Asymptotic-Preserving Discretization Schemes

Jim E. Morel

Continuum Dynamics Group, CCS-2
Computer and Computational Sciences Division
Los Alamos National Laboratory
Los Alamos, NM 87545

jim@lanl.gov
Overview

Asymptotic Limits

Properties of Asymptotic-Preserving Schemes

The Particle Transport Equation

The Asymptotic Diffusion Limit

Discrete Asymptotic Diffusion Limits

Asymptotic Properties of the Upwind Spatial Discretization

Asymptotic Properties of the Diamond Spatial Discretization

Computational Examples
Asymptotic Limits

- An asymptotic limit associated with a PDE is a limit in which certain terms in the PDE are made “small” relative to other terms.
- This ordering in size is achieved via a scaling parameter that goes to zero in the asymptotic limit.
- For instance, denoting the scaling parameter by ϵ, each term is assumed to be scaled by ϵ^n for some integer, $n \geq 0$.
- One generally determines the scaling on a physical basis by first non-dimensionalizing the PDE, scaling the non-dimensional parameters that appear in the PDE, and returning the equation to dimensional form.
- A power-series solution in ϵ is assumed for the scaled PDE.
- Substituting this expansion into the scaled PDE and equating coefficients of each power of ϵ leads to a hierarchical set of equations for the expansion coefficients.
Asymptotic Limits

- One generally finds that the leading-order expansion coefficient satisfies a "simpler" PDE than the original PDE.
- The leading-order coefficient is said to be the asymptotic solution of the original PDE, and the simpler PDE is said to be the asymptotic limit of the original PDE.
- In many instances, the scale lengths associated with solutions of the asymptotic equation are much larger than the smallest scale lengths associated with solutions of the original PDE.
- When this is the case, asymptotic-preserving discretization schemes are necessary for near-asymptotic problems to avoid completely impractical mesh resolution requirements.
The Particle Transport Equation

- We begin our discussion with the following particle transport equation:

$$\mu \frac{\partial vN}{\partial x} + (\sigma_a + \sigma_s)vN = \frac{\sigma_s}{2} \int_{-1}^{+1} vN(x, \mu') d\mu' + Q. \quad (1)$$

- This is an equation for a phase-space particle density function, $N(x, \mu)$.
- All particles travel at a single speed, v, in directions characterized by the cosine, $\mu = v_x/v$.
- Particles are randomly absorbed and scattered isotropically within the medium.
- The absorption cross section is σ_a, and the scattering cross section is σ_s. The sum of these two cross sections is the total cross section, $\sigma_t = \sigma_a + \sigma_s$.
- $Q(x)$, is the particle source function.
The Particle Transport Equation

- The boundary conditions for Eq.(1) are defined in terms of the incident particle distributions at the boundaries.
- Equation (1) physically represents a statement of particle conservation within a differential phase-space volume.
- The mean-free-path, which is the mean distance between interactions, is given by $\lambda_t = 1/\sigma_t$.
- λ_t is a basic transport scale length associated with strongly absorbing problems.
- For instance, a particle beam entering a purely absorbing medium will be attenuated after traveling a distance, s, by $\exp(-s/\lambda_t)$.
The Asymptotic Diffusion Limit for Transport

- It is convenient for our purposes to re-express Eq.(1) in terms of the angular flux, ψ:

\[\mu \frac{\partial \psi}{\partial x} + \sigma_t \psi = (\sigma_t - \sigma_a) \phi + Q, \]

(2)

where

\[\phi = \frac{1}{2} \int_{-1}^{+1} \psi(x, \mu') d\mu'. \]

(3)

- ϕ is called the scalar flux.
The Asymptotic Diffusion Limit for Transport

Non-dimensionalizing Eq.(2), we get

\[P_1 \mu \frac{\partial \hat{\psi}}{\partial x} + \hat{\sigma}_t \hat{\psi} = (\hat{\sigma}_t - P_2 \hat{\sigma}_a) \hat{\phi} + P_3 \hat{Q}, \] (4)

where

\[P_1 = \lambda_t / \ell_\infty, \quad P_2 = \sigma_{a,\infty} / \sigma_{t,\infty}, \quad P_3 = Q_\infty / (\sigma_{t,\infty} \phi_\infty). \] (5)

- \(P_1 \) is scaled \(\mathcal{O}(\epsilon) \), which means that a mean-free-path is small compared to the spatial scalelength of the asymptotic solution.
- \(P_2 \) is scaled \(\mathcal{O}(\epsilon^2) \), which means that the probability of being absorbed per interaction is very small.
- \(P_3 \) is scaled \(\mathcal{O}(\epsilon^2) \), which only relates to normalization, i.e., that the asymptotic solution remains finite and non-zero as \(\epsilon \to 0 \).
The Asymptotic Diffusion Limit for Transport

• Returning Eq.(5) to dimensional form and dividing by ϵ, we get

$$\mu \frac{\partial \psi}{\partial x} + \frac{\sigma_t}{\epsilon} \psi = \left(\frac{\sigma_t}{\epsilon} - \epsilon \sigma_a \right) \phi + \epsilon Q.$$ \hspace{1cm} (6)

We assume a power-series expansion in ϵ for the asymptotic solution:

$$\psi = \sum_{n=0}^{\infty} \psi^{(n)} \epsilon^n.$$ \hspace{1cm} (7)

• Substituting from Eq.(7) into Eq.(6), and equating coefficients of like powers of ϵ, we get a hierarchial set of equations.

• The $O(\epsilon^0)$ equation yields

$$\psi^{(0)} = \phi^{(0)}.$$ \hspace{1cm} (8)

• This simply states that the leading-order solution is isotropic.
The Asymptotic Diffusion Limit for Transport

- The $O(\epsilon^1)$ equation plus previous equations yield

$$\psi^{(1)} = -\frac{\mu}{\sigma_t} \frac{\partial \phi^{(0)}}{\partial x} + \phi^{(1)}.$$ \hspace{1cm} (9)

- The $O(\epsilon^2)$ equation plus previous equations yield

$$\mu \left(-\frac{\mu}{\sigma_t} \frac{\partial \phi^{(0)}}{\partial x} + \phi^{(1)} \right) + \sigma_t \psi^{(2)} = \sigma_t \phi^{(2)} - \sigma_a \phi^{(0)} + Q.$$ \hspace{1cm} (10)

- Averaging Eq.(10) over all μ (via integration), we find that the leading order solution, $\phi^{(0)} = \psi^{(0)}$, satisfies the following diffusion equation:

$$-\frac{\partial}{\partial x} \left(\frac{1}{3\sigma_t} \frac{\partial \phi^{(0)}}{\partial x} \right) + \sigma_a \phi^{(0)} = Q.$$ \hspace{1cm} (11)
The Asymptotic Diffusion Limit for Transport

- Boundary conditions for the asymptotic diffusion equation must be determined via a boundary-layer analysis.
- With vacuum boundary conditions for the transport, the asymptotic diffusion boundary conditions are $\phi^{(0)} = 0$ at both boundaries.
- The fundamental scale length for the diffusion equation is the diffusion length, $L = \sqrt{\frac{\lambda_t}{3\sigma_a}}$.
- For instance, homogeneous diffusion solutions are of the form $a \exp(-x/L) + b \exp(x/L)$.
- Note that L can be arbitrarily large with respect to λ_t.
- In the diffusion limit, $\lambda_t/L \to 0$.
Discrete Asymptotic Diffusion Limits

- With one caveat, a discrete asymptotic diffusion limit is completely analoguous to the corresponding analytic limit.
- The caveat is that an additional non-dimensional parameter appears.
- This parameter is h/ℓ_∞, which represents the cell width divided by the scale length of the asymptotic diffusion solution.
- Different scalings of h/ℓ_∞ lead to discrete different discrete diffusion limits.
- The most natural discrete limit, called the thick limit, corresponds to the assumption that h/ℓ_∞ is $O(1)$.
- This limit is referred to as thick because $h\lambda_t \to \infty$.
- A consistent discretization of the transport equation is asymptotic-preserving with respect to the thick diffusion limit if it asymptotically limits to a consistent discretization of the diffusion equation.
Discrete Asymptotic Diffusion Limits

- This implies that any mesh resolution criteria will depend only upon scale lengths associated with the diffusion equation in diffusive problems.
- If h/l_∞ is scaled $O(\epsilon)$, the associated limit is referred to as the intermediate limit because h/λ_t is $O(1)$.
- If h/l_∞ is scaled $O(\epsilon^2)$, the associated limit is referred to as the thin limit because h/λ_t is $O(\epsilon)$.
- In the intermediate and thin limits, the mesh becomes infinitely resolved with respect to the scale length of the asymptotic solution, so an analytic diffusion equation is obtained rather than a discrete diffusion equation.
- A consistent discretization of the transport equation is asymptotic-preserving with respect to the intermediate and thin diffusion limit if it asymptotically limits to the analytic asymptotic diffusion equation.
Discrete Asymptotic Diffusion Limits

- The performance of discretization schemes in the intermediate and thin limits is strongly related to truncation error.
- Essentially any scheme with second-order (or higher order) truncation error will preserve the intermediate limit.
- Essentially any scheme with first-order (or higher order) truncation error will preserve the thin limit.
- Preserving the thin limit does not imply that a scheme is practical for any class of diffusive problems.
- Preserving the intermediate limit means that a scheme can be efficiently used in weakly diffusive problems, i.e., problems for which the diffusion length is only a few mean-free-paths thick.
- Preserving the thick limit means that a scheme can be efficiently used in highly diffusive problems.
The Upwind Scheme

- The transport equation spatially differenced over the interval,
 \([x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]\), using the upwind scheme is

\[
\mu(\psi_{i+\frac{1}{2}} - \psi_{i-\frac{1}{2}})/h + \sigma_{t,i}\psi_i = (\sigma_t - \sigma_s)\phi_i + Q_i, \quad (12)
\]

where the cell-average value, \(\psi_i\) is “upwinded” in accordance with the direction of particle flow:

\[
\psi_i = \psi_{i+\frac{1}{2}} \quad \text{for } \mu > 0,
\]

\[
= \psi_{i-\frac{1}{2}} \quad \text{for } \mu < 0. \quad (13)
\]

- This scheme has a first-order truncation error.

- It preserves the thin limit, but not the intermediate or thick limits.
The Upwind Scheme

- In the intermediate limit it converges to an incorrect diffusion equation:

\[- \frac{\partial}{\partial x} \left[\frac{1}{3\sigma_t} \left(1 + \frac{3\sigma_t h}{4} \right) \frac{\partial \phi_i^{(0)}}{\partial x} \right] + \sigma_a \phi_i^{(0)} = Q_i. \quad (14)\]

- In the thick limit it yields a diffusion equation that is unrelated to the physical properties of the transport medium and has no source:

\[\frac{1}{4h} \left(\phi_i^{(0)} - \phi_{i-1}^{(0)} \right) - \frac{1}{4h} \left(\phi_{i+1}^{(0)} - \phi_i^{(0)} \right) = 0. \quad (15)\]
The Diamond Scheme

- The transport equation spatially differenced over the interval, $[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$, using the diamond scheme is

$$\mu (\psi_{i+\frac{1}{2}} - \psi_{i-\frac{1}{2}}) / h + \sigma_{t,i} \psi_i = (\sigma_t - \sigma_s) \phi_i + Q_i , \quad (16)$$

where the cell-average value is related to the cell edge values by

$$\psi_i = \frac{1}{2} \left(\psi_{i+\frac{1}{2}} + \psi_{i-\frac{1}{2}} \right) . \quad (17)$$

- This scheme has a second-order truncation error.
- It preserves all three limits.
The Diamond Scheme

- In the thick limit it yields the following consistent diffusion discretization:

\[-\frac{1}{3\sigma_t} \left(\phi_{i+\frac{3}{2}}^{(0)} - 2\phi_{i+\frac{1}{2}}^{(0)} + \phi_{i-\frac{1}{2}}^{(0)} \right) / h^2 + \frac{\sigma a}{4} \left(\phi_{i+\frac{3}{2}}^{(0)} + 2\phi_{i+\frac{1}{2}}^{(0)} + \phi_{i-\frac{1}{2}}^{(0)} \right) = \]

\[\frac{1}{2} (Q_{i+1} + Q_i) . \]

(18)
Computational Examples

• The first problem set illustrates the intermediate limit.
• A calculation is performed with each discretization scheme for $\epsilon = 1$, $\epsilon = 0.25$, and $\epsilon = 0.1$.
• As $\epsilon \to 0$, the analytic transport solution converges to an analytic diffusion solution with zero Dirichlet boundary conditions. This solution is denoted by “exact”.
• The spatial domain is $[0, 1]$, with no incoming particles on the boundaries.
• For $\epsilon = 1$, $\sigma_t = 10 \text{ cm}^{-1}$, $\sigma_a = 0.1 \text{ cm}^{-1}$, $Q = 1 \text{ p/(cm}^3\text{-sec)}$, $h = 0.1 \text{ cm}$.
• For $\epsilon = 0.1$, $\sigma_t = 100 \text{ cm}^{-1}$, $\sigma_a = 0.01 \text{ cm}^{-1}$, $Q = 0.1 \text{ p/(cm}^3\text{-sec)}$, $h = 0.01 \text{ cm}$.
• h/λ_t is fixed at 1 mfp for all ϵ.
• The incorrect diffusion solution predicted for the upwind scheme is denoted by “theory”.

Presentation at the IMA Workshop on Compatible Discretizations for Partial Differential Equations, May 15, 2004
Intermediate Limit - Upwind Differencing
Intermediate Limit - Diamond Differencing
Computational Examples

- The second problem set illustrates the thick limit.
- The procedure is identical to that of the first set except that \(h \) remains fixed for all \(\epsilon \) and \(h/\lambda_t \) increases with \(\epsilon \).
- \(h = 0.1 \) cm.
- For \(\epsilon = 1 \), \(h/\lambda_t = 1 \) mfp.
- For \(\epsilon = 0.1 \), \(h/\lambda_t = 10 \) mfp
- “Exact” denotes the correct asymptotic diffusion solution.
Thick Limit - Upwind Differencing
Thick Limit - Diamond Differencing
Other Considerations

- Spatial boundary layers generally exist at interfaces between transport and diffusive regions, and at the outer boundaries of diffusive regions.
- Robustness with unresolved spatial boundary layers is a major consideration for schemes that are asymptotic-preserving.
- To obtain “good” (if not accurate) behavior with unresolved spatial boundary layers, one must generally use lumped discontinuous finite-element discretizations.