Heavy-tailed GARCH Models: Pricing and Risk Management Applications in Power Markets

Shi-Jie Deng
Industrial and Systems Engineering
Georgia Institute of Technology

(Joint works with Jiang, Peng, et al.)
Agenda

• Background and motivations

• Quantile-based GARCH Models
 – Parameter inference
 – Applications
 • Electricity derivatives pricing
 • Risk management measures

• Semi-parametric Estimation of Confidence Intervals of Conditional Quantiles of GARCH Models
 – Normal approximation and data-tilting
 – Applications

• Conclusion
Background and Motivations

• Rapid developments of power markets starting in the mid-1990s
 – Power Exchange/ISO in California.
 – PJM, NY, NE power pools.

• Market setbacks since 2000
 – Fallen or financially distressed power merchants
 – Dropping liquidity in power exchange/OTC markets

• The nature of incompleteness in energy (power) markets
 – Almost non-storable underlying
 – Limited physical supply and inelastic demand
 – Tremendous price and quantity volatility (e.g., price spikes)
 – Limited ability in hedging quantity risks
Background and Motivations (con’t)

• Redesign of power markets
 – FERC Standard Market Design
 – Development of futures/contract markets

• Risk management needs
 – Independent power producers hedge their production.
 – Power marketers quantify, monitor and control trading risks in wholesale and retail markets.

• Trading, Asset valuation, and project selection and financing
 – Pricing and risk management tools to support trading
 – Evaluation of potential investment opportunities in power generation
 – Support for project financing
Implied Volatility of Call (Sept.) Options at Cinergy
(Inferred from Black-Scholes formula based on broker quotes for calls and forwards.)

Resource stack includes:
Hydro units;
Nuclear plants;
Coal units;
Natural gas units;
Misc.

Marginal Cost ($/MWh)

IMA Control & Pricing in Communication & Power Networks, 7-13 Mar. 2004
• More empirical observations: PJM log-price

• Monthly average
Literature on Energy Price Modeling and GARCH Modeling

• Energy commodity spot price models.
 – Schwartz (J.of Fin 1997)
 – Miltersen and Schwartz (JFQA 1998)
 – Hilliard and Reis (JFQA 1998)

• Electricity spot price models and electricity derivatives.
 – Kaminski (Risk Book 1997)
 – Barz and Johnson (1998)
 – Deng (PSERC 1998)
 – Mount and Ethier (PSERC 1998)
 – Deng, Sun and Meliopoulos (PSERC 2003)

• ARCH/GARCH modeling and option pricing.
 – Engle (Econometrica 1982), Bollerslev (J. Econ. 1986)
 – Nelson (Econometrica 1991)
 – Hall and Yao (Econometrica, to appear)
 – Duan (Math Fin. 1995), Heston and Nandi (RFS 2002)
Quantile-based GARCH Models
(Deng and Jiang, 2003)

- Exhibit heavy, flexible and asymmetric tail behaviors
- Enable maximum likelihood estimation (MLE)/quasi-MLE combined with quantile-based estimation
- Have explicit conditional quantile functions
- Allow efficient computation in pricing and risk management applications
 - Easy and fast simulation
Quantile GARCH Models

- Quantile GARCH(1,1)
 \[X_t = \sigma_t \cdot \varepsilon_t \]
 \[\sigma_t^2 = c + b \cdot X_{t-1}^2 + a \cdot \sigma_{t-1}^2 \]
 where
 \[\varepsilon_t \sim \text{Class I or Class II} \]

- Extension: GARCH type AR(1) process
 \[X_t = X_{t-1} + \kappa(\theta - X_{t-1}) + \sigma_t \cdot \varepsilon_t \]
 \[\sigma_t^2 = c + b \cdot X_{t-1}^2 + a \cdot \sigma_{t-1}^2 \]
 where
 \[\varepsilon_t \sim \text{Class I or Class II} \]
Quantile Class-I and II Distributions
Quantile Function and Quantile Modelling

• Definition: Suppose that $F(x)$ is a probability distribution function, then the quantile function of F is the generalized inverse

$$F^{-1}(x) = \inf\{y : F(y) \geq x\}$$

• Quantile modelling: Directly specify the quantile function of the distribution in which you are interested.

• The advantages of quantile modelling:
 - Fast sampling
 - Easy Q-Q plots
 - Easy probability calculation
 - Explicit Quantile function
Two classes of new distributions

The first Class $Q_I(\alpha, \beta, \delta, \mu)$ is defined by the following quantile function:

$$q(y; \alpha, \beta, \delta, \mu) = \delta \alpha \left\{ \log \frac{y^\beta}{1 - y^\beta} \right\}^{(\frac{1}{\alpha})} + \mu$$

where $\delta, \alpha, \beta \in \mathbb{R}_+, \mu \in \mathbb{R}$, and the superscript ’$(\alpha)$’ for $\alpha > 0$ represents the operation below.

$$x(\alpha) = \begin{cases}
 x^\alpha & \text{if } x > 0 \\
 0 & \text{if } x = 0 \\
 -(-x)^\alpha & \text{if } x < 0
\end{cases}$$

- μ: location
- δ: scaling parameter
- α: tail thickness
- β: tail balancing factor
Properties of Class I Distributions

• Explicit form of probability distribution function
 \[q^{-1}(x; \alpha, \beta, \delta, 0) = \left\{ \frac{1}{1 + e^{-\frac{1}{\delta}x(\alpha)}} \right\}^{\frac{1}{\beta}} \]

• Explicit form of probability density function
 \[p(x; \alpha, \beta, \delta, 0) = \frac{1}{\delta \beta} \cdot \frac{x(\alpha)}{x} \cdot e^{-\frac{1}{\delta}x(\alpha)} \cdot \frac{1}{(1 + e^{-\frac{1}{\delta}x(\alpha)})^{1 + \frac{1}{\beta}}}, \]

• Potentially different tail behaviors at two sides

 - Right side: as \(x \to +\infty \) the right tail is about \(C x^{\alpha-1} e^{-\frac{1}{\delta}x^{\alpha}} \).

 - Left side: as \(x \to -\infty \) the left tail is about \(C (-x)^{\alpha-1} e^{-\frac{1}{\delta \beta}(-x)^{\alpha}} \).
The Second Class: \(Q_{II}(\alpha_-, \alpha_+, \delta_-, \delta_+, \mu) \)

The quantile function of the second Class is

\[
q(y; \alpha_-, \alpha_+, \delta_-, \delta_+, \mu) = -\frac{1}{\alpha_-} (\log \frac{1}{y})^{\frac{1}{\alpha_-}} + \frac{1}{\alpha_+} (\log \frac{1}{1-y})^{\frac{1}{\alpha_+}} + \mu
\]

where \(\alpha_-, \alpha_+, \delta_-, \delta_+ \in \mathbb{R}_+, \mu \in \mathbb{R} \). We are mostly interested in the cases \(\alpha_- \leq 1, \alpha_+ \leq 1 \).

- \(\mu \): location

- \(\delta_+ / \delta_- \): scaling parameters at the right / left hand side.

- \(\alpha_+ / \alpha_- \): tail thickness parameters at the right / left hand side.

Remark: \(\alpha_- \) and \(\alpha_+ \) provide the flexibility for this class of distributions to have different tail thickness at the two sides.
Figure 1: Density plot of the first class
Figure 2: Density plot of the second class
Class-I Fit of PJM Daily Price Return

\[\alpha = 0.99245 \]
\[\beta = 0.92348 \]
\[\delta = 0.19064 \]
\[\mu = -0.027395 \]
Class-II Fit of PJM Daily Load

\[\alpha_{\text{left}} = 0.91657 \]
\[\alpha_{\text{right}} = 1.0422 \]
\[\delta_{\text{left}} = 0.048554 \]
\[\delta_{\text{right}} = 0.053146 \]
\[\mu = -0.020806 \]
A Two-step Estimation Scheme

• Step 1: Quasi-MLE for estimating GARCH coefficients
 – Hall and Yao (Econometrica, to appear)

\[
L_\nu(a, b, c) = \sum_{t=\nu}^{n} \left\{ \frac{X_t^2}{\tilde{\sigma}_t^2(a, b, c)} + \log \tilde{\sigma}_t^2(a, b, c) \right\},
\]

• Step 2: Quantile-based estimation for obtaining parameters for the innovation term.
Empirical Estimation

- MLE estimation of GARCH(1,1) coefficients:
 \[\alpha_0 = 0.0023; \alpha_1 = 0.0587; \beta = 0.9252. \]
- Q-Q Plot of the innovation term.
 - Daily electricity price: PJM Western Hub

\[\alpha = 0.92191 \]
\[\beta = 0.77793 \]
\[\delta = 0.56062 \]
\[\mu = -0.21724 \]
Empirical Estimation (con’t)

- Q-Q Plot of unconditional marginal distrib.
Application: Value Energy Contracts

- Energy (electricity) derivatives are complex financial instrument
 - Physical characteristics of underlying
 - Path-dependent and American-style (exercisable at any time)

- Examples:
 - Tolling agreements.
 - Independent power producers hedge operational risks.
 - Power merchants implement asset-light operations.
 - Fossil-fueled power producers hedge output risks.
 - Swing contracts
 - Gas storage contracts
Application: Pricing Methodology

• European-style financial contracts
 – Simulation

• American-style path-dependent financial contracts
 – Dynamic programming least-squares approximation:
 Longstaff and Schwartz (2001), Tsitsiklis and Van Roy (2001)
 – Simulation
Interval Estimation for the Conditional Quantile of Fat-tailed GARCH Models
(Chan, Deng, Peng, and Xia, 2003)

• One-step conditional quantile estimation of heavy-tailed GARCH models
• Characterization of confidence intervals for conditional quantiles
Model Specification

- Heavy-tailed GARCH Model

\[X_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = c + \sum_{i=1}^{p} b_i X_{t-i}^2 + \sum_{j=1}^{q} a_j \sigma_{t-j}^2, \]

- Heavy-tail in innovation

\[\epsilon_t \sim G(x) \quad \text{(cdf of } \epsilon_t) \]

\[1 - G(x) \sim c_1 x^{-\gamma}, \quad G(-x) \sim c_2 x^{-\gamma}, \quad \text{for } x \text{ large} \& \gamma > 2 \]

- 100\(\alpha\)% one step ahead conditional VaR

\[x_{\alpha,n} = \inf\{x : P(X_{n+1} \leq x|X_{n+1-k}, k \geq 1) \geq \alpha\}. \]
Estimation

• Likelihood function (quasi-MLE)

\[L_\nu(a, b, c) = \sum_{i=\nu}^{n} \left\{ \frac{X_t^2}{\tilde{\sigma}_t^2(a, b, c)} + \log \tilde{\sigma}_t^2(a, b, c) \right\}, \]

• Tail index

\[\hat{\gamma} = \left\{ \frac{1}{k} \sum_{i=1}^{k} \log \frac{\hat{\epsilon}_{m,m-i+1}}{\hat{\epsilon}_{m,m-k}} \right\}^{-1}, \]

where \(\hat{\epsilon}_t = X_t/\tilde{\sigma}_t(\hat{a}, \hat{b}, \hat{c}) \) and \(\hat{\epsilon}_{m,1} \leq \cdots \leq \hat{\epsilon}_{m,m} \) denote the order statistics of \(\hat{\epsilon}_\nu, \cdots, \hat{\epsilon}_n \)

• Estimator by method I:

\[\hat{x}_\alpha^0 = (1 - \alpha)^{-1/\hat{\gamma}} \left(\frac{k}{m} \right)^{1/\hat{\gamma}} \hat{\epsilon}_{m,m-k}, \]

\[\hat{x}_{\alpha,n} = \tilde{\sigma}_{n+1}(\hat{a}, \hat{b}, \hat{c}) \hat{x}_\alpha^0 \]
Theorem 1

• Suppose regularity conditions hold and

\[k = k(m) \to \infty, \frac{k}{m} \to 0, \sqrt{k} A(m/k) \to 0, \]

\[n^{-1} \lambda_n / A(m/k) \to 0, \log \left(\frac{k}{m(1 - \alpha)} \right) / \sqrt{k} \to 0 \]

as \(n \to \infty \). Then

\[\frac{\hat{\gamma} \sqrt{k}}{\log \left(\frac{k}{m(1 - \alpha)} \right)} \left\{ \frac{\hat{x}_{\alpha,n}}{x_{\alpha,n}} - 1 \right\} \xrightarrow{d} N(0, 1). \]
Confidence Intervals

- **Method I: Normal approximation method.**
 - Based on Theorem 1, a confidence interval with level β for $x_{\alpha,n}$ is

 \[
 I^*_\beta = (\hat{x}_{\alpha,n}(1 + \frac{z_\beta}{\sqrt{k}}|\log \frac{k}{m(1 - \alpha)}|)^{-1}, \hat{x}_{\alpha,n}(1 - \frac{z_\beta}{\sqrt{k}}|\log \frac{k}{m(1 - \alpha)}|)^{-1}),
 \]

 with z_β satisfies $P(|N(0,1)| \leq z_\beta) = \beta$.
Data Sets and Their Autocorrelation

- Daily electricity price return and load change in PJM

![Log returns of PJM Real-time LMP](image1)

![Daily adjusted load](image2)
Data Sets and Their Autocorrelation

- 1-Month PJM forward price vs. SP 500

![Log returns of PJM 1-month forward price](image1)

![Log Returns of SP500](image2)
Comparison with Gaussian GARCH

<table>
<thead>
<tr>
<th></th>
<th>Method I</th>
<th>Conditional Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>k=30, alpha=0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>daily load</td>
<td>0.030</td>
<td>0.024</td>
</tr>
<tr>
<td>1-m PJM forward</td>
<td>0.009</td>
<td>0.014</td>
</tr>
<tr>
<td>3-m PJM forward</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>PJM real time LMP</td>
<td>0.018</td>
<td>0.030</td>
</tr>
<tr>
<td>SP500</td>
<td>0.014</td>
<td>0.017</td>
</tr>
<tr>
<td>k=60, alpha=0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>daily load</td>
<td>0.024</td>
<td>0.024</td>
</tr>
<tr>
<td>1-m PJM forward</td>
<td>0.009</td>
<td>0.014</td>
</tr>
<tr>
<td>3-m PJM forward</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>PJM real time LMP</td>
<td>0.016</td>
<td>0.030</td>
</tr>
<tr>
<td>SP500</td>
<td>0.014</td>
<td>0.017</td>
</tr>
<tr>
<td>k=100, alpha=0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>daily load</td>
<td>0.017</td>
<td>0.024</td>
</tr>
<tr>
<td>1-m PJM forward</td>
<td>0.005</td>
<td>0.014</td>
</tr>
<tr>
<td>3-m PJM forward</td>
<td>0.000</td>
<td>0.005</td>
</tr>
<tr>
<td>PJM real time LMP</td>
<td>0.016</td>
<td>0.030</td>
</tr>
<tr>
<td>SP500</td>
<td>0.015</td>
<td>0.017</td>
</tr>
</tbody>
</table>
Confidence Band of CVaR
Conclusion

• Methodology
 – Non-Gaussian fat-tailed GARCH type models based on quantile distributions
 – A two-step procedure for parameter inference: quasi-MLE and quantile-based estimation
 – A one-step semi-nonparametric estimation scheme of high/low quantiles and their confidence intervals

• Applications
 – Modeling financial time series data as well as energy (e.g., electricity price and load) data
 – Financial derivatives/contracts pricing
 – Risk management measures (e.g., CVaR)
Future Work

• More on Quantile-based GARCH models.
 – Parameter inference
 – Multivariate extensions

• Risk-neutralized processes corresponding to the quantile-based GARCH models.

• Efficient simulation and dynamic programming algorithms for asset pricing problems.