Modeling, analysis, and MCMC with LOH data

Michael Newton

IMA September 2003
Loss of heterozygosity
Data from Rat Mammary Cancer Study; Shull et al.

Chromosome 18 position

Plus single marker data from 5 other chromosomes.
Statistical Problems

• characterize deletion hot spots: significance, location, effect
Instability

- Continuous ‘time’ binary Markov process \(\{L(x) : x \in C\} \)

- \(P[L(x + dx) = 1|L(x) = 0] = \lambda \delta \, dx + o(dx) \)

- \(P[L(x + dx) = 0|L(x) = 1] = \lambda (1 - \delta) \, dx + o(dx) \)
Selection

- special location $x_s \in C$ (putative suppressor gene locus)

- $P[SEL|L(x_s) = 1] \geq P[SEL|L(x_s) = 0]$

- plus conditional independence [one gene assumption]

- all observations are conditional on SEL
Instability - Selection

- snapshot of a dynamic biological system [tumor growth]
- aberrations emerge randomly [genetic instability]
- beneficial aberrations survive [cell-level selection]
Inference

Data: $D = \text{LOH at all markers, all tumors}$

Unknown Parameters: $\theta = (\delta, \omega, \lambda, x_s)$

Missing Data: $Z = L(x_s) \forall \text{tumors}$

and L at any noninformative markers

With state $S = (\theta, Z)$, working conditionally on $I = \cap \text{SEL}$, the target is:

$$P(S|D, I) \propto P(S, D|I)$$
$$= P(D, Z, \theta|I)$$
$$= \underbrace{P(D|Z, \theta)}_{\text{M-chains}} \underbrace{P(Z|\theta, I)}_{\text{Bernoulli(\omega)}} \underbrace{P(\theta|I)}_{\text{prior}}$$
Prior

\[P(\theta|I) = \underbrace{P(\delta)}_{\text{Unif}(0,1)} \underbrace{P(\omega|\delta)}_{\text{Unif}(\delta,1)} \underbrace{P(\lambda)}_{\text{Exponential}} \underbrace{P(x_s)}_{\text{Unif}(C')} \]
MCMC

Generate states S_1, S_2, \ldots aiming at target $P(S|D, I)$

Propose $S^* \sim q(S, \cdot)$ according to some move type.

Accept proposal w.p. min(1, r) where

$$r = \frac{P(S^*|D, I) q(S^*, S)}{P(S|D, I) q(S, S^*)}.$$

Use simple move types for computational feasibility.

Use multiple move types for irreducibility.

Use well-chosen move types for statistical efficiency.

Subsample to simplify output analysis.

Run output analysis on saved states.
Move Types

- ω: Propose $\omega^* \sim \text{Beta}(a, b)$ restricted to $(\delta, 1)$

- δ: Propose $\delta^* \sim \text{Unif}(\delta - \epsilon, \delta + \epsilon)$, reflected into $(0, \omega)$.

- λ: Propose $\lambda^* \sim \text{Exponential}(\lambda)$

- x_s: Sample a neighboring (or current) marker gap; sample x_s^* uniformly within the gap.

- Z: Select an entry of missing data; propose opposite.
> names(res)
[1] "mcmc" "acrate" "prior" "thsave" "logpost"

> res$mcmc
$nskip
[1] 100

$nsave
[1] 5000

$eps
[1] 0.002

> res$acrate

 omega lambda&delta xs impute
[1,] 0.990132 0.316144 0.325568 0.1729838

> res$thsave[1:2,]

 delta omega lambda xs
[1,] 0.1220636 0.6499343 7.079887 0.3926389
[2,] 0.1185316 0.5888894 8.516544 0.2771046
A second run

> res$mcmc
$nskip
[1] 100

$nsave
[1] 5000

$eps
[1] 0.02

> res$acrate
omega lambda&delta xs impute
[1,] 0.988586 0.303814 0.324792 0.1752827
Bayes Factor for $H : \omega = \delta$

Introduce $\eta = (\omega - \delta)/(1 - \delta)$, so $H : \eta = 0$.

By Savage’s density ratio,

$$
BF = \frac{\pi(D|H)}{\pi(D|H^c)} = \frac{\pi_a(\eta = 0|D)}{\pi_a(\eta = 0)}
$$

Here 6:1 favoring a gene.
Chromosome 18 Analysis

Ch 18: delta=0.20, omega=0.72

LOD

p-value = 0.10

BF = 6.2:1
Citations

