What Does LIGO Measure?

The correspondence between mathematics and physics for gravitational wave observations

Lee Samuel Finn
Center for Gravitational Wave Physics
Goal, Caveat, Outline

- A mathematical description of the LIGO experiment
 - The physical observable and its relationship to the mathematical objects of GRT
- Caveat
 - Will work in language of perturbation theory
 - Implies (not yet discussed) distinction between background and waves

- Outline
 - Description of “LIGO”
 - Description of measurement
 - Relationship between observable and metric
 - Outline of calculation
 - Afterword: from “LIGO” to LIGO
Description of apparatus

• LIGO: Laser Interferometer Gravitational-wave Observatory
 – Idealize for discussion: one-bounce Michelson IFO
 – Laser
 – Beamsplitter
 – End-mirrors

• Physical extent of instrument is critical, but measurements all take place at output port
Description of measurement

- Measurement: field intensity at output port
- Intensity depends on phases \(\varphi_x(t) \) and \(\varphi_y(t) \)

\[
|E_o(t)|^2 = 2|\mathcal{E}_o|^2 \left\{ 1 + \cos \left[\varphi_x(t) \right] \right\}
\]

- What are phases \(\varphi_x(t) \), \(\varphi_y(t) \) of returning light?

\[
E_o(t) = \mathcal{E}_o \left(e^{i\varphi_x(t)} + e^{i\varphi_y(t)} \right)
\]
Relationship of measurement to metric

- What are phases $\phi_x(t)$, $\phi_y(t)$ of returning light?

- Phase is *constant* on *null* geodesics
 - Light returning now (t_o) emerged from laser at some time in past
 - $\phi_x(t_o) = \phi_x(t_o - t_x)$
 - $\phi_y(t_o) = \phi_y(t_o - t_y)$
 - Different paths, different elapsed times, different phases

- g determines geodesics
Outline of calculation (exercise for reader)

- Simplifying assumptions (all can be relaxed)
 - Grav.-wave perturbations on flat (Minkoskii) spacetime
 - Mirrors move on geodesics
 - Assume mirrors are, at some initial moment of time, at relative rest \((dx^i/dt = 0, x^i \text{ spatial coordinate function, } i=1..3) \)

- Work in TT gauge
 - Gauge choice simplifies *calculational* details
 - Though beware interpretation of non-invariant quantities
Outline of calculation:
Preliminaries

- Recall TT gauge properties

\[g = \Box + h \]
\[\Box = \Box dt^2 + dx^2 + dy^2 + dz^2 \]
\[0 = \Box_a (g^{ab} h_{bc}) \]
\[0 = U^a h_{ab} \]
\[0 = h_{ab} g^{ab} \]

- Show that
 - Mirrors initially at TT coordinate rest remain at TT coordinate rest
 - I.e., spatial coordinate location of mirrors is time independent

- Show that
 - Time coordinate t is proper time for observer at rest in (t,x,y,z) coords.
Outline of calculation (exercise for reader)

- Evaluate when light arriving at beamsplitter along arm x (y) now \(t_o \) left beamsplitter along arm x (y)
 - Unperturbed arm length (constant t geodesic) L
 - \(t = t_o - \bar{t} \)
 - \(\bar{t} = \bar{t}_1 + \bar{t}_2 \)
 - \(\bar{t}_1 \) from end-mirror to beamsplitter
 - \(\bar{t}_2 \) from beamsplitter to end-mirror
 - Terms gauge dependent, sum gauge independent

- For arm in direction x
 \[
 \bar{t}_x(t_0) = 2L \left[1 + H_x(t_0) \right]
 \]
 Integral along light path

 \[
 H_x(t_0) = \frac{1}{4L} \int_0^L h_{xx}(t_0 \bar{s}, s, y, z) + h_{xx}(t_0 \bar{L} + s, L \bar{s}, y, z) \, ds
 \]
 Projection of \(h \) along x arm

24 June 2002

L. S. Finn; CGWP/IMA NR Workshop
Outline of calculation
(exercise for reader)

• $\Box_x(t_o)-\Box_y(t_o)=2f_l L[H_x(t_o)-H_y(t_o)]$

• When $\Box >> L$, $H_x(t_0) = h_{xx}(t_0,0,0,0)/2$
 - $\Box_x(t_o)-\Box_y(t_o)=f_l L[h_{xx}(t_o,0,0,0)-h_{yy}(t_o,0,0,0)]$
 - “Small antenna” limit

• LIGO measures integral of metric perturbation along spacetime path light takes in moving from beamsplitter to end mirrors and back
Afterword: From “LIGO” to LIGO

- LIGO “more” than one-bounce Michelson
 - “resonant cavity” arms
- LIGO mirrors are accelerating
 - Not on geodesic trajectories
- Waves in curved background
 - Detector small, wavelength short, compared to curvature scale
 - Separate waves from background based on multiple length (& time) scales
 - Free mirrors don’t remain at coordinate rest