For Poster Section of IMA Workshop 7, April 12-16, 2004:
Risk Management and Model Specifications Issues in Finance

A General Equilibrium Model
of the Term Structure of Interest Rates
under Regime-switching Risk

Yong Zeng
Department of Mathematics and Statistics
University of Missouri at Kansas City
(with Shu Wu at University of Kansas)
1. Introduction

2. Objectives and Main results

3. The Equilibrium Model
 (a) The Underlying Economy: (i) Two State Variables: (s,x)
 (ii) Investment Opportunities (iii) Consumer’s Objective Function.
 (b) The Equilibrium Short Rate
 (c) The Equilibrium Bond Returns
 (d) Special case under log Utility and Regime-Switching Risk Premium
 (e) Further special case under regime-switching affine model.

4. Empirical Results
 (a) Data; (b) Three Models; (c) Efficient Method of Moments (EMM)

5. Conclusions and Future Works
Introduction

- The aggregate economy is characterized by periodic shifts between distinct regimes of the business cycle
- Markov regime-switching models of the short-term interest rate
- Dynamic term structure models under regime shifts:
 Naik and Lee (1997), and Bansal and Zhou (2002).
- Dai and Singleton (2003): the risk of regime shifts is not priced.
Objectives
- Develop a dynamic term structure model under the systematic risk of regime shifts in a general equilibrium setting similar to that in CIR.
- How do regime shifts affect bond returns? How important is the regime-switching risk premium?

Main results
- We show that the regime-switching risk can be priced in a similar way as in the case of jump risk (e.g. Ahn and Thompson, 1988).
- We show that regime switching introduces a new source of time-variation in bond risk premiums, which is associated with the systematic risk of periodic shifts in bond prices due to regime changes.
- Closed-form approximate solution for the entire yield curve is obtained for an affine model.
- Empirical evidence suggests that the market price of the regime-shift risk is not only statistically significant, but also economically important.
The Equilibrium Model

The Underlying Economy: Single good and a large number of infinitely lived and identical consumers similarly to that in CIR (1985a,b).

Modeling Regime Switching:

Mark Space: $E = \{z = (i, j) : i \in \{1,\ldots,N\}, j \in \{1,2,\ldots,N\}, i \neq j\}$.

Marked point process: for $A \in E$, $m(t, A)$ counts the cumulative number of regime shifts that belong to A during $(0, t]$ with stochastic intensity kernel:

$$\gamma_m(dt, dz) = h(z, x(t\!-\!)\mathbf{I}\{s(t\!-\!) = i\}\epsilon_z(dz)dt,$$

$h(z, x(t\!-\!))$: the regime-shift intensity at $z = (i, j)$,

$\epsilon_z(A)$: the Dirac measure at point z, ($\epsilon_z(A) = 1$ if $z \in A$ and 0, otherwise).

- $\gamma_m(dt, dz)$ is the conditional probability of a shift from regime i to regime j during $[t, t + dt)$ given $x(t\!-\!)$ and $s(t\!-\!) = i$.

Two State Variables: \((s,x)\)

- The Regime: \(s(t)\)

\[
ds(t) = \int_E \zeta(z)m(dt, dz)
\]

where \(\zeta(z) = \zeta((i,j)) = j - i\) with the compensator \(\gamma_s(t)dt = \int_E \zeta(z)\gamma_m(dt, dz)\).

For example, if there is a regime shift from \(i\) to \(j\) occurred at time \(t\), the above equation implies \(s_t = (j - i) + s_{t^-} = j\).

- The other usual state variable: \((\mu_x \text{ and } \sigma_x \text{ depend on } x(t), s(t))\)

\[
dx(t) = \mu_x dt + \sigma_x dB_t
\]

Investment Opportunities

- Production:

\[
dy = y\mu_y dt + y\sigma_y dB_t + \int_E y\delta_y(z)m(dt, dz)
\]

where \(\delta_y(z)\) is the percentage change in \(y\) due to a regime shift,

- Competitive market for a default-free pure discount bond with the price:

\[
dF = F\mu_F dt + F\sigma_F dB_t + \int_E F\delta_F(z)m(dt, dz)
\]

- Competitive market for (local) risk-free lending and borrowing at \(r(t)\).
1.3 The Consumer’s Objective Function

- Maximize consumer’s lifetime expected utility

\[E_0 \left[\int_0^\infty e^{-\rho t} U(c(t)) dt \right] \]

where \(c(t) \) is the flow of consumption.

- Subject to the budget constraint

\[dw = w\mu_w dt + w\sigma_w dB_t + \int_E w\delta_w(z) m(dt, dz) \]

where

\[w\mu_w = w[\phi_1(\mu_y - r) + \phi_2(\mu_F - r) + r] - c \]
\[w\sigma_w = w[\phi_1\sigma_y + \phi_2\sigma_F] \]
\[w\delta_w(z) = w[\phi_1\delta_y(z) + \phi_2\delta_F(z)] \]

\(w(t) \) is the her wealth at time \(t \),
\(\phi_1 \) is the proportion of her wealth invested in the physical production,
\(\phi_2 \) is the proportion of her wealth invested in the discount bond.
The Equilibrium Short Rate

- Define: $J(w(t), s(t), x(t)) = \sup E_t \left[\int_t^\infty e^{-\rho(\tau-t)} U(c(\tau))d\tau \right]$, where the “sup” is over the admissible feedback control of (c, ϕ_1, ϕ_2).

- CIR’s Notations: $\text{Var}(w_c) = (w\sigma_w)^2$, $\text{Var}(x) = \sigma_x^2$, $\text{Cov}(w_c, x) = (w\sigma_w)\sigma_x$. And $\Delta_s f = f(s(t)) - f(s(t-))$ for any function $f(\cdot)$ that depends on $s(t)$.

- Parato Optimality implies no trading at equilibrium, so $\phi_1 = 1$ and $\phi_2 = 0$.

Proposition 1 The equilibrium short-term interest rate is given by

$$r = \mu_y^* - \left(\frac{J_{ww}}{J_w} \right) \frac{\text{Var}(w_c)}{w} - \left(\frac{J_{wx}}{J_x} \right) \frac{\text{Cov}(w_c, x)}{w} - \int_E \left(\frac{\Delta_s J_w}{J_w} \right) \frac{\Delta_s w}{w} \gamma_m(dz)$$

where

$$\mu_y^* = \mu_y + \int_E \delta_y(z) \gamma_m(dz), \quad \text{and} \quad \gamma_m(dz) = h(z, x(t-))I\{s(t-) = i\} \epsilon_z(dz).$$

Remark Usually (for example, under log utility), $\left(\frac{\Delta_s J_w}{J_w} \right) \frac{\Delta_s w}{w} > 0$. So, the impact of a systematic regime-switching risk is to lower the equilibrium short-term interest rate, as that of jump risk in Ahn and Thompson (1988).
The Equilibrium Bond Returns

Proposition 2 Let $\mu^*_F dt = E_{t-} \left(\frac{dF(t)}{F(t-)} \right)$ be the instantaneous expected rate of return of the discount bond. At equilibrium,

$$\mu^*_F - r = \left[\left(-\frac{J_{ww}}{J_w} \right) Var(w) + \left(-\frac{J_{wx}}{J_w} \right) Cov(w, x) \right] \frac{F_w}{F}$$

$$+ \left[\left(-\frac{J_{ww}}{J_w} \right) Cov(w, x) + \left(-\frac{J_{wx}}{J_w} \right) Var(x) \right] \frac{F_x}{F}$$

$$+ \int_E \left(-\frac{\Delta_s J_w}{J_w} \right) \frac{\Delta_s F}{F} \gamma_m(dz)$$

Remark 1 Rewrite the above equation as

$$\mu^*_F - r = -Cov \left(\frac{dJ^c_w}{J_w}, \frac{dF^c}{F} \right) - \int_E \frac{\Delta_s J_w}{J_w} \frac{\Delta_s F}{F} \gamma_m(dz)$$

where

$$Cov \left(\frac{dJ^c_w}{J_w}, \frac{dF^c}{F} \right) = \left(\frac{\sigma J_w}{J_w} \right) \left(\frac{\sigma F}{F} \right) = \left(\frac{J_{ww}w\sigma_w + J_{wx}\sigma_x}{J_w} \right) \left(\frac{(w\sigma_w)F_w + \sigma_x F_x}{F} \right)$$
Regime-Switching Risk Premium

Remark 2 When \(J_{wx} = 0 \) and \(F_w = 0 \) (for example, under log utility),
\[
\mu_F^* - r = \left(-\frac{J_{ww}}{J_w} \right) w\sigma_w \frac{\sigma_x F_x}{F} + \int_E \left(-\frac{\Delta_s J_w}{J_w} \right) \frac{\Delta_s F}{F} \gamma_m(dz)
\]

- The first term is the instantaneous diffusion risk premium.
 \(\frac{\sigma_x F_x}{F} \) is the volatility of the bond return due to diffusions in \(x(t) \).
 \(\left(-\frac{J_{ww}}{J_w} \right) w\sigma_w \) measures the extra rate of return per unit of such volatility and is referred as the market price of risk.

- The second term is analogously defined as the instantaneous regime-switching risk premium.
 \(\frac{\Delta_s F}{F} \) is the percentage change in bond price due to regime shifts
 \(\left(-\frac{\Delta_s J_w}{J_w} \right) \) measures the excess bond return per unit of such changes.
Simplification under Log-Utility for Default-free Bond

- Under Log-Utility, \(J_{wx} = 0, J_w = \frac{1}{\rho_w}, \) and \(J_{ww} = -\frac{1}{\rho_w}. \)
- “Default-free” implies \(F_w = 0, F_{ww} = 0 \) and \(F_{wx} = 0. \)

Proposition 3 Under \(U(c) = \log(c) \) as CIR. The equilibrium short rate is

\[
r = \mu_y - \sigma_y^2 + \int_E \lambda_s(z)\gamma_m(dz)
\]

The price of a default-free pure discount bond \(F(t, x(t), s(t), T) \) becomes,

\[
F_t + (\mu_x - \sigma_y \sigma_x) F_x + \frac{1}{2} \sigma_x^2 F_{xx} + \int_E \Delta_s F(1 - \lambda_s(z))\gamma_m(dz) = rF
\]

for each \(s \in \{1, 2, \cdots, N\} \), with the boundary condition: \(F(T, x, s, T) = 1 \), and

\[
\Delta_s F = F(t, x(t), s(t-), \zeta(z, T) - F(t-, x(t-), s(t-), T), \text{and}
\lambda_s(z) = \frac{\delta_y(z)}{1 + \delta_y(z)}. \quad \text{Also, } F(t, x(t), s(t), T) = E^Q \left[\exp \left(- \int_t^T r(s) ds \right) \right].
\]
A Term Structure with R-S Risk for Estimation

Further assume: \(\mu_x = a_0(s) + a_1(s)x, \sigma_x = \sqrt{\sigma(s)x}, h(z, x(t^-)) = e^{\eta_s(z)}, \sigma_y = \theta_x(s)\sqrt{\sigma(s)x}, \mu_y = x + \theta_x^2(s)\sigma(s)x - \int_E \lambda_s(z)\gamma_m(dz), \) and \(\lambda_s(z) = 1 - e^{\theta_s(z)}. \) Then, \(r = x. \) That is,

\[
dr(t) = (a_0(s) + a_1(s))rdt + \sqrt{\sigma(s)r(t)}dB_t.
\]

Proposition 4 With the above assumptions, \(F(t, \tau) = e^{A(\tau, s_t) + B(\tau, s_t)r_t}: \) the approximate price at time \(t \) of a default-free pure discount bond with maturity \(\tau; \)

\[
R(t, \tau) = -\frac{A(\tau, s_t)}{\tau} - \frac{B(\tau, s_t)r_t}{\tau}: \) the \(\tau \)-period interest rate, where \(A(\tau, s) \) and \(B(\tau, s) \) satisfy

\[
-\frac{\partial B(\tau, s)}{\partial \tau} + [a_1(s) - \theta_x(s)\sigma(s)]B(\tau, s) + \frac{1}{2}\sigma(s)B^2(\tau, s)
\]

\[
+ \int_E \left(e^{\Delta_s A}\Delta_s B \right) e^{\eta_s(z) + \theta_s(z)}1(s = i)\epsilon_z(dz) = 1
\]

(1)

and

\[
-\frac{\partial A(\tau, s)}{\partial \tau} + a_0(s)B(\tau, s) + \int_E \left(e^{\Delta_s A} - 1 \right) e^{\eta_s(z) + \theta_s(z)}1(s = i)\epsilon_z(dz) = 0
\]

(2)

with boundary conditions \(A(0, s) = 0 \) and \(B(0, s) = 0, \) and \(s = 1, 2. \)
Empirical Results

Data Monthly interest rates from June 1964 to November 2000 obtained from CRSP. Eight series of interest rates with maturities 1m, 3m, 6m, 1-5 yrs. (6m, 5yr) are chosen to fit Models 1,2,3 for statistical analysis. All eight series are used to estimated the implied regimes.

Model 1: CIR has four parameters $(a_0, a_1, \sigma, \theta_x)$.
Model 2: CIR with two regimes but no R-S risk, has ten parameters $(a_0(1), a_1(1), \sigma(1), \theta_x(1), a_0(2), a_1(2), \sigma(2), \theta_x(2), \eta_s(1,2), \eta_s(2,1))$.
Model 3: CIR with two regimes and R-S risk, has twelve parameters $(a_0(1), a_1(1), \sigma(1), \theta_x(1), a_0(2), a_1(2), \sigma(2), \theta_x(2), \theta_s(1), \theta_s(2), \eta_s(1,2), \eta_s(2,1))$.

Efficient Method of Moments

Step 1: Projection Using quasi maximum likelihood to project the observed data (6m,5yr) to an auxiliary model close to the true data generating process.
- Gallant and Tauchen (2001) suggests a SNP model based on Hermite polynomial expansion as a convenient general purpose auxiliary model.
- The dimension of this auxiliary model is selected by minimizing BIC.
- The score function are used as moment conditions to compute a chi-square criterion function.

Step 2: Simulation Simulate (6m,5yr) according to the wanted stationary model to evaluate the expected value of the score and compute a chi-squared criterion function.

Step 3: Optimization A nonlinear optimizer is used to find the parameter setting that minimizes the criterion.

Advantage: If the auxiliary model is a close approximation of the true one, then EMM is asymptotic efficient, close to the efficiency of ML.
Conclusions and Future Works

- Affine regime-switching jump diffusion term structure model
- Regime-switching risk on interest rate derivatives.
- Optimal portfolio choice under regime-switching risk.
- Monetary policy regimes.
- Structural relation between business cycles and the yield curve.

- Paper is available at http://mendota.umkc.edu/paper-term.html