stochastic Volatility.

"Black-Scholes Analysis"

Assume that S satisfies (as always)

$$\frac{dS}{S} = \mu dt + \sigma dW_1$$

and σ is also stochastic following

$$d\sigma = p(S, \sigma, t) dt + q(S, \sigma, t) dW_2$$

Notice that dW_1 and dW_2 could be chosen to have correlation ρ.
Smiles (Cont.)

Stochastic Volatility.

"Black-Scholes Analysis"

Assume that S satisfies (as always)

$$\frac{dS}{S} = \mu dt + \sigma dW_1$$

and σ is also stochastic following

$$d\sigma = p(S, \sigma, t)dt + q(S, \sigma, t)dW_2$$

Notice that dW_1 and dW_2 could be chosen to have correlation ρ.

The goal is to mimic B-S's line of thought
Main idea in Black-Scholes: The source of risk in an option is the same as the source of risk of the underlying so we can cancel this risk (the market is "complete").
Smiles (Cont.)

Main idea in Black-Scholes: The source of risk in an option is the same as the source of risk of the underlying so we can cancel this risk (the market is ”complete”).

Now, if the vol is stochastic we have a new (unhedgeable) risk.
Smiles (Cont.)

Main idea in Black-Scholes: The source of risk in an option is the same as the source of risk of the underlying so we can cancel this risk (the market is "complete").

Now, if the vol is stochastic we have a new (unhedgeable) risk.

As we have two sources of risk now, we will try to hedge our option with two contracts:
Smiles (Cont.)

Main idea in Black-Scholes: The source of risk in an option is the same as the source of risk of the underlying so we can cancel this risk (the market is "complete").

Now, if the vol is stochastic we have a new (unhedgeable) risk.

As we have two sources of risk now, we will try to hedge our option with two contracts:

1) The underlying.
Main idea in Black-Scholes: The source of risk in an option is the same as the source of risk of the underlying so we can cancel this risk (the market is "complete").

Now, if the vol is stochastic we have a new (unhedgeable) risk.

As we have two sources of risk now, we will try to hedge our option with two contracts:

1) The underlying.
2) Another option.
Main idea in Black-Scholes: The source of risk in an option is the same as the source of risk of the underlying so we can cancel this risk (the market is "complete").

Now, if the vol is stochastic we have a new (unhedgeable) risk.

As we have two sources of risk now, we will try to hedge our option with two contracts:

1) The underlying.
2) Another option.
Smiles (Cont.)

Form the portfolio

\[\Pi = V - \Delta S - \Delta_1 V_1 \]
Smiles (Cont.)

Form the portfolio

\[\Pi = V - \Delta S - \Delta_1 V_1 \]

By doing Itô and killing the BMs:

\[\Delta_1 = \frac{\partial V}{\partial \sigma} \bigg/ \frac{\partial V_1}{\partial \sigma} \]

\[\Delta = \frac{\partial V}{\partial S} - \left(\frac{\partial V}{\partial \sigma} \bigg/ \frac{\partial V_1}{\partial \sigma} \right) \frac{\partial V_1}{\partial S} \]
Smiles (Cont.)

Form the portfolio

\[\Pi = V - \Delta S - \Delta_1 V_1 \]

By doing \(\text{Itô} \) and killing the BMs:

\[\Delta_1 = \frac{\partial V}{\partial \sigma} / \frac{\partial V_1}{\partial \sigma} \]

\[\Delta = \frac{\partial V}{\partial S} - \left(\frac{\partial V}{\partial \sigma} / \frac{\partial V_1}{\partial \sigma} \right) \frac{\partial V_1}{\partial S} \]

In the end, by collecting \(V \) terms on the left and \(V_1 \) terms on the right:
\[
\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + \rho \sigma q S \frac{\partial^2 V}{\partial S \partial \sigma} + \frac{1}{2} q^2 \frac{\partial^2 V}{\partial \sigma^2} + rS \frac{\partial V}{\partial S} - rV \\
= \frac{\partial V_1}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V_1}{\partial S^2} + \rho \sigma q S \frac{\partial^2 V_1}{\partial S \partial \sigma} + \frac{1}{2} q^2 \frac{\partial^2 V_1}{\partial \sigma^2} + rS \frac{\partial V_1}{\partial S} - rV_1
\]

Then, both sides can only be functions of the indep variables \(S, \sigma, t \).
\[
\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + \rho \sigma q S \frac{\partial^2 V}{\partial S \partial \sigma} + \frac{1}{2} q^2 \frac{\partial^2 V}{\partial \sigma^2} + r S \frac{\partial V}{\partial S} - rV
\]

\[
\frac{\partial V}{\partial \sigma}
\]

\[
\frac{\partial V_1}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V_1}{\partial S^2} + \rho \sigma q S \frac{\partial^2 V_1}{\partial S \partial \sigma} + \frac{1}{2} q^2 \frac{\partial^2 V_1}{\partial \sigma^2} + r S \frac{\partial V_1}{\partial S} - rV_1
\]

Then, both sides can only be functions of the indep variables \(S, \sigma, t \).

But independent from the particularities of \(V \) and \(V_1 \).
\[
\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + \rho \sigma q S \frac{\partial^2 V}{\partial S \partial \sigma} + \frac{1}{2} q^2 \frac{\partial^2 V}{\partial \sigma^2} + r S \frac{\partial V}{\partial S} - r V \\
\frac{\partial V}{\partial \sigma} \\
= \frac{\partial V_1}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V_1}{\partial S^2} + \rho \sigma q S \frac{\partial^2 V_1}{\partial S \partial \sigma} + \frac{1}{2} q^2 \frac{\partial^2 V_1}{\partial \sigma^2} + r S \frac{\partial V_1}{\partial S} - r V_1 \\
\frac{\partial V_1}{\partial \sigma}
\]

Then, both sides can only be functions of the indep variables \(S, \sigma, t \).

But independent from the particularities of \(V \) and \(V_1 \).

"Market price of risk"
Real Options

Similarities between options and investment projects:

<table>
<thead>
<tr>
<th>Investment Project</th>
<th>Call Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment Cost</td>
<td>Strike Price</td>
</tr>
<tr>
<td>Present Value of Project</td>
<td>Price of Underlying Asset</td>
</tr>
</tbody>
</table>
Real Options

Similarities between options and investment projects:

<table>
<thead>
<tr>
<th>Investment Project</th>
<th>Call Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment Cost</td>
<td>Strike Price</td>
</tr>
<tr>
<td>Present Value of Project</td>
<td>Price of Underlying Asset</td>
</tr>
</tbody>
</table>

Example: Peak-Load Plant.

Electricity plants that work on on peak times.
Real Options

Similarities between options and investment projects:

<table>
<thead>
<tr>
<th>Investment Project</th>
<th>Call Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment Cost</td>
<td>Strike Price</td>
</tr>
<tr>
<td>Present Value of Project</td>
<td>Price of Underlying Asset</td>
</tr>
</tbody>
</table>

Example: Peak-Load Plant.

Electricity plants that work on on peak times.

Owning it is similar to owning a strip of call options.
Real Options

Similarities between options and investment projects:

<table>
<thead>
<tr>
<th>Investment Project</th>
<th>Call Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment Cost</td>
<td>Strike Price</td>
</tr>
<tr>
<td>Present Value of Project</td>
<td>Price of Underlying Asset</td>
</tr>
</tbody>
</table>

Example: Peak-Load Plant.

Electricity plants that work on peak times.

Owning it is similar to owning a strip of call options.

Strike = cost of producing a unit of electricity.
Real Options

Similarities between options and investment projects:

<table>
<thead>
<tr>
<th>Investment Project</th>
<th>Call Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment Cost</td>
<td>Strike Price</td>
</tr>
<tr>
<td>Present Value of Project</td>
<td>Price of Underlying Asset</td>
</tr>
</tbody>
</table>

Example: Peak-Load Plant.

Electricity plants that work on on peak times.

Owning it is similar to owning a strip of call options.

Strike = cost of producing a unit of electricity.

The cost includes the cost of the fuel. Possible fuel: natural gas.
Real Options

Similarities between options and investment projects:

<table>
<thead>
<tr>
<th>Investment Project</th>
<th>Call Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment Cost</td>
<td>Strike Price</td>
</tr>
<tr>
<td>Present Value of Project</td>
<td>Price of Underlying Asset</td>
</tr>
</tbody>
</table>

Example: Peak-Load Plant.

Electricity plants that work on peak times.

Owning it is similar to owning a strip of call options.

Strike = cost of producing a unit of electricity.

The cost includes the cost of the fuel. Possible fuel: natural gas.
The heat rate of the plant is a number related to the number of BTUs (British Thermal Units) needed to produce one kilowatt/hour of electricity.
The heat rate of the plant is a number related to the number of BTUs (British Thermal Units) needed to produce one kilowatt/hour of electricity. If the heat rate of the plant is 9000 we will need 9,000,000 BTUs to generate 1 megawatt/hour of electricity.
The heat rate of the plant is a number related to the number of BTUs (British Thermal Units) needed to produce one kilowatt/hour of electricity. If the heat rate of the plant is 9000 we will need 9,000,000 BTUs to generate 1 megawatt/hour of electricity.

Natural gas is priced in $/MMBtu. If the market price of 1 MMBtu of natural gas is $4 the price of producing 1 MWh of electricity will be $36.
The heat rate of the plant is a number related to the number of BTUs (British Thermal Units) needed to produce one kilowatt/hour of electricity. If the heat rate of the plant is 9000 we will need 9,000,000 BTUs to generate 1 megawatt/hour of electricity.

Natural gas is priced in $/MMBtu. If the market price of 1 MMBtu of natural gas is $4 the price of producing 1 MWh of electricity will be $36.

The payoff of the call option is then: \(\max(S_{elec} - H S_{natgas}, 0) \)
Figure 23: Scheme of a Refinery
The market mimics the refinery economics.
The market mimics the refinery economics.
Futures contracts: crude, heating oil, gasoline.
The market mimics the refinery economics.
Futures contracts: crude, heating oil, gasoline.
But swaps trade for every product.
The market mimics the refinery economics.
Futures contracts: crude, heating oil, gasoline.
But swaps trade for every product.
So, every piece of the scheme is a moving part.
The market mimics the refinery economics.
Futures contracts: crude, heating oil, gasoline.
But swaps trade for every product.
So, every piece of the scheme is a moving part.
For example:
different types of crude \rightarrow different yields.
The market mimics the refinery economics. Futures contracts: crude, heating oil, gasoline. But swaps trade for every product. So, every piece of the scheme is a moving part. For example:

different types of crude \rightarrow different yields.

or

different types of crude \rightarrow different qualities.
The market mimics the refinery economics.
Futures contracts: crude, heating oil, gasoline.
But swaps trade for every product.
So, every piece of the scheme is a moving part.
For example:
different types of crude \rightarrow different yields.
or
different types of crude \rightarrow different qualities.
changes in structure of a refinery (new units) \rightarrow different yields.
The market mimics the refinery economics.
Futures contracts: crude, heating oil, gasoline.
But swaps trade for every product.
So, every piece of the scheme is a moving part.
For example:
different types of crude \rightarrow different yields.
or
different types of crude \rightarrow different qualities.
changes in structure of a refinery (new units) \rightarrow different yields.
different geographies \rightarrow different necessities.
The market mimics the refinery economics. Futures contracts: crude, heating oil, gasoline. But swaps trade for every product. So, every piece of the scheme is a moving part. For example:

different types of crude \rightarrow different yields.
or

different types of crude \rightarrow different qualities.
changes in structure of a refinery (new units) \rightarrow different yields.
different geographies \rightarrow different necessities.