Max-Plus Decomposition of Supermartingale
Application to Portfolio Insurance

Nicole El Karoui
CMAP, Ecole Polytechnique, Paris

joint work with Asma Meziou

IMA Workshop April 2004
elkaroui@cmapx.polytechnique.fr
Motivations

Insurance Portfolio

- The problem was first motivated by portfolio insurance which is designed to give the investor the ability to limit downside risk while allowing some participation in upside markets.
- The aim of the portfolio manager is to keep portfolio value from falling below a minimum wealth, commonly termed the floor at any time.
- Classical optimization problems generally try to maximize an expected utility criterion, related to individual preferences, through concave increasing utility function.

Related works

Martingale optimization w.r. to convex order

- For power utility functions, the problem may be transformed into an optimization program for martingales with the same initial value subjected to the constraint to dominate a floor X.
- The optimality has to hold for any utility functions.
- This last point is related to the convex order.

Max-Plus decomposition of supermartingale

- The solution is given through the decomposition of the Snell envelope Z (American option) of the floor in terms of an adapted increasing process Λ_t and martingale M such that $M_t = \sup(Z_t, \Lambda_t)$.
- $\Lambda_t = \sup_{0 \leq u \leq t} L_u$, $L_u \in [-\infty, +\infty]$.
- Study strongly related to the work of H.Foellmer and P.Bank.

Outline of the presentation

These different steps in the reverse order.

April 2004
Assumptions

- Fix some horizon date \(T \) (finite or not).
- The uncertainty is modelled by a some filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\), satisfying the usual conditions of right-continuity and augmentation by \(\mathbb{P} \)-negligible sets.
- All processes \(X \) that we consider are adapted, right continuous with left limits \((\text{CadLag})\), and of class \((D)\),

 the family of random variables \((X(S), S \leq T, \ S \in T)\) where \(T \) is
 the family of stopping times less than \(T \) is uniformly integrable, or equivalently dominated by an u.i.martingale.
- If the process \(X \) has not accessible jumps, it is said to be quasi-left continuous. It is equivalent to said that \(\mathbb{E}(X_{S_n}) \to \mathbb{E}(X_S) \) if the sequence of stopping times \(S_n \to S \).
Supermartingale Decompositions

Let Z be a supermartingale satisfying the previous assumptions

- **Doob-Meyer decomposition**
 There exist a previsible non-decreasing process A_t ($A_0 = 0$) and a u.i. martingale N^{DM}, such that $Z_t = N_t^{DM} - A_t$ or equivalently
 \[N_t^{DM} = Z_t + A_t. \]
 If Z is quasi-left continuous, A is continuous.

- **Multiplicative Decomposition of positive surmartingale**
 There exist a previsible non-decreasing process B_t ($B_0 = 1$) and a u.i. martingale N^{multi}, such that $N_t^{multi} = Z_t \times B_t$

- **Max-Plus decomposition**
 There exist a non-decreasing adapted process Λ_t ($\Lambda_{-0} = -\infty$) and a u.i. martingale M, such that $M_t = Z_t \vee \Lambda_t$.
 - In all these decompositions, the martingale is unique, with the additional assumption in the Max-Plus representation that Λ only increases if $M = Z$. Λ may be maximally chosed.
Max-plus algebra

Definition: The “exotic” algebraic structure \mathbb{R}_{max}

- The symbol \mathbb{R}_{max} denotes the set $\mathbb{R} \cup \{-\infty\}$ with \max and $+$ as the two binary operations \oplus and \otimes, respectively.
- We call this structure the **max-plus algebra**. Sometimes this is also called an ordered group.
- We remark that the natural order on \mathbb{R}_{max} may be defined using the \oplus operation $a \leq b$ if $a \oplus b = b$.

Theorem: The algebraic structure \mathbb{R}_{max} is an idempotent commutative **semifield**.

- the operation \oplus is associative, commutative and has a zero element $\epsilon = -\infty$. As $a \otimes a = a$, \mathbb{R}_{max} is idempotent.
- the operation \otimes defines a commutative group on $\mathbb{R}_{\text{max}} - \{-\infty\}$, it is distributive with respect to \oplus and its identity element $e = 0$ satisfies $\epsilon \otimes e = e \otimes e = \epsilon$.

April 2004
Why Max-Plus ?

Comparison R_{max} and R

\Rightarrow \oplus is idempotent in place of invertible for $+$
\Rightarrow there are no zero divisors in R_{max} $(a \oplus b = -\infty \Rightarrow a = -\infty \text{ or } b = -\infty)$
\Rightarrow Algebraic computations are efficient

A new old object

This idempotent semiring has been reinvented many times these late fifties

\star discret event system theory
\star graph theory (path algebra)
\star performance evaluation of manufacturing systems, Markov decision theory
\star Hamilton-Jacobi theory (McEneaney, Fleming...)
\star Asymptotic analysis, large deviations...(Quadrat, Akian,...

April 2004
Uniqueness in the Max-Plus decomposition

Let Z be a supermartingale satisfying the previous assumptions, and suppose

1. there exist two non-decreasing adapted process Λ^1_t and Λ^2_t ($\Lambda^i_{-0} = -\infty$) and two u.i. martingale M^1 and M^2 such that $M^i_T = \Lambda^i_T$ and $M^i_0 = Z_0$
2. Λ^i only increases at times when the martingale M^i hits the supermartingale Z
3. (M^i, Λ^i) are two (max-+) decompositions of Z ($\oplus = \vee = \max$)

$$M^1_t = Z_t \oplus \Lambda^1_t, \quad M^2_t = Z_t \oplus \Lambda^2_t.$$

Then, M^1 and M^2 are indistinguishable martingales. There exists a maximal increasing process Λ.

Remark Let us observe that the equality $M_t = Z_t \oplus \Lambda^1_t = Z_t \oplus \Lambda^2_t$ does not imply that $\Lambda^1_t = \Lambda^2_t$, due to the non uniqueness of the linear equation $a \oplus x = b$ in the max-plus algebra. In particular, $\Lambda^1_t \oplus \Lambda^2_t$ is also solution.

April 2004
Sketch of the proof when Z and Λ are bounded by below

Recall the assumption $\int_0^T |M_s^i - Z_s| d\Lambda_s^i = 0$. Then, for any regular convex function (C^2 with linear growth) g, $g(0) = 0$.

$g(M^1_T - M^2_T) \leq g'(M^1_T - M^2_T)(M^1_T - M^2_T) = g'(\Lambda^1_T - \Lambda^2_T)(M^1_T - M^2_T)$

$\mathbb{E}(g(M^1_T - M^2_T)) \leq$

$\mathbb{E}(g'(\Lambda^1_0 - \Lambda^2_0)(M^1_T - M^2_T)) + \mathbb{E}((M^1_T - M^2_T) \int_0^T g''(\Lambda^1_t - \Lambda^2_t)(d\Lambda^1_t - \Lambda^2_t))$

$= \mathbb{E} \left(\int_0^T (M^1_t - M^2_t)g''(\Lambda^1_t - \Lambda^2_t)(d\Lambda^1_t - \Lambda^2_t) \right)$

$= \mathbb{E} \left(\int_0^T (Z_t - M^2_t)g''(\Lambda^1_t - \Lambda^2_t)d\Lambda^1_t - \int_0^T (M^1_t - Z_t)g''(\Lambda^1_t - \Lambda^2_t)d\Lambda^2_t \right) \leq 0$

by the flat condition and the convexity of g.

In particular, $\mathbb{E}(g(M^1_T - M^2_T)) = 0$ for $g(x) = x^+$
Remark Let $Z = N - A$ the Doob Meyer decomposition of Z. By Itô’s formula for $Z \lor \Lambda$, and the martingale property (in the continuous case)

$$dM_t = 1_{\{Z_t > \Lambda_t\}}(dN_t^{DM} - dA_t) + 1_{\{Z_t \leq \Lambda_t\}}d\Lambda_t + \frac{1}{2}dL_t^{loc}$$

$$1_{\{Z_t = \Lambda_t\}}d\Lambda_t + \frac{1}{2}dL_t^{loc} = 0, \quad 1_{\{Z_t > \Lambda_t\}}dA_t = 0.$$

The flat-off condition on Λ is in fact a necessary condition.
Existence via A Convex family of supermartingales

Quite similar to the construction given in papers of NEK-Bank, NEK-Foellmer.

Z is to be assumed left quasi-continuous

The supermartingale convex family

- Introduce the Snell envelope of the convex family of processes \((Z_t \vee m)_{t \geq 0}\) indexed by a real parameter \(m\) and defined by

\[
Z_t(m) = \operatorname{esssup}_{\tau \in T_{t,T}} \mathbb{E} (Z_\tau \vee m | \mathcal{F}_t),
\]

- Given Snell envelope properties, \(Z_t(m)\) is the smallest Cadlag supermartingale dominating \(Z \vee m\), and \(T_t(m)\) is the smallest of the optimal stopping times

\[
T_t(m) = \inf \{s \in [t, T], Z_s(m) = Z_s \vee m\}.
\]

- Each martingale dominating \(Z_t \vee m\) necessarily dominates \(Z_t(m)\).

- If \((Z_t)_{t \geq 0}\) is a martingale, then \((Z_t \vee m)_{t \geq 0}\) is a sub-martingale and

\[
Z_t(m) = \mathbb{E} (Z_T \vee m | \mathcal{F}_t).
\]
Convex Analysis

Properties

1. For every $t \in [0, T]$, $m \mapsto Z_t(m)$ is convex and non-decreasing.

2. $m \mapsto Z_t(m) - m$ is non-negative, convex and non-increasing, and
 $(Z_t(m) - m)_{t \geq 0}$ is the Snell envelope of $(Z_t - m)^+_{t \geq 0}$

3. The family of optimal stopping times $T_t(m)$ is a non-decreasing,
 left-continuous

 \[
 Z_t(m) = \mathbb{E} \left(Z_{T_t(m)} \lor m \mid \mathcal{F}_t \right).
 \]

Main theorem

By the envelop theorem, $m \mapsto Z_t(m)$ has left-hand derivatives given by

\[
\frac{\partial^{-}}{\partial m} Z_t(m) = \mathbb{E} \left(\mathbf{1}_{\{m > Z_{T_t(m)}\}} \mid \mathcal{F}_t \right) = \mathbb{E} \left(\mathbf{1}_{\{T_t(m) = T\} \cap \{m > Z_T\}} \mid \mathcal{F}_t \right).
\]

since $m > Z_{T_t(m)} \Leftrightarrow T_t(m) = T$ and $m > X_T$.

April 2004
Partial representation result

Theorem:
Define for \(\alpha \in (t, T] \), the left-continuous inverse of \(T_t(\cdot) \) w.r.t. \(m \) by

\[
L_t^*(\alpha) := \sup\{m; T_t(m) < \alpha\} \iff \{L_t^*(\alpha) \leq m\} = \{T_t(m) \geq \alpha\}
\]

Put \(\Lambda_{t,T} = L_t^*(T) \vee Z_T \), then

\[
Z_t(m) = \mathbb{E} (\Lambda_{t,T} \vee m|\mathcal{F}_t), \quad Z_t = Z_t(-\infty) = \mathbb{E} (\Lambda_{t,T}|\mathcal{F}_t)
\]

Proof: That is because for a.e. \(m \)

\[
\frac{\partial}{\partial m} Z_t(m) = \mathbb{E} \left(1_{L_{t,T}^* \leq m} | \mathcal{F}_t \right).
\]

Since \(\lim_{m \to +\infty} Z_t(m) - m = 0 \).

\[
\Rightarrow Z_t(m) - m = \int_m^{+\infty} -\frac{\partial}{\partial \alpha} (Z_t(\alpha) - \alpha) \, d\alpha = \int_m^{+\infty} 1_{L_{t,T}^* \geq \alpha} \, d\alpha
\]
Max-plus density of $\Lambda_{t,T}$

Max-plus density

Let L_t be $L_t := \sup\{m, Z_t(m) = Z_t\}$ the right-point of the closed interval
\{m \in R|Z_t(m) = Z_t\}, with the convention $L_T := Z_T$.

The left-inverse of $T_t(m)$ is also given by

$$L_t^*(\alpha) = \sup_{t \leq s \leq \alpha} L_s = \bigoplus_t L_s \quad \Lambda_{t,T} = \sup_{t \leq s \leq T} L_s = \bigoplus_t L_s$$

Max-plus decomposition

Since $\Lambda_{0,t} \bigoplus \Lambda_{t,T} = \Lambda_{0,T}$, we obtain the Z max-plus decomposition via the increasing process $\Lambda_{0,t}$.

$$Z_t = \mathbb{E}(\Lambda_{t,T}|\mathcal{F}_t) = \mathbb{E}(\sup_{t \leq s \leq T} L_s|\mathcal{F}_t), \quad M_t^\boxplus = \mathbb{E}(\Lambda_{0,T}|\mathcal{F}_t) = Z_t \lor \Lambda_{0,t}$$

Decomposition of the Snell Envelope of process X

$L_t := \sup\{m, Z_t(m) = Z_t\}$ and $\Lambda_{0,t}$ only increases on $Z = M^\boxplus$
Example

Martingale case

$L_t := \sup\{m, \mathbb{E}(M_T \vee m|\mathcal{F}_t) = M_t = \mathbb{E}(M_T|\mathcal{F}_t)\}$

So, $M_T \vee m = M_T$, $\mathcal{F}_t - \mathbb{P}$, a.s., and L_t is the conditionnal ess inf of M_T. In this case L_t is an non decreasing process.

Monotone case

Suppose Z to be a decreasing process. The $L_t = Z_0$.
Stochastic order and Max-plus decomposition
Stochastic orders

Definition:
Let X_1 and X_2 be two random variables. Then we say that X_1 is \textbf{less variable} than X_2 in the \textbf{convex stochastic order}, and we write $X_1 \preceq_{cx} X_2$ if for all \textbf{convex} functions g (if that makes sense)

\[\mathbb{E}[g(X_1)] \leq \mathbb{E}[g(X_2)] \]

- If the inequality holds only for all \textbf{decreasing} convex functions, then X_1 is said to be smaller than X_2 in the \textbf{decreasing convex order} (denoted by $X_1 \preceq_{dcx} X_2$).

\[\Rightarrow \quad X_1 \preceq_{cx} X_2 \Rightarrow \mathbb{E}(X_1) = \mathbb{E}(X_2) \] provided the expectations exist and $\text{var}(X_1) \leq \text{var}(X_2)$, whenever $\text{var}(X_2)$ is finite.

\[\Rightarrow \quad X_1 \preceq_{dcx} X_2 \Rightarrow \mathbb{E}(X_1) \geq \mathbb{E}(X_2) \] provided the expectations exist.
Formulation of the martingale optimization problem

X-Envelope de Snell

In that follows, the previous results are applied to the Snell envelope Z^X of X.

The optimization problem

Set $\mathcal{M}(x) = \left\{ (M_t)_{t \geq 0} \text{ u.i.martingale} | M_0 = x \text{ and } M_t \geq X_t \ \forall t \in [0, T] \right\}$

- We aim at finding a martingale (M^*_t) in $\mathcal{M}(x)$ such that for all martingales (M_t) in $\mathcal{M}(x)$

$$M^*_T \leq_{cx} M_T$$

- The initial value of any martingale dominating X must be at least equal to the one of the Snell envelope $Z^X_0 = \sup_{\tau \in \mathcal{T}_0,T} \mathbb{E}[X_\tau]$,

April 2004
Necessary and Sufficient condition of optimality

Theorem

• Let us consider a martingale \((M_t)_{t \geq 0}^*\) in \(\mathcal{M}(Z_0^X)\), satisfying the terminal condition \(M_T^* = K_T\), where \((K_t)_{t \geq 0}\) is an adapted increasing process, which only increases when the martingale hits the floor \(X\).

⇒ Then \((M_t^*)_{t \geq 0}\) is the “smallest martingale” in \(\mathcal{M}(Z_0^X)\) dominating the floor, with respect to the convex stochastic ordering.

⇒ Suppose \(x = Z_0^X\). The martingale \(M^\oplus\) of the max-plus \(Z\)-decomposition is an optimale solution.

• In particular, \(M_T^\oplus\) is less variable than \(M_T^DM\) where \(M^DM \in \mathcal{M}(Z_0^X)\) is the martingale of the Doob’s decomposition of \(Z\).

• If \(x \geq Z_0^X\), the same results holds, in terms of increasing process \(\Lambda_{0,T} \vee x\).
Proof

- Let $(M_t)_{t \geq 0}$ be an arbitrary element of $\mathcal{M}(x)$ and g be a real convex function, for which $\mathbb{E}[g(M_T)]$ and $\mathbb{E}[g(M_T^*)]$ are well defined.

\[g \text{ convex } \Rightarrow g(M_T) - g(M_T^*) \geq g'(M_T^*)(M_T - M_T^*) \Rightarrow \]
\[\mathbb{E}[g(M_T)] - \mathbb{E}[g(M_T^*)] \geq \mathbb{E}[g'(M_T^*)(M_T - M_T^*)]. \]

- Remark that $(g'(K_t), t \geq 0)$ is a nondecreasing process and that $g'(K_T) = g'(K_0) + \int_0^T dg'(K_t)$.

\[\Rightarrow \quad \mathbb{E}[g'(M_T^*)(M_T - M_T^*)] = \mathbb{E}[g'(K_T^*)(M_T - M_T^*)] \]
\[= \mathbb{E}[g'(K_0)(M_T - M_T^*)] + \mathbb{E}\left[\int_0^T (M_T - M_T^*) \ dg'(K_t) \right]. \]

\[\Rightarrow \quad \mathbb{E}[g'(K_0)(M_T - M_T^*)] = g'(K_0)(M_0 - M_0^*) = 0 \]

\[\Rightarrow \quad \mathbb{E}(\int_0^T (M_T - M_T^*) \ dg'(K_t)) = \mathbb{E}(\int_0^T (M_t - M_t^*) \ dg'(K_t)) \]
\[= \mathbb{E}\left[\int_0^T (M_t - X_t) \ dg'(K_t) \right] \geq 0 \]
Portfolio Insurance with American Constraint
Portfolio management with guarantee

We are concerned with the portfolio problem where the goal of the manager is

to exceed the performance of a given benchmark process at any time during the life of the fund.

Example: A fund guarantees

1. a part of an index performance, I_t
2. at any time the investor could receive 90% of his initial investment, without capitalization, that is

$$V_t \geq G_t = \sup(\alpha V_0, \beta \frac{I_t}{I_0})$$

Similar problems appear when the manager is submitted to legal constraints.

The guarantee may be called the floor.

April 2004
Investment funds strategies

In practice, the first step in the management of investment fund or pension fund is to define a **Strategic allocation**

According to the **investor’s risk aversion**, the manager decides the proportion of Indexs, securities, coupon bonds, in a well-diversified portfolio with present value S_t.

In mathematical framework S_t is the **optimal portfolio** for a non constrained problem associated with given utility function

Tactic Allocation

or How to manage the **strategic portfolio**(underlying) in such a way that they are

- high performance of the fund (optimality?)
- no large **losses**

This last condition may be required by the **regulator** as a legal constraint

As we would see, by doing that **the manager has an optimal behaviour**.

April 2004
Links with the classical optimization problem

Let us introduce a financial market, where interest rate and risk premium are given through the state price density H_t, in such way that for any self-financing portfolio V_t, $H_t V_t$ is a local martingale.

- Consider the following “non-constrained” problem:

$$\max_{V_t} \mathbb{E}\{u(V_T), (V_t H_t)_{t \geq 0} \text{ martingale and } V_0 = x\}$$

⇒ $(V^*_t x)_{t \geq 0}$ is optimal iff $\mathbb{E}[u'(V^*_T x)(V_T x - V^*_T x)] = 0$, for any self-financing portfolio $(V^*_t x)_{t \geq 0}$, where x stands for the initial capital.

⇒ In a complete market $u'(V^*_T x) = \lambda H_T$, where λ is a Lagrange multiplier, and H the state prices process.

⇒ For **CRRA utility function** : $u(x) = \frac{x^{1-\gamma}}{1-\gamma}$, for all $x \in R^+$, with $\gamma \in]0, 1[$, $V^*_T x = x S_T$, where $S_T = V^*_T 1$ denotes the optimal portfolio with initial capital $S_0 = 1$.

April 2004
Change of numeraire and martingale problem

- **Constrained** decision problem: $\max_{V_t} \mathbb{E}(u(V_T))$, subject to $(V_t)_{t \geq 0}$ self-financing portfolio, $V_t \geq G_t \ \forall t \in [0, T]$ and $V_0 = x$.

\Rightarrow Let $M_t^S = H_tS_t$ be the S-martingale and define Q^S the risk-neutral probability w.r.to S

$$\frac{dQ^S}{d\mathbb{P}} = \frac{M_T^S}{M_0^S} = H_TS_T.$$

- In the case of a **CRRA utility function**, since S is the optimal portfolio, $(S_T)^{-\gamma} = \lambda H_T$

$$\mathbb{E}(u(V_T)) = \frac{1}{1 - \gamma} \mathbb{E}(S_T^{1-\gamma}(\frac{V_T}{S_T})^{1-\gamma}) = \frac{1}{1 - \gamma} \lambda \mathbb{E}(H_T S_T (\frac{V_T}{S_T})^{1-\gamma})$$

$$= \lambda \mathbb{E}_{Q^S}(u(V_T^S)).$$

- **Under Q^S,** $(V_t^S = \frac{V_t}{S_t})_{t \geq 0}$ is a martingale and the problem becomes:

$$\max_{V_t^S} \left\{ \mathbb{E}_{Q^S}(u(V_T^S)), \text{subject to } V_t^S \geq \frac{G_t}{S_t} = X_t \text{ and } V_0^S \text{ given} \right\}.$$
Characterization of the optimal solution

Suppose \(x = Z_0 \)

The solution is given by the martingale of the max-plus decomposition of the Snell envelope \(Z^X \) of \(X \) in the \(Q_S \)-market s.t.

\[
Z^X_t(m) = \text{esssup}_{\tau \in T_t, T} \mathbb{E}^{Q_S} [(Z^X_\tau \vee m) | \mathcal{F}_t] = \text{esssup}_{\tau \in T_t, T} \mathbb{E}^{Q_S} [(X_\tau \vee m) | \mathcal{F}_t] .
\]

\(L^S_t = \sup\{m, Z^X_t(m) = Z^X_t = X_t\} \) is the boundary in strike of the \(Q_S \)-American Call option with pay-off \((X_t - m)^+ \).

Then, the optimal \(Q_S \)-martingale is

\[
M^{S,*}_t = \mathbb{E}^{Q_S} [\Lambda^S_{0,T} | \mathcal{F}_t] = \mathbb{E}^{Q_S} [\Lambda^S_{0,t} \vee \Lambda^S_{t,T} | \mathcal{F}_t] ,
\]

if \(\Lambda^S_{0,t} = \sup_{0 < u \leq t} L^S_u \)
American Option in BS Framework

We assume the underlying to be a geometrical Brownian motion. The American Put with strike K is a function, $U^a(t,x)$ satisfying the variational inequality

$$\partial_t U^a + \frac{1}{2}\sigma^2 x^2 \partial^2_{xx} U^a + rx \partial_x U^a - rU^a = 0$$

on the continuation region \{ $x > b(t)$ \} = \{ $U^a(t,x) > K - x$ \} ($b(t)$ is the exercise boundary) with the smooth-fit condition at the boundary $\partial_x U^a(t,b(t)) = -1$.

Then, for $S_t^x = xS_t$, $U^a(t,xS_t) = \text{esssup}_{U \geq t} \mathbb{E}(e^{-r(U-t)}(K - xS_U)^+) | \mathcal{F}_t)$

By change of numeraire, under the probability \mathbb{Q}_{S_t}

$$\frac{U^a(t,xS_t)}{S_t} = C^a(t,KS_t^{-1},x) = \text{esssup}_{U \geq t} \mathbb{E}_{Q_S}(KS_U^{-1} - x)^+ | \mathcal{F}_t)$$
Closed form of the American Call option

Using previous notation

\[L^S_t = \sup\{x, C^a(t, KS_t^{-1}, x) = (KS_t^{-1} - x)^+\} = b(t)/S_t \]
\[\Lambda^S_{t,s} = \sup_{t \leq u \leq s} \frac{b(u)}{S_u} \]

- The strategy \(M^{S,*}_t = \Lambda^S_{0,t} + C^a(t, KS_t^{-1}, \Lambda^S_{0,t}) \geq KS_t^{-1} \) is the optimal \(Q_S \) self-financing martingale strategy dominating \(X_t = KS_t^{-1} \) with terminal value

\[M^{S,*}_T = (K/S_T) \lor \sup_{0 \leq u \leq T} \left(\frac{b(u)}{S_u} \right) \]

- The price of the American Call option is given by

\[C^a(t, KS_t^{-1}, x) = \mathbb{E}_{Q_S}(KS_T^{-1} - x \lor \Lambda^S_{t,T})^+ | \mathcal{F}_t) \]