Endogenous Risk Aversion and Ockham’s Razor

Spring 2004 Road Show

Michael Stutzer

Professor of Finance and Director, Burridge Center for Securities Analysis and Valuation
University of Colorado
Closely Related Publications

2. Pham, "A Large Deviations Approach to Optimal Long Term Investment", Finance and Stochastics, 2003
 | Derived Optimal Dynamic Portfolios

5. Dembo, Deuschel, and Dürr, "Large Portfolio Losses", Fin.& Sto., 2004
Samuelson's (1963) Friendly Wager:

BET DISPLAYED HERE

\[E(W_1) = W_0 + 50 \quad \sqrt{Var[W_1]} = 150 \]
\[Prob[W_1 < W_0] = 50\% \]

Samuelson's *Friend Declined This, But Was Willing to Accept* \(T = 100 \) *Such Bets:*

\[E(W_{100}) = W_0 + 5000 \quad \sqrt{Var[W_{100}]} = 1500 \]
\[Prob[W_{100} < W_0] = 0.04\% \]

Samuelson Challenged the Logic of *This* Reply:

(i) Shortfall Probability-Based Decision Rules Might Be Intransitive.
(ii) When \(T \) is Large, Losses Are Indeed Improbable, But Could Still Be Large.

(iii) \(E[U(W_1)] < U(W_0) \quad \forall W_0 \Rightarrow \]
\[E[U(W_T)] < U(W_0) \]
Rabin Calibration Theorem: (Econometrica, 2000)

If Friend Had Used $E[U(W_1)]$, He Would Also Have Had to Reject:

\begin{equation}
E[W_1] = W_0 + 9900 \quad \sqrt{Var[W_1]} = 10100
\end{equation}

\begin{equation}
Prob[W_1 < W_0 - 200] = 0 !
\end{equation}

Rabin and Thaler's (2001) Conclusions:

(i) Friend Probably Would Have Accepted This.
(ii) No Repeated Bet; Large Loss is Impossible.
(iii) Thus, Friend Didn't Use any $E[U(W_1)]$.

Data sets dominated by smaller-scale investment opportunities are likely to yield much higher estimates of risk aversion than data sets dominated by larger-scale investment opportunities. Indeed, the correct conclusion for economists to draw, both from thought experiments and from actual data, is that people do not display a consistent coefficient of risk aversion, so it is a waste of time to try to measure it."

I Will Now Derive a Repeated Betting/Investment Criterion, That Is Not Subject to This Critique.
Specifically, I Will Argue That:

(i) Theoretical and empirical researchers' typical assumption of Power (CRRA) Utility implies even more paradoxical repeated betting/investment behavior.

(ii) Contrary to Samuelson's opinion, there is a useful probabilistic alternative to expected utility. It is based on maximizing the probability of outperforming a benchmark that the agent wants to exceed.

(iii) The Gärtner-Ellis Large Deviations Theorem is used to show that this is equivalent to using endogenous, policy-dependent coefficients of risk aversion, in accord with at least part of Rabin and Thaler's quoted claim.
Consider Thorp/Ziemba "Blackjack" Wager:

BET DISPLAYED HERE

Expected CRRA Utility \(U(W_T) = -W_T^{-\theta} \):

\[
E[U(W_T)] = E\left[U(W_0 \prod_{t=1}^{T} R_{pt})\right] \\
= E\left[-(W_0 \prod_{t=1}^{T} R_{pt})^{-\theta}\right] \\
= -W_0^{-\theta} \prod_{t=1}^{T} E\left[R_{pt}^{-\theta}\right] \\
= -W_0^{-\theta} \left(\pi (1 + p)^{-\theta} + (1 - \pi)(1 - p)^{-\theta}\right)^T
\]

Maximum acceptable CRRA bet \(\bar{p} \) solves:

\[\pi (1 + \bar{p})^{-\theta} + (1 - \pi)(1 - \bar{p})^{-\theta} = 1\]

while **FONC for optimal CRRA bet** \(p_\theta \) solves:

\[\log\left(\frac{1+p_\theta}{1-p_\theta}\right) = \frac{1}{1+\theta} \log\left(\frac{\pi}{1-\pi}\right)\]

INDEPENDENT OF \(T \) !!!
Numerical Example:

Prob[Win] ≡ π = 60%

<table>
<thead>
<tr>
<th>CRRA 1 + θ</th>
<th>\bar{p} %</th>
<th>p_θ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
<td>4.1</td>
</tr>
<tr>
<td>3</td>
<td>13.4</td>
<td>6.7</td>
</tr>
<tr>
<td>2</td>
<td>19.7</td>
<td>10.1</td>
</tr>
<tr>
<td>1 (Log)</td>
<td>38.9</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 1: CRRA maximum acceptable (\bar{p}) and expected utility maximizing (p_θ) bets when the probability of winning is π = 60%, i.e. the betting edge is 20% and the odds are 3:2.

{ I will argue that an agent wanting wealth to grow by at least 1% per bet should bet $p = 14.1\%$. After $T = 1000$ bets, there is 97% probability that cumulative ROR > 2, 200, 000%.

{ But it would be rejected by a CRRA bettor whose CRRA > 2.87, as would even better $T > 1000$ bets.
Risk Aversion Parameter Measure

Barsky, et.al. (QJE, 1997) Questionnaire:

Suppose that you are the only income earner in the family, and you have a good job guaranteed to give you your current (family) income for life. You are given the opportunity to take a new job, with a 50-50 chance it will double your current income, and a 50-50 chance that it will cut your income by 20 percent. Would you take the new job?

\{ If \textit{\text NO"}, CRRA $1 + \theta > 3.76$.

\{ 2 out of 3 Answer \textit{\text No"}.

Hence Range is $[3.76, +\infty]$

Barsky, et.al. Guessed Average is Over 10 !!

\{ Player Wouldn't Bet Any $p > 4\%$!
Underperformance Probabilities

\[R_{pt} = 1 + r_{pt}; \text{ the (random) gross return at } t. \]
\[W_T = W_0 \prod_{t=1}^{T} R_{pt} \equiv W_0 \left[e^{\log R_p} \right]^T, \text{ where } \log R_p = \frac{1}{T} \sum_{t=1}^{T} \log R_{pt} \]
is the cumulative growth rate up to \(T \).

A comparison benchmark wealth path is:
\[W_0 [e^{\log r}]^T = W_0 r^T, \text{ growing at constant gross rate } r, \]
e.g. \(\log r = 1\% \). Could also be a benchmark portfolio.

Here is \(\text{Prob} \left[W_T \leq W_0 r^T \right] \equiv \text{Prob} \left[\log R_p \leq 1\% \right]: \)

FIGURE DISPLAYED HERE
Maximum Outperformance Probability

(i) Only reject \(p \) that don't make:
\[
Prob \left[W_T \leq W_{0rT} \right] \to 0 \text{ as } T \to \infty.
\]

(ii) Rank each \(p \) by size of its probability curve's Decay Rate to 0, denoted \(I_p(\log r) \):

\[
I_p(\log r) \equiv \max_{\theta} - \lim_{T \to \infty} \frac{1}{T} \log E \left[e^{-\theta \sum_{t=1}^{T}(\log R_{pt} - \log r)} \right]
\]

\[
\arg \max_{p} I_p(\log r) \equiv \arg \max_{p} \max_{\theta > 0} \lim_{T \to \infty} - \frac{1}{T} \log E \left[\left(\frac{W_T}{W_{0rT}} \right)^{-\theta} \right]
\]

\[
\equiv \arg \max_{p} \lim_{T \to \infty} - \frac{1}{T} \log E \left[\left(\frac{W_T}{W_{0rT}} \right)^{-\theta(p)} \right] \quad (1)
\]

\[
\text{IID} \quad \arg \max_{p} \max_{\theta > 0} - \log E \left[\left(\frac{R_p}{r} \right)^{-\theta} \right]
\]

\[
\equiv \arg \max_{p} \max_{\theta > 0} E \left[- \left(\frac{R_p}{r} \right)^{-\theta} \right] \quad (2)
\]

\[
\equiv \arg \max_{p} E \left[- \left(\frac{R_p}{r} \right)^{-\theta(p)} \right] \quad (3)
\]

In the example:

\[
E \left[- \left(\frac{R_p}{r} \right)^{-\theta} \right] = - \left[0.6 \left(\frac{1 + p}{e^{0.01}} \right)^{-\theta} + 0.4 \left(\frac{1 - p}{e^{0.01}} \right)^{-\theta} \right].
\]
Example Calculations

\[E \left[- \left(\frac{R_p}{r} \right)^{-\theta} \right] = - \left[0.6 \left(\frac{1 + p}{e^{.01}} \right)^{-\theta} + 0.4 \left(\frac{1 - p}{e^{.01}} \right)^{-\theta} \right]. \]

For each \(p \), maximize this over \(\theta \), producing the policy-dependent coefficients of risk aversion \(1 + \theta(p) \) used to evaluate the expected habit-formation power utility. Then, find the optimal \(p \) that maximizes it:

<table>
<thead>
<tr>
<th>Agent Who Wants to Beat Benchmark log(r = 1.0%) Per Bet</th>
<th>Value of (E)</th>
<th>(I_p(1%)) %</th>
<th>Risk Aversion (1 + \theta(p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>(0.9994)</td>
<td>0.06</td>
<td>3.03</td>
</tr>
<tr>
<td>8.0</td>
<td>-0.9982</td>
<td>0.18</td>
<td>1.43</td>
</tr>
<tr>
<td>14.1</td>
<td>-0.9987</td>
<td>0.13</td>
<td>1.25</td>
</tr>
<tr>
<td>20.0</td>
<td>(0.9987)</td>
<td>0.13</td>
<td>1.008</td>
</tr>
<tr>
<td>33.0</td>
<td>(0.9954)</td>
<td>0.04</td>
<td>1.09</td>
</tr>
</tbody>
</table>

A less risk tolerant agent would only try to beat the easier benchmark log\(r = 0.1\% \):

<table>
<thead>
<tr>
<th>Agent Who Wants to Beat Benchmark log(r = 0.1%) Per Bet</th>
<th>Value of (E)</th>
<th>(I_p(1%)) %</th>
<th>Risk Aversion (1 + \theta(p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>-0.9954</td>
<td>0.46</td>
<td>10.73</td>
</tr>
<tr>
<td>4.5</td>
<td>-0.9877</td>
<td>1.23</td>
<td>4.53</td>
</tr>
<tr>
<td>14.1</td>
<td>-0.9924</td>
<td>0.77</td>
<td>1.88</td>
</tr>
<tr>
<td>20.0</td>
<td>-0.9954</td>
<td>0.46</td>
<td>1.48</td>
</tr>
<tr>
<td>33.0</td>
<td>-0.9996</td>
<td>0.04</td>
<td>1.09</td>
</tr>
</tbody>
</table>

Indeed, the correct conclusion for economists to draw, both from thought experiments and from actual data, is that people do not display a consistent coefficient of risk aversion, so it is waste of time to try to measure it." (Rabin and Thaler (2001), p.225)
Summary of Behavioral Implications

<table>
<thead>
<tr>
<th>(\log r) %</th>
<th>(p_{opt}) %</th>
<th>(I_{p_{opt}}(\log r)) %</th>
<th>Risk Aversion (1 + \theta(p_{opt}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01</td>
<td>20.0</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>1.0</td>
<td>14.1</td>
<td>0.18</td>
<td>1.43</td>
</tr>
<tr>
<td>0.5</td>
<td>10.0</td>
<td>0.51</td>
<td>2.02</td>
</tr>
<tr>
<td>0.1</td>
<td>4.5</td>
<td>1.23</td>
<td>4.53</td>
</tr>
</tbody>
</table>
Samuelson's Fears Aren't Realized

- Intransitivities Can't Happen
 - Samuelson Didn't Envision a Benchmark

- Size of Potential Loss Isn't Ignored
 - A Benchmark Helps Fix That, Too.

- Why Not Give Larger Losses Higher Marginal Impact, And Then Weight Them By Their Respective Probabilities?
 - That is Expected Concave Utility! Absorb This Talk!

- Expected Concave Utility is Tractable
 - So is Benchmark Outperformance Prob.
Other Alternatives

- External Habit Formation
 \[U = -(R_p/X)^{-\theta} \]

- Prospect“ Loss Aversion
 \[U = \begin{cases}
 -R^{-\theta_1} & \text{if } R \geq 1 \\
 -\lambda R^{-\theta_2} & \text{if } R < 1
 \end{cases} \]

- Epstein-Zin Recursive
 \[U_t = \left\{ (1 - \delta)C_t^{1-1/\psi} + \delta (E_t[U_{t+1}^{1-\theta}])\left(\frac{1}{\theta-\theta/1/\psi}\right) \right\}^{1-1/\psi} \]

{ These Alternatives Have More Adjustable Parameters
Ockham's Razor Favors Mine

Bayesian analysis also shows that a hypothesis with fewer adjustable parameters automatically has an enhanced posterior probability, because the predictions it makes are sharp. (Berger and Je®erys, 1992)

\[
\frac{\text{PostProb}[H_0]}{\text{PostProb}[H_A]} = \frac{L(p_{\text{obs}}|H_0) \mu(H_0)}{L(p_{\text{obs}}|H_A) \mu(H_A)} \overset{\text{Def.}}{=} B \cdot \text{PriorOdds}
\]

Candidates for \(H_A \):

- Habit-Formation CRRA: 2 Adjustable Parameters.
- Benartzi-Thaler Loss Aversion: 3 Parameters.
- Epstein-Zin: 3 Parameters

\{ Likelihood functions \(L(p \mid H) \) Must Be Computed Before \(p_{\text{obs}} \) is Observed ! \}

\{ Extra Parameters Spread Out Likelihood Unless Directly Measured With Low Error. \}

\{ When the Benchmark is Observable, \(H_0 \) has 0 Adjustable Parameters ! \}