CHAPTER 3

The Three-Variable Helmholtz ana
Laplace Equations

3.1 The Helmholtz equation (A, + w?) ¥ =0

The Helmholtz or reduced wave equation in three variables
(ﬂ3+w2)qr(x|,xz,x3)=ﬂ, ﬂ3=ax]xl+axzx2+ a'x}xj, W}U, (1-1)

has been widely studied from the point of view of separation of variables,
and the possible separable coordinate systems for this equation are well
known [97, 98]. The connection between the separable systems and the
Euclidean symmetry group E(3) of (1.1) was first pointed out in [76].
However, it is only recently that this connection with group theory has
been employed systematically to derive properties of the separable solu-
tions of the Helmholtz equation.

Applying our usual methods, we find that (apart from the trivial symme-
try E’) the symmetry algebra of (1.1) is six dimensional with basis

P = '=I12:3;
e TR (12)

J=x30, — X, 05, Jy=x,0;—x;0,, Jy=x,0,—x,dy,
and commutation relations

[JI’JM} = E Efanti’ [JI‘ Pm] = 2 Epnn PH'" |: PJ‘ Pm] = U“ (1.3)

[mn=1223,

where g, is the tensor such that &)y3=¢3,,=&)3, =1, €3y= €33 =845, = — |,
with all other components zero. We take the real Lie algebra & (3) with
basis (1.2) as the symmetry algebra of (1.1). In terms of the P operators,
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3.1. The Helmholtz Equation (A; +w?)¥=0 161

the Helmholtz equation reads
(Pi+ Pj+ P7)¥=—w*V. (1.4)

Here & (3) is isomorphic to the Lie algebra of the Euclidean group in
three-space £ (3) and the subalgebra so(3) with basis {J,/5,/5} 1s isomor-
phic to the Lie algebra of the proper rotation group SO (3). To show this
explicitly we first consider the well-known realization of SO (3) as the
group of real 3 X3 matrices 4 such that 4’4A=E,; and detd =1 (see, e.g.,
[45, 85]). Here E,; 1s the 3X3 identity matrix (E;),;=0;, and (4°),=A4,,
J.I=1,2,3. The Lie algebra of SO (3) in this realization is the space of 3 X3
skew-symmetric matrices @ (& =—®&). A basis for this Lie algebra is

provided by the matrices

0 0 0 LA T | O =1 e

$'=10 0 -1|, £=| 0 0 0|, =|1 0 O
0= 0 =100 0 0 O

o (1)

with commutation relations [/, ,,1=2, &,.,J,. in agreement with (1.3). A
convenient parametrization of SO (3) is that in terms of Euler angles

(9.0,¢):
A(p,0,9) =exp(pds) exp(8 ) exp(¥ ), (1.6)
0<p<2m, 0<80<7, 0<¢y<2m.

As the Euler angles run over their full domain of values, A(gp,f,y) runs
over all elements of SO (3). The coordinates are one to one on the group
manifold except for those elements for which #=0,n, in which cases only
the sum @+ is uniquely determined. More detailed discussions of these
coordinates can be found in many references (e.g., [45, 85, 124]).

The Euclidean group in three-space E (3) can be realized as a group of
4% 4 real matrices. The elements of E(3) are

0]

(8= ol 4€50(3), a=(anapa)ER’ (17)
]

& 4y 43
and the group product is given by matrix multiplication
g(A,a)g(A4’,a")=g(AA",ad’+4a’). (1.8)

= E(3) acts as a transformation group in three-space R°. The group element
2 g(A,a) maps the point x€ R to the point

xg=xA+a€ER". (1.9)
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It follows easily from this definition that x(gg’)=(xg)g’ for all xER>,
g,g € E(3), and that xg(E;,0)=x where g(E;,0) is the identity element of
E(3). Geometrically, g corresponds to a rotation 4 about the origin
(0,0,0)€ R* followed by a translation a [85].

A basis for the Lie algebra of the matrix group E (3) is provided by the
matrices

i

0 0
/ 0
g =| & o 1=123 9= 0 g ,
00" 190 1 0 0 0
0) 0
F=|enie g , 9= O g . (1.10)
0 1 0 0 0 0 1 0

with commutation relations identical to (1.3). This shows that the Lie
algebra & (3) with basis (1.2) is isomorphic to the Lie algebra of E(3). The

explicit relation between the Lie algebra generators (1.10) and the group
elements (1.7) is

g(‘F: H,gb,a)Eg(A ("F'a E:‘P): 3)
— exp(9%) exp(8,) exp(vds) exp(a, @ + 4P+ a,Py).  (L11)

Using standard Lie theory, we can extend the action of &(3) by Lie
derivatives (1.2) on the space % of analytic functions defined on some
open connected set %D C R” to a local representation T of E(3) on %. We
find

T(g)®(x) = {exp(@/3 ) exp(8/, ) exp(yJ;)
X exp(a, P+ a,Py+a,P,) } O (x) =0(xg) (1.12)

where xg is given by (1.9). Thus the action (1.9) of E(3), as a transforma-
tion group is exactly that induced by the Lie derivatives (1.2). As usual,

T(gg')=T(g)T(g), &g E€EQ) (1.13)

and the operators T(g) map solutions of the Helmholtz equation into
solutions.

Computing the space & of second-order symmetries of (1.1), we find
that this equation is class I. Indeed, factoring out the space q of trivial
symmetries RQ, R €Y, Q= P{+ P;+ P;+w? (recall that RQ is the zero
operator on the solution space of (1.1)), we find that the factor space & /g
1s 41 dimensional, with a basis consisting of the identity operator E, the 6
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first-order operators J,, P;, and 34 purely second-order symmetrized opera-
tors. The space & (3)* of second-order symmetrized operators is spanned
by the elements {J,,J,.}, {J»Pn}: { P Py} =2P,P,, and these elements are
subjﬁct only to the relations J-P=J,P,+J,P,+J;P;=0 and P-P=P{+
P}+ P}= —w?, the latter relation hnlchng on the solution space of (l 1)
(see [76]).

The group E (3) acts on & (3) via the adjoint representation and decom-
poses & (3) into three orbit types with representatives

Py, Iy JytaP; aF0 (1.14)

Note that exp(aP;) is a translation along the three-axis, exp(gJ;) is a
rotation about this axis, and exp(@J;+ gaP;)=exp(gpJ,)exp(pal;) 1s a
rotation about the three-axis followed by a translation along the axis (a
screw-displacement). Thus we have the Lie algebra version of the theorem
that every Euclidean transformation is a translation, a rotation, or a
screw-displacement (see [83]).

Since (1.1) is an equation in three variables, two separation constants are
associated with each separable coordinate system. Thus we expect the
separated solutions to be characterized as common eigenfunctions of a pair
of commuting symmetry operators in the enveloping algebra of & (3). This
turns out to be the case. Just as for the two-variable Helmholtz equation in
Section 1.2, we find a number of rather trivial nonorthogonal coordinate
systems which correspond to the diagonalization of first-order operators.
In addition to these, there are eleven types of orthogonal separable
coordinate systems, each of which corresponds to a pair of independent
commuting operators S,,S, in & (3)’. The associated separable solutions
V= U(u)V (v)W(w) are characterized by the eigenvalue equations

(A +0?)¥=0, S ¥=w7¥, S,V =¥ (1.15)

where w?,w? are the separation constants [121, 76]. (It can be shown that
there are no nontrivial R-separable solutions.)

Put another way, a separable coordinate system is associated with a
two-dimensional subspace of commuting operators in & (3)* and S, S, is a
basis (nonunique) for this subspace. The group E (3) acts on the set of all
two-dimensional subspaces of commuting operators in & (3)* via the
adjoint representation and decomposes this set into orbits of equivalent
subspaces. As usual, one regards separable coordinates associated with
equivalent subspaces as equivalent, since one can obtain any such system
from any other by a Euclidean transformation. As proved in [76], there are
eleven types of distinct (nontrivial) orbits, and they match exactly the
eleven types of orthogonal separable coordinates. Representative operators

from each orbit and the associated coordinate systems are listed in Table
14.
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Table 14 Operators and Separable Coordinates for
(ﬂﬂ +m2)w = n ((II!IE! 13) =(I,y,2)]

Commuting operators §;, 5, Separable coordinates

10

11

P P Cartesian
X, V.2
Iz p2 Cylindrical
X=rcosg,
y=rsing, z=:z
{J5,P,), Py Parabolic cylindrical
x=(&*—1n%)/2,
y=8&n, 2=z
J$+d*Pt, P3, Elliptic cylindrical
d>0 x=dcoshacosp,
y=dsinhasinf, z=z
JJ,J3? Spherical
x=psinfcosg,
y=psinfsing, z=pcosl
J+J—a*(P}+ P}),J3, Prolate spheroidal
a>0 x=asinhnsinacosg
y=asinhnsinasing
z=gacoshncosa
J-J+a*(Pi+ P, JE, Oblate spheroidal
a>0 x =acoshnsinacosg
y=acoshnsinasing
z=gasinhncosa
(J1, Py} —{Jp Py}, 5 Parabolic
X =£&ncosq,
y=E&nsing, z=(£*—1?)/2
J2—c*P+c({Jy Py) +{J}, Py)), Paraboloidal
c(P}—PH+{J3 P} —{J, P,) x=2ccoshacosfsinhy
y=2¢sinhasinfcoshy
z=c(cosh2a+cos28—cosh2y)/2

Pl+aPi+(a+1)Pi+J-J, Ellipsoidal
- 1/2
(p—a)(r—a)(p—a)
2 2 2 "
JE+H{J]+P3), X H(H_l)
] [ (e=DE=1)(-1) 1"
3 A l—a
- up 11/2
E’= e ——]
i
JoJ,JE+bJ3, Conical
- (bu—1)(br—1) 7'/
1>b6>0 G
1-b
3 /2
b(p—1)(»—1) 7
A

TR0 -133503-5
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We will briefly study each of these systems to determine the form of the
separated solutions and the significance of the eigenvalues of the commut-
ing symmetry operators. We begin by considering solutions ¥ of the
Helmholtz equation that are eigenfunctions of the operator P;:

Py =iA¥,  ¥(x,y,z)=c™M®(x,y).
In this case we can split off the variable z, and equation (1.1) reduces to
(Ay+ [ =A2])®(x,7) =0, (1.16)

The Helmholtz equation in two variables. It follows from the results of
Section 1.2 (see Table 1) that this reduced equation permits separation of
variables in exactly four orthogonal coordinate systems. The corresponding
systems for the full equation (1.1) are 1-4 in Table 14.

Next we consider solutions ¥ of (1.1) that are eigenfunctions of Js:

U3 W=m¥,  ¥(x,y,z)=e""®(r,2).

Here r,p,z are cylindrical coordinates 2 and J,= — d,. We now split off
the variable ¢, and equation (1.1) reduces to

(9, +r '8, —m*/r*+3,_,+w?)®=0. (1.17)

This equation is class II, though it arises from a class I equation via partial
separation of variables. The reduced equation separates in five coordinate
systems, corresponding to systems 2, 5-8.

For spherical coordinates 5 the separated equations in p, are

(41
P”+EP’+(M2— ( ))P=D, (1.]8&)
P ,t:.t1

2

sin

0" +cotfd O + (f(!+ 1)— fﬂzg

)@):{J, (1.18b)
Jed¥=—[(/+1)"T.

The separated solutions take the form

P()=p"".(1r1)(@p),  ©O(0)=P " (cosd)  (1.19)

ISBN-0-201-13503-5

where J,(z) is a Bessel function and P/"(cos®) is a Legendre function (see
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(B.61v)). The coordinates p,f,@ vary in the ranges

0<p, 0<f<T, 0< <27

to cover the full space R”.
For prolate spheroidal (or ellipsoidal) coordinates 6 (Table 14) the
separated equations in n,« are

H" +coth(n)H’ + (—A+ a*w? sinh®>n —m? /sinh?n) H=0,
A" +cot(a)A’+ (A + a’w?sin*a — m? /sin*a)4 =0, (1.20)
(J-J—a’Pi—a’P; )¥=—AV.
Equations (1.20) are two forms of the spheroidal wave equation [7, 79]. The

corresponding solutions ¥ of (1.1) that are bounded and single valued in
R? are of the form

H(n)A(a)e™ = Ps\™l(coshn, a’w?) Ps\"l(cos a, a*w?)e™®,  (1.21)

m integer, n=0,1,2,..., —n<m<n,
where Ps/"(z,v) 1s a spheroidal wave function. The discrete eigenvalues
Am(a%w?) are analytic functions of a’w?. For a=0 the spheroidal wave
equation reduces to the equation for Legendre functions (1.18b) and
Ps\™(cosa,0)= P)™l(cosa). Furthermore, A"™/(0)= n(n+1). The coordinates
vary in the range 0< a <27, 120, 0< ¢ <27.

For oblate spheroidal (or ellipsoidal) coordinates 7 the separated equa-
tions in n,« are

H"” +tanh(n)H’ +(—A+ a’w*cosh’n+ m?* /cosh’n)H =0,
A" +cot(a)A’+(A— a*w?sin*a— m? /sin*a)A =0, (1.22)
(J-J+a’Pl+a*P})¥=—AV.
Again these equations are forms of the spheroidal wave equation. The

corresponding solutions ¥ of (1.1) that are bounded and single valued in
R take the form

Ps!™(— isinhn, a’w?) Ps/"(cosat, — a’w?)e™, (1.23)

m integer, n=0,1,2,..., —n<m<n,

with eigenvalues \"(— a’w?).
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For parabolic coordinates 8 the separated equations in &1 are
="+ E 'E’+(m2§1—mz/§z—?\):= )
H"+77'"H +(w0*n>— m?/n*+A\)H=0, (1.24)
((J1.Ps ) = (o P, )W =AY,

and the separated solutions take the form

3(€)=E”EIp(i fmgz/z) IF] (fﬂ/4w+(m+ I)/2

ifwiz),
m+1

(1.25)

H (n)=n"exp( = ion?/2)  F, ( A 2‘::'@?-).

The foregoing eight systems are the only ones whose separated solutions
are eigenfunctions of a second-order operator that is the square of a

first-order symmetry operator. The remaining three systems are somewhat
less tractable.

For paraboloidal coordinates 9 the separated equations in a, B, y are

oL
A" +(—g—Mccosh2a+ % cosh4a)A4 =0,

2.2

B” +(g+Accos2f— %msatﬁw:u, (1.26)

2.2

I’”+(~q+hccnsh'2?+%cﬂsh4ﬂ,ﬂ}r=ﬁ, g=p—ciw?/2,

where

G —e Pt P +e{J, Py))¥=—pu¥,

(1.27)
(cP;—cPi+{Jy P} —{J,, P, )¥=AV.

Each of the equations (1.26) can be transformed to the Whittaker—Hill

equation (6.28), Section 2.6 [127]. Single-valued solutions of (1.1) take the
form

¥(a,B,v)=gc,(ia; 2ca,\ /2w) ge, (B 2cw, A /2w)
Xge,(iy+7/2; 2cw,A /2w), n=0,12,...,p=p, (1.28)

or the same form with gc, replaced by gs, .
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For ellipsoidal coordinates p,v,p where 0<p<l<yr<a<u<owo for
single-valued coordinates, the separation equations all take the form

(40h©)7* £ (h(©)""* & x4+, +ag? )E (=0,

(1.29)
ﬁ(€)=(§—ﬂ)($—l)£, £=p,v,p,

with

(J+J+Pl+aP;i+(a+1)PI)¥ =AY,

(1.30)
(J3+ali+aP})¥=)\7.
For computational purposes it is more convenient to introduce the equiv-

alent separable coordinates a, 8,y defined by
p=sn*(a, k), v=sn’( B,k), w=sn*(v,k), k=a=1% (131}

where sn(z, k) is a Jacobi elliptic function (see Appendix C). The relation-
ship between «, 8,y and x,y,z is

=ik 'k’ 'dnadnBdny, y=-—kk' 'ecnacnfcny,

z=ksnasnfsny (1.32)
where cne, dna are elliptic functions and k' =(1—k?)."”2 To obtain real
values for x,y,z we choose a real, 8 complex such that Ref=K, and y
complex such that Imy= K" where K (k) is defined by (C.3) and K’'=
K (k’). To cover all real values of x, y, z once, it is sufficient to let a vary in
the interval [— K, K], B vary in [K—iK’, K+ iK'] (parallel to the imaginary
axis), and y vary in [— K+ iK', K+ iK’] (parallel to the real axis). In these
new variables the separation equations take the form of the ellipsoidal wave
equation

[ 5 +k2lz+kl}x| Sﬂ2£+ klmzsndflf(‘f):[}s ‘E:a&ﬁ!‘f' (133}

From the periodicity properties of the elliptic functions it follows that if
¢ 1s replaced by £+4Kn+4iK’'m in (1.32), where n,m are integers and £ is
any one of a, 8, v, then x,y,z remain unchanged. Thus only those solutions
E(§) of (1.33) that are doubly periodic and single valued in £ with real
period 4K and imaginary period 4iK’ are single-valued functions of x,y,z. =
The doubly periodic single-valued solutions of (1.33) are called ellipsoidal %
wave functions and are denoted by the symbol el(£) in Arscott’s notation [7, Z
Chapter X]. There are eight types of such functions, each expressible in the
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form

sn®zen’zdn?z F(sn?z),  s,¢,d=0,1,

where F is a convergent power series in its argument. The eigenvalues are
countable and discrete.

For conical coordinates r, p, » (System 11, Table 14) it i1s convenient to
set p=sn’(a, k), »=sn*( B, k) where k=5"'/2>0. Then

x=rk' 'dn(a,k)dn( B,k), y=irkk’"'cen(a,k)cn( B, k)

(1.34)
z=rksn(a,k)sn( B, k),

and the variables have the range 0<r, —2K<a<2K, K< f <K+2iK'
(see [7, p..24]). The separation equations are

R"+2r 'R'+(w—I(/+1)r ?)R=0,
A"+ (A= 1(I+1)k*sn*a)A =0,
B"+(A—1(I+1)k*sn*B)B=0,
JeJ¥=—1(I+1)¥, (J1+bJ])¥=AV. (1.35)

The first equation has solutions of the form R(r)=r""/ IJﬂ;_,_;}(mr), in
agreement with (1.18a). The latter two equations are examples of the Lame
equation. If a or B is increased by integral multiples of 4K or 4iK’, 1t
follows from (1.34) that x, y, and z are unchanged. Thus only those
solutions A4 («), B(3) of (1.35) that are doubly periodic and single valued
in a, 3, respectively, lead to single-valued functions of x,y,z. It is known
(see [7]) that doubly periodic solutions of Lamé’s equation exist only in the
cases where /=0,1,2,.... Furthermore, for positive integer / there exist
exactly 2/+ 1 such solutions corresponding to 2/+ 1 distinct eigenvalues A.
The solutions, exactly one for each pair of eigenvalues A,/, can be ex-
pressed as finite series called Lamé polynomials. There are eight types of
Lamé polynomials, each expressible in the form

sn“:xcn""adndaf?p(snlcr), s,c,d=0,1, s+c+d+2p=I,

where Fp(z) is a polynomial of order p in z. In Section 3.3 we shall study
these functions in more detail.

3.2 A Hilbert Space Model: The Sphere S,

In analogy with the methods of Chapter 1 we can introduce a Hilbert
space structure on the solution space of (l.1) in such a way that the
separated solutions can be interpreted as eigenfunctions of self-adjoint
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operators in the enveloping algebra of & (3). By an obvious extension of
arguments in Section 1.3 we can show that W(x) satisfies (A; +w?)¥(x)=0
if 1t can be represented in the form

I(x)= f f e Kh () dQUK) = I (h), 2.1)
53
X=(Xy, X X3), ]1=(k1,k1,k3).

Here k is a unit vector (k*k=1) that runs over the unit sphere §,:
ki+k;+ki=1,dQ is the usual solid-angle measure on the sphere, and 4 is

an arbitrary complex-valued measurable function on S, (with respect to
d{l) such that

f f |h(K)[2dUK) < 0.
Sz
The set L,(S,) of such functions 4 is a Hilbert space with inner product

Chihoy= [ [ I Ry () dS(K), (22)

or, in terms of spherical coordinates on S,

E={sin6‘cusq}, sinf sing, cosd ), 0<l<7 —7<p<m,

ooy (2.3)
dQUk)=sinf df do

and

Chohay= [ dy [y (8,9)ho(0.g)sindb.

The elements g(A4,a) of E(3) act on the solutions of the Helmholtz
equation via the operators T(g), (1.9), (1.12). Using (2.1) we find

T(g)¥(x)=1(T(g)h) (2.4)
whenever ¥ =1 (h), where the operators T(g) on L,(S,) are defined by
T(g)h(k)=exp(iwa*kA)h(kA), (2.5)
g=(A,a), A€S0(3), a€eR?

Thus the T(g) acting on ¥ induce operators (which we also call T(g))
acting on h. It is easy to verify directly that the operators (2.5) satisfy the

ISBMN-0-201-13503-5
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group homomorphism property T( g, g,)=T(g,)T(g,). Moreover, these op-
erators are unitary on L,(S,): '

(T(g)h,, T( ghy)={hy, hy), hjELE(SI ).

This result and (2.5) itself depend on the invariance of the measure under
rotations: dQ(kA4)=dQ(k).

A similar computation shows that the Lie algebra generators on L,(.S,)
induced by the generators (1.2) on the solution space are

Py =iwk,=iwsinfcosp, P,=iwk,=iwsinfsing, P;=iwk,=iwcosb,
J1=K30,,— ky 0 =singdy+cospcotfd,_,

Jy =k 0, — k39, =—cosqd, +singcotfa,

J3=ky 0, —k,8,,=—3,. (2.6)

In analogy with (1.12) these operators are related to the group operators
(2.5) by

T(g)=exp(¢'J;)exp(8'J, ) exp(y'J;) exp(a, P, + a, P, + azPs )

where @',0",4" are the Euler angles for 4. Furthermore, the operators (2.6)
are skew-Hermitian on the dense subspace @ of L,(S,) consisting of
infinitely differentiable functions on S..

We have shown that the T(g) define a unitary (irreducible) representa-
tion of E(3) on Ly(S,). The elements of & (3)* are easily seen to be
symmetric on °D and we shall show explicitly that their domains can be
extended to define self-adjoint operators in dense subspaces of Li(5,).
Corresponding to each pair of commuting operators listed in Table 14 we
shall find a pair of commuting self-adjoint operators S,S" on L,{S,) and
determine the spectral resolution of this pair. These results will then be
used to obtain information about the space ( consisting of solutions ¥ of
the Helmholtz equation such that ¥ =7 (k) for some h € L,(S,), (2.1). Here
X 1s a Hilbert space with inner product

(¥, ¥5)=Chy by, Y=1(h). (2.7)

(It is not hard to show that no nonzero 4 € L,(S,) can be mapped by I to
the zero solution of the Helmholtz equation). It follows that [ is a unitary
transformation from L,(S,) to J(. Also, the operators T(g) on K defined
by (1.9), (1.12) are now seen to be unitary.

We can also interpret each function ¥(x) in ¥ as an inner product

Y(x)=1(h)=<ChH(x,-)), H(xK)=e ke[ (5,). (2.8)
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Just as we saw in Section 1.3, the existence of the unitary mapping I
allows us to transform problems involving I to problems involving L,(S,).
In particular, if §,S" are a pair of commuting operators from Table 14, we
can interpret them as a pair of commuting self-adjoint operators on L,(S,)
and compute a basis of eigenfunctions for L,(S,):

thp — }\fapa S ffhp == Hf;n.pa <f;wf;~upf> =8 (A=N)8(p—p). (2.9)

Then the functions ¥, (x)=1( f) will form a corresponding basis in H
for the operators S, S constructed from the generators (1.2):

S‘PM =;‘k‘f['r1p, S"l}?ﬁj{. = "L‘Phﬂ. (2, 1[]}

These last expressions enable us to evaluate the integral for ¥,,» for they
guarantee that ¥, , is a solution of the Helmholtz equation that is separable
in the coordinates associated with S, S'. Furthermore, if V¥ is any solution
of (1.1) such that ¥=1(k) for some 4 € L,(S,), we have the expansion

T(g)¥(x)= AE (T(&)h. Sy ¥ru(x), (2.11)

which converges both pointwise and in the Hilbert space sense.

We now proceed to analyze our model L,(S,). Harmonic analysis
involving functions on the sphere is itself a topic of considerable interest.
Typically, such studies use only spherical coordinates 5 (Table 14) and
lead to theorems concerning expansions in spherical harmonics. However,
we shall analyze all eleven coordinate systems on S, that follow from
Table 14. In some cases we shall employ simpler models of our representa-
tions than L,(S,) to carry forward the analysis.

Since the spherical coordinate system 5 is treated in detail in so many
textbooks (e.g., [40, 45, 85, 128]), we shall here list only the most important
facts concerning this system, omitting all proofs. The unitary irreducible
representations of SO (3) are all finite dimensional. They are denoted by
D, [=0,1,2,...,where dimD,=2/+1. If {J1,J5,J5} are the operators on
the representation space ¥, of D, which correspond to the Lie algebra
generators (1.5), then there is an ON basis { f: m=/1—1,...,—1) for V,
such that

IS =mbls  JHP=[(Ixm+)(IFm) ]S (212)

where J == %J,+iJ,, JO=iJ;. Here, J*f"=J fO=0. If the group is
parametrized in terms of Euler angles (1.6), the matrix elements of the

ISBN-0-201-13503-5




32. A Hilbert Space Model: The Sphere S, 173

npgatﬂrs D(A)=exp(pJ;)exp(8/,)exp(y/;) with respect to the ON basis
{fm } 2

!
D(A)fi?= 2 D, (4)f",

n=—|[
are given by
(I4+m)!(I—n)! '/
! —chn—m . —n,m
D) (A)=i (+n)(I—m)! exp[:(nq:a+ my) ]P; (cosf)
(2.13)
where
sinf)” "(1+cosf) F" "1
P~™™ (cosh )= o) - Sened)
' I'(m—n+1)
—l—n.m—1[|cosf—1
}{ ]
ZFI( m_ﬂ+1 CDSS-I—]) (2.14)

is a generalized spherical function. (The matrix elements (2.13) are known
as the Wigner D functions [137].) The D! satisfy the usual group homo-
morphism and unitary properties

!
D,,(AA")= 3 D/ (4)D}, (4), A,A'€S0(3),
== (2.15)

D), (A=")=D., (4).

The special matrix element Dj,(4) is proportional to a spherical
harmonic:

dar MR
Do (0.8,0)=im( 571 ) Y (B,9) (2.16)

where

1/2

Gl —m) P (cosf )e'™ (2.17)

4 (l+m)!

Y (8,4)=

ISBEN-0-201-13503-5

and P (cos@)= P> ™(cos#) is an associated Legendre function.
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It follows from (2.12) that on V,
Jed=Jl+J3+Ji=—I(I+1)E (2.18)

where E 1s the identity operator.

Now consider the irreducible representation T of E(3) on L,(S,) defined
by expression (2.5). The restriction of T to the subgroup SO (3) is no longer
irreducible but breaks up into the direct sum

o
T|SO3)= @D, (2.19)
f=0

that is, 1,(S,) can be decomposed into a direct sum of mutually orthogo-
nal subspaces V,,

L,(S,)= 2 SR
[=0

where dim V/,=2/+1 and the action of the operators T(A4) on the invariant
subspace V, is unitary equivalent to D,. The elements h of ¥, are char-
acterized as the solutions of the equation J*Jh=—{[(/+1)h, or

(0gp+c0tf0y+sin 200, )h(0,9)=—1({+Dh(8,¢),  (2.20)

in terms of the coordinates (2.3). Here J+J 1s known as the Laplace
operator on the sphere S,. It follows from the foregoing results that the
self-adjoint extension of this operator (which we also denote J+J) has
discrete spectrum —/(/+1), /=0,1,2,,..., each eigenvalue occurring with
multiplicity 2/+ 1.

There exists a basis for V,, consisting of eigenfunctions fY(8,¢) of the
symmetry operator J°, which satisfy the relations (2.12) where

JE=e" " (£+icothd ), J°=-—id,. (2.21)

Indeed, from the recurrence relations (2.12) and the differential equation
(2.20) we find

fg}(ﬂff qj)= Yfm (91 {p)’ <Ym'! Yf?1i>= ﬁﬂ'amm“ (2'22)

Furthermore, it is straightforward to show that the action of the operators

1SBN-0-201-13503-5
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P; on this basis is given by

por | UTmEN=me )17 T Utmi=m) 77,
& (21+3)(21+1) = (21+1)(21-1) | .
papr_ | Em+ (I +m+2) Iﬂﬂf“?—w (I—m)(l—-m—1)1"? -
" (2143)(21+1) T @r+1)@-1 | "
R (I—m+2)(I—m+1)]"/? o (I+m)([+m—1)]""? .
¥ (21+3)(21+1) ek @r+n@i-1) L
(2.23)

where

P°=iP,=—wcosfl, P *=FP,+iP,=—we "sinf (2.24)
(see [82)).

The matrix elements of the translation operators T(E,a)=exp(a,P,+
a,P,+ a,P;) are given by

T, ime (@) =<T(E, ) fi. £

= [ emkyy (k)Y (k)aQ(k), (2.25)
53

or more explicitly,

[ @s+1D)@2i+1) 172
e =(4 12 S5

mror @=(4m)'" 2, | =5 | i
X Y™ (a,B)C (5,0; 1,0|1,0)C (s,m"—m; [,m|l’,m’') (2.26)
where
a=(asinacosf, asinasinf, acosa), a =0,

and C(-) 1s a Clebsch-Gordan coefficient for SO (3) [82, 124, 128]. (In
(2.26) the sum is actually finite because the Clebsch-Gordan coefficients
vanish except for finitely many values of s. The spherical Bessel functions
J.(z) are defined by

S =(n/22) %1 3(2), m=0,1,2,.... (2.27)
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Applying the integral transformation 7 to our ON basis { ) for L,(S,).
we obtain an ON basis {¥YY=7(f")} of solutions for the Helmholtz
equation that satisfy the eigenvalue equations

JoJUD=—1(1+1)¥D,  J,¥D= — jm¥d),

The eigenfunctions separate in the spherical coordinate system 5 listed in
Table 14 and are explicitly given by

‘I'E,‘:J{r,ﬂ',q:)=4wfff;(wr)}}”’ (6,0). [=0,1,2,....m=0L1-1,...,— .
(2.28)

These functions are frequently called (standing) spherical waves. They
necessarily satisfy the recurrence relations (2.12) and (2.23) where now the
operators are given by (1.2). Furthermore, the matrix elements (2.13) and
(2.26) can be used directly to expand the function T( g)¥4% in terms of the
spherical basis. In particular, the special case in which g=(E,a) leads to
the addition theorem for spherical waves:

Y (R.0,9)= 3 T,,, 11 @V (1,0,0) (2.29)
l,m

where R,®,® are spherical coordinates for the three-vector R=x+a.
Expression (2.29) was first derived in [39].

It 1s easy to show that the recurrence relations (2.12), (2.23) are also
satisfied by the non-Hilbert space solutions

V) (0.0, 9)=4mij_,_ (wp) Y/ (8,9), (2.30)

hence by any linear combination a¥)+ B ¥/ [124, p. 229]. As a con-
sequence, the matrix elements (2.13), (2.26) are valid for all of these basis
sets, and expansion formulas such as (2.29) hold for the set {¥/’} as well
as for the Hilbert space basis { ¥},

Next we compute the spectral decompositions of the operators corre-
sponding to systems 1-4 in Table 14, via our L,(S,) model. These systems
are characterized by the fact that P, is diagonal. From (2.6) it follows
immediately that the bounded self-adjoint operator iP;= —wcosf has
continuous spectrum covering the interval [—w,w] with multiplicity one.
Fixing an eigenvalue of iP; corresponds to fixing the coordinate 4. The
remaining coordinate ¢ can still vary and sweeps out a circle in S, as it
goes from — 7 to 7. For each of the systems 1-4 the remaining second-
order symmetry operator commutes with P;; hence it leaves the functions

ISBN-0-201-13503-5
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on these circles invariant and reduces to one of the four cases studied in
Section 1.3. The work of that section carries over immediately to yield the
following results:

1. Cartesian System

The eigenvalue equations are
Py fiy=—wcos(L, P, S = —wsin(y)sin(a) £, (231)
with basis eigenfunctions
S(p—a)d(6—vy)
(siny)'/? ,

S SL D =8(a—a)8(y—7).

fi(6,9)= —r<a<m, 0<y<m,

(2.32)

The corresponding solutions of the Helmholtz equation are the plane
waves

Vay (x)=1(/5)=(siny)"? exp[ iw(x, siny cosa + x,sinysina + x3c087)|.

(2.33)
2, Cylindrical System
The eigenvalue equations are
P 3= —wcos()fD iy SO =nf@), (2.34
and the basis of eigenfunctions is
S (y—8
i (0,9)= ( .;2= n=0,+1,+2 ...0<v<
(27siny)
(2.35)

Furthermore

‘Ifff?r (x)=I( j;f?} =i"(2wsiny)' /2] (@sin(y)r) exp[i(ngp + wz cos y)), (2.36)

X=rcosqg, y=rsing, z=z.

These are cylindrical wave solutions of the Helmholiz equation.
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3. Parabolic Cylindrical System

The eigenvalue equations are

iPyfid y=—wcos(v) [, {J3 Py} fO,=2pwsin(y) fO2,, (2.37)

and the basis of eigenfunctions is

(27siny) ~'*(1 +cusq;~)_"'“ﬁ'i(l —ccsq;:)*_“ﬁ_%ﬁ(ﬁ—?},
#+ ?(9 ®) = D<p<m,

| 0, — 7 <@<0,
f2,0.9)=12,00,—¢), —o<p<on,0<y<T,

2.38
ISP =8 (=) (1), LSO >=0, Al

The corresponding solutions of the Helmholtz equation are

1 a2
¥, 0=102)=( ) sectiniD,,s(o8)D_,_1(om)
+D,_1(~0B)D_,,_i(—ome=e,
YO (Ema)=¥D ¢ -2, o=e Qusiny)/, 239
x=(2=1)/2,y=in, 2=z.

4. Elliptic Cylindrical System

The eigenvalue equations are
iP; fiP, = —wcos(y) f& 2, (Jj"’-i- d<Ps) D =A t=s,¢, (2.40)

and the basis of eigenfunctions is

frey (0. @)=(msiny)~'/2ce,(9,9)8(0—7), n=0,12,...,

[0, 9)=(msiny) " ?se, (9,9)8(0—7), n=1,2,..., (2.41)
e
q:df sin’y, O<y<.

The eigenvalues A,. are discrete, of multiplicity one, and related to the
eigenvalues a of the Mathieu equation (B.25) by a= —A —  d%w?sin?y. The
(£} form a basis for L,(S,) satisfying

Ly
ﬂf T?ﬁ ' "r aﬂﬂ'aﬂ'ﬁ (T e TF)B t! r; = .T,C. (2'4'2)
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The corresponding solutions of the Helmholtz equation are

VY (x)=C,(siny)'/*Ce,(a,q)ce,( B,q)expliwz cosy),

p= a2
(2.43)
i, (x)=S,(siny)'/%Se, (a,g)se,( B8, q) expiwz cosy],

n=1.2...,

where Ce, and Se, are modified Mathieu functions ((3.40), Section 1.3)
and C,, S are constants to be determined from the integral equations
¥ =1 f v>)- The elliptic cylindrical coordinates a, 3,z are defined by

mr-,.-

x=dcoshacosfS, y=dsinhasinf, z=72.

The spectral decompositions for systems 6-10 were first computed in
[22], though 11 was studied earlier in [106]. The results are as follows.

6. Prolate Spheroidal System

The eigenfunction equations are
(I-9-aP=a2P}) [ =~ NS iUy fS=mf S, (244)
and the ON basis of eigenfunctions is

(n—|mD'(2n+1)
(n+]|ml)!(4m)

19 (8,0)= l Ps!™ (cosf,a’w?)e™?.  (2.45)

(The first eigenvalue equation (2.44) takes the form of the second equation
(1.20).) Here n=0,1,2,...,m=n,n—1,..., —n and the discrete eigenvalues
are denoted A" (a mz) WE have: { f{9£©) © y»=40,.08, .1in the normalization
adopted by Meixner and Schifke [?9] T’he spheroidal wave functions are
frequently defined by their expansions in terms of associated Legendre
functions:

Psi"l(x,d’0?)= 3 (- l)kﬂ,llek (@*w?)P)m,. (x) (2.46)

2k=|m|l—n

(see [7, p. 169]). Indeed. substituting (2.46) into the spheroidal wave
equation, one can easily derive a recurrence formula for the coefficients

anrf?:!k'
The corresponding basis of solutions for the Helmholtz equation is

Voom(X)=1(fi) = C7 (a*w?)Ps)™ (coshn, a®w?) Ps!™ (cos o, a%w?)e ™*

(2.47)
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where C"(a*w?) is a constant to be determined from the integral equation.

This result 1s easily obtained from the fact that *If{,,‘f'{ﬂ must be separable in
the coordinates

x=asinhnysinacosp, y=asinhnsinasing, z=acoshncosa.
(See the corresponding argument for expression (3.38) in Section 1.3.)

7. Oblate Spheroidal System

The eigenvalue equations are
(J-J+a’Pi+a’P} ) fi)=—NfD i =mfi.  (248)

and the ON basis of eigenfunctions is

1/2

—|m|)!2n+1 -
(” |m|) ( il ) PS,L““| (cnsﬂ’ —glmz)elm, (249)

(n+|m|)!4n

fD.(0,9)= [

n=012,.... m=nn—1,..., —n.

(Here the first eigenvalue equation (2.48) takes the form of the second
equation (1.22).) The discrete eigenvalues are A"l — a2w?).
The corresponding solutions of the Helmholtz equation are

R C)=1(17%)
= C" (a*w?)Ps\™ (— isinhn,a’w?) Ps/™ (cosa, — a’w?)e™®  (2.50)
where C™(a’w?) is a constant to be determined from the integral and
x=acoshnsinacosg, y=acoshnsinasing, z=asinhncosa.

8. Parabolic System

The eigenvalue equations are

({(J1, P2} = (V2 P DA=20f0) 0 =mf),  (251)

Here {J,,P;} —{J5, P;} =2iw(cosf@+sinfd,) is first order and has a unique
self-adjoint extension. The eigenfunctions are

— iA
[1&11(9/2)] :
(8) = — 1 i
fhim(gi "P) (2'?7'] Einﬂ € ms
RIS B 2.52)

<f.?l(|..g;;:'r! l‘ﬂ‘{n'> = ﬁ(}" _}"',) Smm"
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The corresponding solutions of the Helmholtz equation are
o (x) =1 (£

_ TN I‘( 1—m+f}.)r( I—m—f}’i)%mﬂ’_mﬂ

Enw 2 2
exp(— im /2)wé’ exp(im/2)wn’
X N e exp(imep).
{ V3 A2, —m/2 NG )
(2.53)
Here
z“‘"#b"lf;_Ifl (]+P,)/2-—ﬂr
= 2.54
mﬂ,pf?(‘?) 1-1(1 + H-} IFI ( et L z ( )
1s a Whittaker function [26, p. 12], and
x =£ncosg, y=&sing, 3=(§2—ﬂ2)/2*
9. Paraboloidal System
The eigenvalue equations are
(J5— P+ c{Jy P} +c{J 1, Po)) id = — tn= Fids
(2.55)

(cP;—cPi+ {(Jo Py} — {Jlipz]}f;ff;f:zw}*ﬁﬁ
and the basis of eigenfunctions 1s

i
[tan(6/2) ] icw
pe exp( = Tms&cﬂszm)

f6,9)=@m) /2

s 2cw, A
{g""(q’ S0 A s =1 ikl 056)

gs, (@;2cw,\)’

where gc, and gs, are the even and odd nonpolynomial solutions of the
Whittaker—-Hill equation. The normalization of these functions is that
adopted by Urwin and Arscott [127]. We have

RS> =8,,8,8(A=N).

The corresponding solutions of the Helmholtz equation are

Vi (x) = K} (we, M) gt,,( B; 2cw, M) g, (ia; 2cw,\)
X gt,(iy+7/2;2cw,A), t=s,c, (2.57)

i
2
ey
o or
n
=
i
Z
fua]
7]
—
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where the constants K’ are to be determined from the integral equation
Vi =1(f,a)- Here,

x=2ccoshacosBsinhy, y=2csinhasinfcoshy,
z=c(cosh2a +cos2—cosh2y)/2.

10. Ellipsoidal System

We adopt elliptic coordinates on the unit sphere:

172 I 1/2
k,=[(i_ﬂ)(1_a)} * kz=[{3_l)(r_1)]ﬁ, k3=[£]j, A58

a(a—1) | —a a

O<r<<l<s<q.

Then the eigenvalue equations

Sf=Af, S'f=pf, S=P2+aP?+(a+1)Pi+J*J,

S'=J}+all+aP;, (2.59)
become
[ S—i?{aﬂﬁ 055 ) — W (s+ t)—w3(1 +a}]f=lﬁ
[ﬁ(f 8,5 55 )—mzﬂ] =5 (2.60)
where

3, =[(a—s)(s—1)s]""3,, 3p=[(t—a)(t—1)t]""?,.

We can find solutions of these equations in the form f(s,7)= E(s)E5(1)
where

(49, —w’s*+Ns+p)E (5)=0,

(40,5 + w2 =Nt —p) Ey(1)=0, o Al (2.61)

These expressions are algebraic forms of the ellipsoidal wave equation (see
(1.29)), so the E; are ellipsoidal functions. Furthermore, if we set s=
sn2(1, k), =sn*(, k) where k=a~'/2 then the separated equations take
the Jacobian form

(8¢ — k2u— k2N sn’+ K0’ sn8)E; (§)=0,  £=n.j=12, (2.62)

ISBM-0-201-13503-5

of the ellipsoidal wave equation (1.33). The new coordinates 1,y also have
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the property that they allow parametrization of the entire sphere S, rather
than just the first octant. Indeed

1=k'"'dn(n, k) dn(y, k), k,=ikk'~'cn(n, k) cn(y, k),

(2.63)
k3= ksn(n,k)sn(y, k), k'=(1—k?/2
and these coordinates cover §, exactly once if i varies in the range
—2K<7<2K and v varies in the range K<y < K+2iK" where K=K (k)
is defined by (C.3) and K’ = K (k).

Since k,,k,,k; remain unchanged when integral multiples of 4K and
4iK" are added to n or i, we are interested only in those single-valued
solutions E;, of (2.62) which are also fixed under these substitutions:
@(£+4Kn+4fK’n}=@(£},n,m Integers. As we noted in the preceding
section, these doubly periodic functions are called the ellipsoidal wave
functions. They have been studied in detail by Arscott [7]. The spectrum of
S and S’ is discrete, each pair of eigenvalues denoted A p . The
corresponding ellipsoidal wave functions are el; (£),£=1,¢, and the eigen-
functions of S and S’ are denoted

Som (nu) =elp/ (n,9) =el™ () el (y) (2.64)

where n=0,1,... and the integer m runs over 2n+ | values. We assume the
basis {elp,"} is normalized to be ON:

lelpielpis= 8,0, .

(T'his determines the solutions (2.64) only to within a factor of absolute
value one. An essentially unique normalization is given in [7, p. 240]. Note
also that dQ(k)=ik*(sn’n—sn)dndy.) In general these functions are
rather intractable and very little is known about their explicit construction.

The corresponding solutions of the Helmholtz equation V!%y)=
1(f19) are

Wi (X) =EL (. B,y) = K" (w,k) el(a) el7( B ) el () (2.65)

where the constant K," is to be evaluated from the integral. Moreover, this
integral reads

Elﬂm(a,,{};'y)=ffexp[w(—;}:—édnndnﬁdn?dnndng&‘
S5

2
+ % cnacnfcnycnneny

+ szsnasnﬁsn}fsnn sn 1{;) J elp(n,v) dﬂ{'f{), (2.66)
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a nontrivial equation expressing the product of three ellipsoidal wave
functions as an integral over a product of two such functions. Here the
coordinates «, 3,y are related to x,y,z by expressions (1.32). We were able
to evaluate the integral (2.66) to within a constant multiple because we
knew in advance that it was separable in a, 3, y.

3.3 Lamé Polynomials and Functions on the Sphere

The eigenvalue problem corresponding to the conical coordinate system
11 (Table 14) is of special interest even though it is relatively intractable.
Only for conical and spherical coordinates does the eigenvalue problem
become finite dimensional; that is, only in these two cases is the problem
reduced to finding the eigenvalues of an n X n matrix.

For functions f on the sphere §, the eigenvalue equations associated
with system 11 in Table 14 are

Jodf=—1(+1)f. (JE+bIE)f=M 1>5>0. (3.1)

It follows from (2.19) that

Ly(S,)= 2 DV,
[=0

where dim V,=2/+1 and V, transforms irreducibly under the representa-
tion D, of SO (3). Thus J+J has the spectrum —/(/+1),/=0,1,2,..., each
eigenvalue occurring with multiplicity 2/+ 1. Since S=J+J and S'=J}+
bJ} commute, it follows that the subspaces ¥V, are invariant under the
second operator. Thus we can reduce our search for eigenvalues of S’ to
the (2/+ 1)-dimensional space ¥,. This space has an ON basis { £}, (2.12),
and the restriction of S’ to ¥, can be represented by the (2/+1) X(2/+1)
real symmetric matrix S’ with respect to the basis {f}. The 2/+1
eigenvalues of ' are the eigenvalues of S’ in V,.

There is another way to look at this problem. The elements h of V, are
characterized as the solutions of the partial differential equation J«Jh=
— [ (14 DA, (2.20). It is straightforward to show that the symmetry algebra
so(3) of this equation is three dimensional (neglecting the identity symme-
try E) with basis {J,,J,,J5}, (2.6). The corresponding symmetry group is
SO (3). The space 5 /q of symmetric second-order symmetries modulo

the multiples of J+J is five-dimensional with basis J7,J{, {J,,.J5} a
(J 1.3}, {J5J5}. Under the adjoint action of SO (3) this space is decom- &

posed into two oribt types, one orbit with representative J; and one orbit 5

type with representative J+ bJ3, 1 >b>0. Moreover, it is known that the §
differential equation (2.20) for the Laplace operator on S, permits separa- 3
tion in exactly two coordinate systems [106]. One is the spherical coordi- §
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nate system {f,@} in which we have originally expressed (2.20). It corre-
sponds to the diagonalization of J3. The second is the elliptic coordinate
system {s,1}, (2.58), which corresponds to the diagonalization of J2+ bJ2.
The elliptic system was first studied from the group-theoretical point of
view in [106] (see also [58]).

Whichever point of view is adopted, we need to compute the matrix S
of the operator

S'=Ji+bI7=3(b=1)((J* P+~ ))+1(b+ D((7°)*—=1(1+ 1))

with respect to the basis { f{”} and compute the 2/+ 1 eigenvalues A of this
matrix. As is well known [69, p. 96], this problem is equivalent to comput-
ing the roots of the characteristic equation

det(S’—A8)=0 (32)

where & is the (2/+1)X(2/+1) identity matrix. As shown in [106], for
/<7 one can explicitly find the eigenvalues \ as roots of polynomials of at
most fourth order. However, for / > 8 the polynomials are of higher order
than four and numerical methods must be used to approximate the roots.

We can use group theory to further aid in the classification of these
eigenvalues. Note that both the Helmholtz equation (1.1) and the Laplace
equation on the sphere (2.20) are invariant under the full rotation group
O(3). (This group is generated by SO (3) and the space inversion operator
P: x——x. A matrix realization is the group of all 3 %3 real matrices A
such that A4'=E,. Here detA= +1 and det4d = +1 if and only if A€
S0 (3).) The elements of O (3) that do not belong to SO (3) (the rotation-
mversions) are bounded away from the identity and are not obtainable by
exponentiation of elements from the Lie algebra so(3). The existence of
these inversion symmetries must be verified by inspection.

In addition to P we shall be especially interested in the operators Z:
(x,9,2)—(x,y, — z), reflection in the x—y plane; X: (x,y,z)—=(—x,y,2);
reflection in the y—z plane; and Y: (x,y,2)—(x, —y,2), reflection in the

x—z plane. Using (2.1) to transfer the action of these operators to the
sphere, we find

Ph(ﬁj=h(_ﬁ}: Zh(ﬁ)=h(k]:kls “‘*"fa}a (3‘3}
Xh(k)=h(—ky,kyp,k3), YR(R)=h(ky, — ky k), hE Ly(S,).

Obviously the square of each of the commuting operators P,Z, X, Y is the
identity operator £ and each operator is self-adjoint. Moreover, these
operators each commute with S'=J7+bJ2 and S=J-J. It follows that

there exists an ON basis for ¥, consisting of simultaneous eigenvectors of
P.Z X,Y and S’'.
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The possible eigenvalues of P,..., Y are *+ 1. To determine the multiplici-

ties of these eigenvalues in V), we apply the operators (3.3) to the explicit
basis { £{%(8, )= Y,"(8,9)}, (2.22). The results are

Pf=(=1) 13  ZP=(-1)"f,

Xfh=pl) —  yh=(=1)" )

Note that P=(—1)E on V,. To compute the multiplicities of the other
eigenspaces we define eigenspaces

(34)

&G?={h€V,: Xh=ph,XYh=gh}, p,q==*], (3.5)

and set nf?=dim 9. Since Y=X (XY) and Z= XYP, we have

Ph=(—=1)'n,  Zh=(—1)'gh, Xh=ph, Yh=pgh, (3.6)
for any h € (P9, Furthermore,
Al Tehma= TC=: (e

Using (3.4) we can count the dimensions of these eigenspaces. The re:sults
are presented in Table 15.

Since each eigenspace is invariant under S’, we can classify the eigen-
functions of S’ by their symmetry properties with respect to X and XY.
Thus an ON basis for ¥, can be denoted { f{9}:

Jodfti=—I1(I1+1) 0, (J2+bI}) o=\,

Xfre=pfra, XYfri=qfte, (3.7)

(It can be shown that there is no degeneracy; that is, there do not exist two
linearly independent solutions of (3.7) for fixed /, p, g, A.)

In terms of elliptic coordinates on the sphere, (2.63), the eigenvalue
equations (3.1) separate to give the ordinary differential equations

E' (5)+(:«—'f(f+ Dk*sn’§)E; ()=0, =12 ¢=n,4,k=b"7% (3.3)

where f(n,¢)= E,(1)E,({). As mentioned in the discussion following ex-
pressions (1.35), equation (3.8) is the Lamé equation. It has 2/+ 1 linearly

Table 15 Dimensions nf? of the Eigenspaces /4

+ + + — —ap ===

n ki & y
! even 14+1/2 //2 1/2 [/2
[ odd (1+1)/2 (1+10)/2 (—=1+1)/2 (1+1)/2
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independent solutions (the Lamé polynomials) that are single valued on S,
each expressible in the form

sn’éenédn?éF, (sn?f),  s,c,d=0,1, s+ec+d+2p=1, (3.9)

where F,(z) is a polynomial of order p in z. The eight types of such
polynomials correspond to the eight categories listed in Table 15. Since
each eigenspace has multiplicity one, the eigenfunctions must take the
form E(n)E (¢) where E(z) is a Lamé polynomial.

Rather than continue our analysis of the operator S’ on L,(S,), we shall
study a simpler one-variable model for the spectral resolution of S’. We
consider the (2/+ I)-dimensional space W, of polynomials g(z) with order
<2/ in the complex variable z. We introduce a scalar product (-,-) on W,
such that

(2" =(l—m)!(I+m)'s,,, myn=Lil—=1...;—1: (3.10)

or explicitly,

@+ D(gug) =" [ [~ axay(1+1zP) " gy (2) ()

o 2ar =y . )
=f.rr"'_£' rdrj;} do(1+ r?) " 2,g](J'"e"i")5,72(1'.'5*"":') (3.11)

for g, € W,. Here z=x+iy=re' and the integration region is the complex
plane. The operators J,,J,,J; defined by

J|=—§(1—22)£—Hz, J1=%(]+zl)£—!z, J3=-Ez-;—z+h’,

(3.12)

leave W, invariant and satisfy the commutation relations [/, J,]=3 sl

of so(3). Moreover, J+J=—/(/+1) in this model. With each function
g € W, we associate a function G € V,, defined by

G(k)=(g.H(k, -)=1I'(g). (3.13)
H (k,2)= (1) " [ @I+ 1)/47] [ ki (1= 22) /2 + iky (1 4+ 22) /24 k2]

Here, kE S,. The transformation I’ from W, to V, 1s unitary. Indeed it
follows from (3.10) that

zi’+m

[(1+m)!(I—m)! ]

gl(z)= m=L1—1,...,—1, (3.14)
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is an ON basis for W,. Since

H(kz2)= X Y/ (6,4)8,(2) (3.15)

m=—{

(see [128, p. 147] for a group-theoretic proof of this fact) for k=
(sinf cosy,sinfsiny, cosf) we have

I'(g)=""(6.9)=1, (3.16)

where the spherical harmonics ¥;” form an ON basis for V,. From (2.12)
and (2.22) we see that the operators (3.12) acting on W, induce the
operators (2.6) on V;:

JG(k)=1(Jg(z)), Jj=123. (3.17)

We will now study the eigenvalue problem for S’ on W,: (J2+ bJ?) g(2)
=Ag(z). We find
; d*
§'=[(1=02-A+R)][1+k)2~(1~0)] <5
d
+2Q21-1)z[ 1+ k2 —23(1-k?) ] =
+2[ 1+ k2 +(1-k?)(Q2[-1)2%], k=b'2

If we now write g(2)=(k")[(a — z2)(1 — az?)]"/?8 (w), where k'=(1 — k?)'/?,
a=(1+k)/(1—k), and make the change of variable

sn(w,k)=—i(1+a)z[ (a—z2)(1 —ﬂ:zz)]_”z, (3.18)
the eigenvalue equation reduces to

dl
ﬁ+h-ﬁ'(:’+ 1)sn?(w, k) |8 (w)=0, (3.19)

the Lamé equation.

It follows from (3.9) that the 2/4+1 Lamé polynomial solutions of this
equation are exactly the solutions that correspond to elements g(z) of W,
Let us see how the classification of Lame polynomials into eight types
exhibits itself in our new model. From (3.4), (3.14), and (3.16) it follows
that X and XY on W, take the forms

Xg(z)=2z%(z""), XYg(z)=(—1)'g(~2), (3.20)
forge W,
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Just as in our discussion of the eigenspaces (F? of ¥V, ((3.5), (3.6)), we
can require that the eigenfunctions g(z)=(k')[(a—z%)(1— az?)]/28 (w)
also satisfy the equations Xg= P8, XYg=gqg, p,g= = 1. Using these expres-
sions, as well as (3.9) and Table 15, we obtain relations between the
exponents a, b, ¢ of (3.9) and the eigenvalues p, g as listed in Table 16. As
shown in [7, Chapter 9], the Lamé polynomials in each symmetry class can
be labeled by the integer n=0, 1, .. ., nf?—1 where n is the number of zeros
of the polynomial in the interval 0< w < X (k). Recurrence relations for the
coefficients in the polynomial 1‘?,,,,,{5:12 w) can be obtained by substituting
expression (3.9) into (3.19) and equating coefficients of independent mono-
mials of elliptic functions sn®wen‘wdn?wsn?w. One obtains polynomial
solutions if and only if A is one of the 2/+ 1 distinct eigenvalues Af7,

Table 16 Symmetry Classes of Lamé Polynomials
sn’wen’ wdn?wFp(sn?w), s,¢,d=0,1, s+c+ d+2p=1

(p,9) s ¢ d Dimension nf?
! even +,+ 0 0 0 14+1/2

ey — I I 0 [/2

—,+ 0 I 1 l/2

= 1 0 1 /2
[ odd +,+ 1 0 0 (1+71)/2

+,— 0 1 0 (1+1)/2

—;F I 1 1 (—1+10)/2

e 0 0 1 (1+7)/2

We have shown that these eigenvalues may be obtained in two different
ways: either in the traditional manner through the search for polynomial
solutions of the Lamé equation as described by Arscott, or by solution of
the characteristic equation (3.2). In the second method, the matrix S’ is
explicitly determined with respect to the ON basis { £, Thus, once an
eigenvalue is computed, the corresponding eigenvector f{¢ can be directly
obtained in terms of its expansion coefficients ar? in the { £} basis:

Bh= 2 ane i), (3.21)

(In practice one obtains three-term recurrence formulas for these
coefficients (see [106].) On the other hand, the traditional study of the
Lamé equation leads to three-term recurrence formulas for the coefficients
in the polynomial F ,(sn’w)=3%_ b.sn¥w. The coefficients afl  are of
special interest to us because they define the overlap function between the
Lamé basis {f#?} and the canonical basis {f7}. However, it is the
coefficients b, which are tabulated in the literature on Lamé polynomials.
The W, model can be used to relate these coefficients. Let [A%9(2)} be
the ON basis for W, consisting of eigenfunctions of S’ classified by
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symmetry type and number of zeros. Then (3.21) implies

AP (D)= D are gD = ars [ (1+m)(I-m)!] "% (3.22)

L]

that is, the overlaps are essentially the coefficients of z/*”, —/<m<[. On
the other hand

1/2

p
Aﬁq"(z}=(k')f[(fx—zl)(l—ﬂszz}} si’wen®wdn?w ) bsn¥w  (3.23)

=0

where w is related to z by expression (3.18). Expanding (3.23) as a
polynomial in z and equating coefficients of z'*” in (3.22), (3.23), we can
express each coefficient af%, as a finite sum of coefficients b;. Some of the
details of the straightforward computation can be found in [58].

The transformation (3.13) can now be used to map our results to V. If
{A?%} is the ON basis of eigenfunctions for §* on W,, then

o= cpPERT (n)ER ($)=1'(AL")=(A" H (k,)) (3.24)

(where 7, ¢ are elliptic coordinates on §,, (2.63)) is an ON basis of
eigenfunctions for §* on V,. Here Ef9(¢) 1s a Lameé polynomial of the
same eigenvalue and symmetry type as A?%. The constant ¢ is to be
determined from the double integral once the explicit normalization of
EF9 and AP? is fixed. (The integral in (3.24) can be evaluated because we
know in advance that it satisfies the Lamé equation in n and {, and we can
easily check that the integral is periodic in these variables.) Relation (3.21)
can now be interpreted as an expansion of products of Lamé polynomials
in terms of spherical harmonics.

The totality of all eigenfunctions (3.24) for /=0,1,2,... forms an ON
basis for L,(S,). Mapping this basis to the Hilbert space of solutions of the
Helmholtz equation via the transformation (2.1), we find

i (x)=1(fF ) =dpj(wr)Ef:? () ER? (B), (3.25)

in terms of the conical coordinates (1.34). Here j,(z) is a spherical Bessel
function, (2.27), and 4 is a constant that can be determined, in principle,
from the integral.

Let us note that (3.24) and (3.25) can also be interpreted as nonlinear
integral equations satisfied by Lamé polynomials. In this connection we
remark that the evaluation of the integral (5.16) in [58] is in error. This
integral should be replaced by (3.24).

The W, model can also be used to study Ince polynomials (see [21]).
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3.4 Expansion Formulas for Separable Solutions of the
Helmholtz Equation

From the discussion in Chapters 1 and 2 it is evident that to expand a
solution T(g)¥{(x) of the Helmholtz equation in terms of the eigenfunc-

tions (¥} it is sufficient to compute the expansion coefficients
(T(g) 2.7 in the L,(S,) model:

T(2)¥(x)= 2 (T(8) . f)FD (x). (4.1)
ik

Here we list some of the more tractable expansion coefficients in the case
where T( g) is the identity operator. 1

The overlap functions ( f{ f_}. f,ﬂ) relating any system { f{ /(k)} with the
Cartesian system (2.32) are trivial:

(RS> =(sin T)Iﬁf;{ﬁ'(sin}f{:{:ﬁ a, Siny sina. cosy). (4.2)

Moreover, the overlaps relating the eigenfunctions for systems 1-4 in
Table 14 can easily be obtained from the corresponding overlaps for
solutions of the Helmholtz equation (A,+w?)¥ =0 listed in Section 1.3.
Indeed, the overlaps take the form

W F2D=8(y—y XA LD, 1<i,j<4, (4.3)

where (f{/,f{ is the corresponding overlap computed in Section 1.3
with the L,(S,) model.

The overlaps { £, f{*).> between the spherical and parabolic bases were
computed in [95]:

g gy=s, T { 21+ 1)(I+ |m])! }'f-’v

(|m]!)? 4 (1—|m])!

' —i +1
2 T‘( A+ [;ﬂ + | )F( A +2|m| )

|m| =1, |m|+ 1+ 1, (iA+|m|+1)/2

1
im|+1, |m|+1

X 3F, ( (4.4)

=0 L ek



192 The Three-Variable Helmholtz and Laplace Equations 3.4.

The overlaps between the spherical and prolate spheroidal bases are

(n—m)!({+ m)! (2r1+1)

_ \@m+i=-n)/2
ot (1) [(ﬂ+m).(!—m).(2!+1) i (@),
m' =0
D L |
 [(ntm)2n+1)
f=n)/2 m
ﬁmm'('"]){ } (n—m)'(23+1) ] HL .fl n(ﬂzmz)s
m’ <0,

(4.5)
where the coefficients a!’, are defined by (2.46).
The overlaps between the cylindrical and prolate spheroidal bases are
1/2
Psl™ (cosy,aw?)s,,. (4.6)

FITHIT

(n—|m)!(2n+1) 2o
(nt[mh2 7

Chmdlr= [

and the overlaps between the parabolic cylindrical and prolate spheroidal
bases are

1/2

(|l (Brs-1) Ps)™ (cosy,a’w? ) fid fi2)

(n+|m|)!2

SIn Y

O fO) =[

(4.7)

where the overlap ( f@, 3% is defined by (3.50), Section 1.3. The overlaps
between the elliptic cylindrical and prolate spheroidal bases are

1/2
Ps"l (cosy,a’w?)4" (4.8)

(1O, 1 = [ (n—|m|)!1(2n+1) sin'}f]

(n+|m])!

where the Fourier coefficient 4" is defined in terms of the Mathieu
functions pe, (g, q), p=s,c, by

pe(pq)= 2 Aye"™. (4.9)

m=—0o0

The corresponding overlaps for oblate spheroidal coordinates can be
obtained from the prolate overlaps (4.5)-(4.8) by making the replacement
a’w?— — a*w? in the spheroidal wave functions.

Arscott [7, p. 247] shows how to compute the overlaps between the
conical basis 11 and the ellipsoidal basis, ¢f'?.fP4% by exhibiting a
three-term recurrence relation obeyed by the overlap function.
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The remaining overlaps are more complicated than those we have listed.

It is easy to construct a bilinear generating function for all basis sets of
solutions of the Helmholtz equation listed here. Let {/.(K)} be one of the
eleven bases for L,(S,) constructed earlier and let {¥,,(x)} be the corre-
sponding basis for the solution space of (A;+ w?)¥(x)=0. Then

‘PJ.#(K) =i (f;\p.) = <f}m?H{K5 )

where H (x, ﬁ)=exp[—imx-ﬁ]EL1{S1) for each x&€ R?. An explicit com-
putation yields

CH(x,-), H(x', ')>=4w[sin(mﬂ)/mﬂ], R*=(x—x)*(x—x’). (4.10)

On the other hand
<H(K! -)! H{KI'J -)>= ; <I'H(x! ')thj1><f.-"q.|,?H(Kr? -)>
M

=2 ‘T’;.m(x)‘i’h#(x’}, (4.11)
ALl

and comparison of (4.10) and (4.11) shows that 47sin(wR)/wR is a
bilinear generating function for each of our bases.

Finally, as shown in [128] and [95], each of our eleven bases (¥}
considered as functions of w, 0<w< 00, can be used to expand arbitrary
functions f(x) on R;, square integrable with respect to Lebesgue measure.

3.5 Non-Hilbert Space Models for Solutions of the Helmholtz
Equation

There are obviously many physically and mathematically interesting
solutions of the Helmholtz equation that are not representable in the form
I(h), (2.1), for hEL,(S,). We shall investigate a few group-theoretic
methods for obtaining such solutions and relating different types of separ-
able non-Hilbert space solutions. These methods are considerably less
elegant but more flexible than the techniques discussed earlier. Further-
more, they can be applied to the differential equations treated in Chapters
| and 2.

We begin by considering transforms 7 (4), (2.1), where the domain of
integration is a complex two-dimensional Riemann surface rather than the
real sphere S,. In particular we set

k=(ky,kyks)=(=3(e+17)(1+82)"% 5=+ 82) 7 ig) (5.1)
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where ¢ and 3 range over complex values, and write

‘P(K)=fjsdﬁ%h(ﬁ,f)ﬂxp[ L %(14—‘33}”3
X (x4 )40 =0}~ |=1).  (52)

We assume that the integration surface S and the analytic function h are
such that I(h) converges absolutely and arbitrary differentiation with
respect to x, y, and z is permitted under the integral sign. Since k7 + k3 +
k3=1 even for arbitrary complex B8 and ¢, 50, it follows that ¥(x) is a
solution of the Helmholiz equation

(A;+w?)¥(x)=0. (5.3)

Integrating by parts, we find that the operators P, J;, (1.2), acting on the
solution space of (5.3) correspond to the operators

Ji=fr="(1(1+,93)”zaﬂ+ L a), Jo=13,

(1+82)7*

Pi=m(l+ﬁ1)lﬂri', PO= —jwp,

(5.4)

acting on analytic functions A( 8,¢) provided S and h are chosen such that
the boundary terms vanish:

J*WU=[(J*h), P*¥=I(P=h),

and so on. Here as usual J *=%J,+iJ,, J°=iJ;, P*=FP,+iP,, P'=
iP,,

For our first example we set h=(27)"'/? and integrate over the con-
tours C; and C, in the B and 1 planes, respectively (Figure 1).

In this case & satisfies the equations J+*JA=0, J°% =0 and it is straight-
forward to verify that W(x)=1(h) satisfies the same equations for z >0.
Thus, ¥(x) 1s independent of the spherical coordinates 8, ¢ and is a linear
combination of the Bessel functions p~'/%/, 5(wp) and p~'/2]_, ,(wp),
(1.19). To determine the correct linear combination we evaluate (5.2) in the

special case where x =y =0. Then the integral becomes elementary and we
find

¥(0,0,2)=(i/wz)(2/7) %™,  z>0.
Thus we obtain

¥(x)=—(wp) " "*H{))(wp) (5.5)
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A &,
[

® G, C

—; PBoplane ¢ plane

Figure 1

where H,”)1(z) are Hankel functions of the first (j=1) and the second
(j=2) kind:

HV(z)=(isinmv) "' [=:(2) =T, (2)e7™;

H?(z)=(isinm)™'[J,(z)e™ T _,(2)]. (5.6)
—1/2 B s
(1.2) == i(—1\"[ Tz n+ d)f =
H{P1(2)=Fi(—1) ( 2) z (m — =0

The solution (5.5) is a (rraveling) spherical wave.
More generally, we set
1/2

214 1)(I—m)! PRI

4o (14 m)!

h=1(B.1)=

1=0,1,....m=11—1,...,— 1, (5.7)

where P;"(z) is an associated Legendre function. (This expression makes
sense for all g € C, since, from (B.6iv), for m>0 P,”"(z) is a polynomial
in z=if times the factor [(iB—1)/(iB+ 1)]"/* which remains bounded on
C, and vanishes at B=—i. Moreover, P,”"(z)=(=1)"(I—m)'\P/"(2)/
(/+m)!l. It follows from (2.17), (2.22), and (2.24) that the operators (5.4)
acting on the functions { f/(B8.1)} satisfy the recurrence relations (2.12)

and (2.23). Thus, the solutions ¥/)(x)=I(f") of the Helmholtz equation
also satisfy these relations.

We have already computed the spherical wave ¥{(x), (5.5). Using the
fact that both the functions (2.28) and (2.30), hence a fixed linear combina-
tion of these functions, satisfy recurrence relations (2.12), (2.23), we can
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conclude from (5.5) and (5.6) that
VD (p,0,9)=—i'(wp) "H{P1(wp) Y/" (6,9). (5:8)

Next we consider the cylindrical system corresponding to the operators
(5.4),

PYD = —iorf@,  IYD,=mfD,  [D,(B0=1"(B—v). (59)

Using the integration contours C,, C,, we easily find
¥D, (r,0,2)=i"*' (= 1)"Qm),, (w(1+7?)"*r)e™==r  (5.10)

for ye C,. Here {r,0,z} are cylindrical coordinates (2.36).
From (5.7), (5.9) and the corresponding integral representations ¥ =
I(f) there follows easily the expansion

1/2

(-1)" j; P (iB)¥24(x)dB,  (5.11)
z>0.

Q214 1)(I—m)!

(1) =
¥ (X) = 47 (14 m)!

More generally, if ¥ is subjected to a translation T(g)=exp(a,P,+
a,P,+ a,P;), we obtain the expansion formula

Lo JL 0" "G

H=—o3

X P(iB)J,[wa(l+ B! *|exp(— aywB )Y, p()dB,  (5.12)

z+a;>0, a,+ ia,=ae™, a>0.

QI+ 1)(1—m)
4 (1+ )'

T(g)¥},)(x)=

Similar techniques can be used to expand traveling spherical waves in
other bases. In each case one derives the expansion for the complex sphere
model and then attempts to map the results to the solution space of the
Helmholtz equation via the transformation (5.2). The procedure is no
longer so straightforward as for our Hilbert space models, and special
techniques may have to be developed for each example. Some important
cases are worked out (by another method) in [26, Section 16].

We can obtain other expansions by varying the integration contours in
(5.2). For example, consider the contour C; in the B plane as drawn in
"Figure 2. We retain the contour C, in the ¢ plane as drawn in Figure 1. It
is easily verified that the J and P operators on B-¢ space and on the
solution space of the Helmholtz equation correspond, under the mapping
(5.2) induced by this choice of contours.

ISBN-0-201-13503-5
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Ci
— 1
® *—)
[ plane
®—i
Figure 2

Now consider the eigenvalue equations for the parabolic system 8 (Table
14) in 5—¢ space:

({J],PE}—-{JI,P|])ﬂﬁl}:—Zf?\mﬁﬂ, :J3ﬂﬂ=mfﬂ,.

It is straightforward to show that the eigenfunctions are

FO(B.0=(1+82)"*[(1+iB)/(1-iB)] ", Ameg. (5.13)

For convenience we restrict ourselves to the case where A and m are
integers. Then, substituting (5.13) into (5.2) for the contours C;, C, and

integrating, we find
Yo 0 =1(A%)
_ 8a2()"(— 1)
 (Im|+ k)

_ (n*—¢%) Uml( jong 2y 7 (e _ 7o 2y i
X exp| iw 5 L™ (10&°) L™ (— iwm*)e'™?

(6272 — jggn)ml/2

if
A==ml—=2k—=1,k=0,1,2,..., m=0, £1. £2.....
5.14
¥d (x)=0  otherwise. i)

Here & 1, are parabolic coordinates
x=gncosp, y=ysing, z=(£—9?)/2.

(See [95] for the details of this computation.) Note that some nonzero
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functions /), are mapped to zero by the transformation 7. Here the L(®)(z)
are generalized Laguerre polynomials.

We can use our model to compute the matrix elements of the operators
T(g) with respect to this basis. For example, the operator T(a)=exp(aPs)
acts on the { f{®)} basis to yield

T(a) A5 (B.0)=e~# (1+82) " *[(1+iB)/(1—iB) ] 1"

= > e (= 1)LV 2iaw) f825..( B.1).
5=

This result 1s obtained from the generating function (4.11), Section 2.4. It is
not hard to show that this identity is mapped by the transformation I to
the 1dentity

T(a) ¥ (x) = ie-m (—1)'LE D Qi) ¥ (%), (5.15)

(Note that the sum is actually finite.) Details of the computation as well as
general E(3) matrix elements with respect to the parabolic basis can be
found in [95]. The first (nongroup-theoretic) proof of these expansion
formulas was given by Hochstadt [50].

Next we consider identities for solutions of the Helmholtz equation
which are derivable by Weisner’s method. The natural setting for applica-
tion of this method is the complex Helmholtz equation obtained by
allowing all variables in equation (1.1) to assume complex values. To treat
this equation systematically we should determine all complex analytic
coordinate systems in which variables separate. Here, however, we will
consider only a few separable systems that are of particular importance.

Of greatest practical importance is the spherical system

JeJ¥=—/(/+1)¥, JO =m?. (5.16)

We will now study solutions ¥ of the complex Helmholtz equation that
satisfy (5.16) in those cases where / and m are complex numbers, not
necessarily integers. To treat the group-theoretic properties of these solu-
tions it is convenient first to analyze the corresponding eigenfunctions in
our complex sphere model. Thus we begin with the operators (5.4). In
terms of the new complex variables 7, p where

r=1(1+8%),  p=—ip (5.17)

these operators assume the form

Jr==7d,, JT=17Y((1-p%3,~2p10,), JO=70,

P+=L|J'T, P_=b)(l—p1)1"_l., PD=WP. (518}
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[t follows easily from these expressions that the solution ) of the
equations

JYD=1D,  TH=0 (5.19)
1S
19 (p.r)=T(I+1)(27)"

unique to within a multiplicative constant. (The factor T'(/+ )2 is inserted
for convenience in the computations to follow. Here / is an arbitrary
complex constant except that we assume /+ 5 is not an integer. It follows
from (5.19) that ¥ = f'*) satisfies (5.16) for m=1/. To obtain more solutions
we consider the expansion

exp(ad )= 3 (@ /nt)I Y1 (5.20)

Setting fi, =[(—1)'TQI—n+1)/TQI+DIJ YD, n=0,1,2,..., we see
that the commutation relations for the J operators imply

SRO=mfD,  THD=(m=DJD0 IS D= = (DD,

521)
JJfP=—1(I+1)fO,  m=11-1,1-2,.... (

Lie theory arguments applied to the left-hand side of (5.20) yield the
generating function

I'(.’+ %)[Zfr—dlap—Zal(] _pz)/T]f= 2 (_ﬂ)"(%?f)jy}(p)q_f—n’
g (5.22)
) (0.m) =" ()", m=1—n,

valid for 770 and « in a sufficiently small neighborhood of 0. Comparing
coefficients of a” on both sides of this equation, we find

L en)=T(=m+ )T (m+)Crz (20" (5:23)

where C;(x) is a Gegenbauer (ultraspherical) polynomial (B.6ii). This
polynomial is commonly defined by the generating function

(1-2ax+a?) = » Cri(x)a”, (5.24)
n=0
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whose group-theoretic significance will be explained in Section 3.7. For / a
positive integer and m=//—1,..., —/, the functions (5.23) are propor-
tional to complexifications of the spherical harmonics Y;”. However, we
shall be primarily interested in the case where 2/ is not an integer.

From the recurrence relation for the Gegenbauer polynomials,

ik ] (2r+n—1)

XCy ()= 2(v+n) Cavr (X)+ 2(v+n)

C:— | (I)!

which can be verified directly from either (5.24) or (B.6ii), it follows that

w(/+m)(1—m)
POF() — [+1) (I—1)
P =g W e " 5:23)

Furthermore, from the commutation relations [P%J *]=+ P* it follows
that

w(l—m)(I—m—1)

Pl = 2:+|fgi'” 35T Lol
(5.26)
w(/+m)(I+m—1)
7 e f+I} =ty
P’ = 31 i 2+ 1 m—1

Relations (5.21), (5.25), (5.26) determine the action of & (3) on the basis
{f”’} where /=1[, [+ 1,[,+2,....om=1[-1,...,and 2I, is not an integer.
(As 1s well known, the simple fnrm of (5.25) is related to the fact that the
Gegenbauer polynomials are orthogonal with respect to a suitable measure
[37, Chapter X]. This property of these polynomials, along with many
others, is related to the wave equation and will be studied in the next
chapter.)

It 1s well known that any entire function of x can be expanded uniquely
in a series of Gegenbauer polynomials C}(x), n=0,1,2,... (2r# integer),
uniformly convergent in compact subsets of the complex plane (e.g., [116,
p. 238]). Thus we can exponentiate the P and J operators, and compute the
matrix elements of these operators in an {f!’} basis. The rather com-
plicated results are presented in [83]. Except for (5.20), (5.22), we present
here only one of these results: An induction argument based on the &
operator relation (5.25) shows that '

e =(2/a) r(p)Z(p+n)f,+n(a)c*‘(pJ et (2) g
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that is,

sotar=(3) r(4) 3 Lo

n=0

= jr.é’+a-a+%(":'-')JT‘}["-I'”}- (5.27')

Here, 1,(a)=exp(—irm/2)J,[aexp(in /2)] is a modified Bessel function
[37].

Now we consider the relationship between these results and solutions of
the complex Helmholtz equation in the spherical basis. Instead of the
complex spherical coordinates r,8,¢ (5 in Table 14), it is more convenient
to use the equivalent separable coordinates

p=—cosl#l, T=—e%sinf, s=ir. (5.28)

In terms of these coordinates the symmetry operators for the Helmholtz
equation are

JT=—10, Jh=T_'((]—p2)8P—2ma,)1 JO=7rd,

o

2
P+=T85—Eap-q-—aﬂ
¥ A}
1 —p? p(1—p? p*+1
o )EL-( p)ap+( )a,,,
T ST s
(1-p?)
P=p0_+ 0, — 45 d_. (5.29)

Y

We search for a set of solutions {¥)(x)} of the Helmholtz equation which
satisfy the recurrence relations (5.21), (3.25), (5.26) when acted on by the
symmetry operators (5.29). Since the J operators in (5.18) and (5.29) are
identical, it follows that

Vi (x)=SD(s) 5 (o, 7).

Substituting this expression into (5.25) and (5.26), we find that the S©
must satisfy the recurrence formulas

(= )5O@ =050, (44 )5y use-u, (530

It follows that 5'/25 “)(s) is a solution of the modified Bessel equation and
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that the choices

T 1(ws) (5.31)

SO(s)=(ws) ™Iy 1(ws) or (ws)
separately satisfy the recurrence formulas. Adopting the first of these
choices, we conclude that the functions

Wi (s,p,7)=(I— m)'F(m+ )(ws) IH (ms}C’”+3(p)(2T)m (5.32)

and the operators (5.29) satisfy the recurrence formulas (5.21), (5.25),
(3.26). Thus the matrix elements giving the E(3) group action that were
computed for the {f} basis are also valid for the {¥)} basis. For
example, (5.27) leads to the addition theorem of Gegenbauer:

oo
=y 2l
If+%(55 )(2S) : =F(!+ %) 2 ("+H+ %)In’+n+%(3)!f+n+§(’f)c::+I(P)!
n=10
S=(1+2vp/s+v%/s?)'%,  Pyo/s+v*/sY<]1.

(5.33)

We can also use the complex sphere model to prove operational identi-
ties relating solutions of the Helmholtz equation. For example, from (5.18),
(5.23) we obtain the virtually trivial identity

(I—m)!CT* 2 (0 PO [ =D [ m=0,1.2..... (5.34)

However, for the model (5.29), (5.32) this identity assumes the nontrivial
form

'(I_F' pm

3 a =i T) m+%(m) _ff+ '(S)Cm+ (p)s ™!

C’"+_(p& +

(5.35)

Many other operational identities and addition theorems can be found in
[83].

Weisner’s method in its general form can also be applied to derive
identities for spherical waves. For example, consider the (cylindrical wave)
solution of the simultaneous equations

(P-P+o’)¥=0, PN=AY¥, JN=m¥ Ame(,

¥(s,p,m)=[ (0>~ 1) "02=1)*] e, (ws (o2~ 1) "2~ 1)"72),
(5.36)

ISBN-0-201-13503-5




ISBN-0-201-13503-5

3.5. Non-Hilbert Space Models for Solutions of the Helmholtz Equation 203

Choosing the I, solution, we note the validity of the expansion

¥ (s,p,7)=(ws) """ ij:ﬂ ay (M) 4y L(05)C " 2 (p)r™

expressing ¥ as a sum of spherical wave solutions of the Helmholtz

equation. It remains only to compute a,()). Since ¥ is symmetric in p and
I

A, we have a,(A)=b,C""2(A). Furthermore, if A=1, then

(wst /2)" e

I'(m+1)

¥(s,p,7)=

and the identity (5.27) permits computation of the coefficients a,(A) with
the final result (w=1)

[(PI_ ])(}\2_ ])} _mx"les:-.pjrm (.5[(;}2— [)(}kl__ ])]:;1)
I2m+1 N2 & n!(m+n+%) =5 i
[t 2) 2 Sy I {OCTHO)CT V),

B (27s)'/2 =i

(5.37)

convergent for all p,A€ ¢ (see [37, p. 102]).

Another example is provided by the solutions (3.14) corresponding to
the parabolic system 8 in Table 14. Expressing these solutions in terms of
coordinates (5.28) and expanding in the spherical basis, we obtain

= 1 |
"L (~s(1+)L™(s(1—p))= 3 a,s=H, ., 1()C2* 5 (p)

n=I
(5.38)

The coefficients @, can be determined by setting p=«/s and letting s—0
to obtain

a o’

2m+%r(m+%)eu[£‘}‘m}(_&}]z= g{} n‘(fﬁ:—n-r-l) .

Use of the transformation formula for a iF; (Appendix B, Section 3)
allows us to explicitly compute the coefficient of «” on the left-hand side
of this equation, with the result

27*3(m+n+ T(m+ )T(m+k+DT(m+k +n+1)

(K)’T(m+ DI (m+n+1)

a,

=y —mr—in, ~n
X F ¥ 5
3 1(m-r-l.—-J*iri'—ﬁr—m'

[). (5.39)

For k=0 this expression reduces to (5.27).
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3.6 The Laplace Equation A,V =0

The known coordinate systems that permit R-separation of variables in
the real Laplace equation

ﬂBT(x)={}‘ K=(I],IE,I3)=(I,y,E), (61}

are derived and studied in the classic book of Bocher [17]. However, the
explicit relationship between these systems and the symmetry group of
(6.1) has been discussed only very recently [22]. Apart from the trivial
symmetry £, the symmetry algebra of this equation is ten dimensional with
basis

B=0=0,, j=12,3; J3=x,0,— x,0,,
Jy=x103—x30), Jy=x30,—x,05, D=—(5+x,9,+x,0,+x30),
K= x4 (x{ —x3—x3)9, +2x,x30; +2x,X,0,,

Ky =x,+ (x5 —x7— x3) 0,4+ 2x,%30;+2x,x, 3,

K3=x3+(x3 = x{ — x3) 03+ 2x3x, 9, +2X3x, 95. (6.2)

The P; and J, operators generate a subalgebra isomorphic to & (3) and D is
the generator of dilatations. The operators K; are generators of special
conformal transformations and will be discussed later. Only the elements of
the & (3) subalgebra actually commute with the Laplace operator A,. The
remaining elements of the Lie algebra merely leave the solution space of
(6.1) invariant.

The symmetry algebra of the Laplace equation is isomorphic to so(4, 1),

the Lie algebra of all real 5X5 matrices @ such that @G*'+ G*'@ =0
where

Gd.l

I

i
= 2 &, —bss. (6.3)
f=1

_lJ

Here 5&- 1s the 5X5 matrix with a one in row i, column J, and zeros
everywhere else.

6= get (6.4)
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A basis for so(4, 1) is provided by the ten elements

I‘ab=gab_g;m=_rbﬂ, ]%ﬂ,b%"‘-’i-,

6.5
[s=6,5+bs5,=Ts, ©)
with commutation relations
[Fabﬂ rm" ] v Sbc-rad + Bﬁdrbt 5 ara]—‘db ey Bdbrm* ( )
6.6

[Fﬂﬁ’ rm’] =0 3&&']:1{‘5 + aﬂrrdj‘ [raﬁi rbi] & rﬂb'

One can verify that the correct commutation relations for the operators
(6.2) result if the following identifications are made.

J3=I132, J3=r34, ‘-“rl=1—143= D=F15’
Py=T,+T, Py=1;+1;s, P3=Fl4+r45: (6.7)
K1=P|2_F:-:5= K2=I‘,3-—1“35, Ky=I',—1Is

The symmetry group of (6.1), the conformal group, is thus locally isomor-
phic to SO (4,1), the group of all real 55 matrices 4 such that

AG* A = G, (6.8)

The identity component of this group consists of those matrices satisfying
(6.8), det4A =1, and 45> 1. The Lie algebra of SO (4, 1) 1s s0(4, 1) [46].

Exponentiating the operators (6.2), we can obtain the local action of
SO (4,1) as a transformation group of symmetry operators. In particular,
the linear momentum and angular momentum operators generate the
subgroup of symmetries (1.12) isomorphic to £ (3); the dilatation operator
generates

exp(AD )¥(x)=exp(—A/2)¥[exp(—A)x], AER; (6.9)
and the K; generate the special conformal transformations

exp(a, K, + &, K, + a; K5 ) ¥(x)

X—a(x-x)
I—2a*x+(a+a)(x*x)

=[1—2x*a+(a-a){x-x)]_”z‘lf( ) (6.10)

In addition, we shall consider the inversion and space reflection symme-
tries of the Laplace equation:

IV (x)=(x*x)""2¥(x /x *x), I=1"",

(6.11)
RY(X)=¥(— x,, Xy, X3), R=R"\.
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These are well-known symmetries of (6.1) that are not generated by the

infinitesimal operators (6.2) [12, p. 31]. It follows from the definitions of
these operators that

_l_
IPI '=-K,

IDI"'=-D, I '=J, (6.12)

By a tedious computation we can verify that the Laplace equation is
class I. Furthermore, although the space of symmetric second-order opera-

tors in the enveloping algebra of so(4, 1) isS5 dimensional, on the solution
space of (6.1) there are 20 linearly independent relations between these

operators. Thus, only35 operators can be regarded as linearly independent
on the solution space. For example, we have the relations

i) P-P=K-K=0,
(i) J+J=5—D?
(i) Tis+T%—T35=4+T35.

(iv) {P,K\}+{PyK,}+{P3,K;}=244D" (6.13)

(Note that these relations are valid only on the solution space of (6.1), not
in general. We are considering the I',; as differential operators on this
space via the definitions (6.7).)

The reader may be wondering why we have not applied a similar
analysis to the Laplace equation A,W¥(x)=0. The reason is that the symme-
try algebra of this equation is infinite dimensional. In fact, every transfor-
mation ¥(x,y)->¥(u(x,y),v(x,y)), where u+iv=f(z),z=x+iy, and f(z)
is an analytic function, defines a symmetry of the Laplace equation. The
group of all analytic transformations z—f(z) is the symmetry group of this
equation, but it is not a Lie group. (Indeed each group transformation is
determined by an infinite number of parameters {a,} where f(z)=

n=04,z".) Thus, Lie theory methods are not particularly useful for this
Laplace equation. It can be shown that infinite-dimensional symmetry
algebras can occur for second-order partial differential equations in n
variables only in the case where n=2 [105].

We now return to the separation of variables problem for equation (6.1).
We will see that each R-separable coordinate system is characterized by a
pair of commuting second-order symmetry operators in the enveloping
algebra of so(4,1). As usual, two coordinate systems will be regarded as
equivalent if one can be obtained from the other by a transformation from
the connected component of the identity of the conformal group, aug-
mented by the discrete symmetries (6.11).

Note first that the eleven separable coordinate systems for the Helm-
holtz equation, listed in Table 14, are also separable for the Laplace
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equation. The separation equations can be obtained from the correspond-
ing Helmholtz results by setting w=0 in Section 3.1. We briefly indicate

the form of the separated solutions ¥ of the eigenvalue equations S;¥ =
AW, AT =0,
For the Cartesian system | the solutions take the form

exp(ax + By + yz), a’+ B4 y2=0, (6.14)

whereas for cylindrical coordinates 2 they are

Y (r@.2)= . ,(Ar)exp(Az + ing),

(6.15)
fJ}tPh.n = ”q!h,n‘ PJTE,;i =}1"P.?I;..H'

The results for parabolic cylinder coordinates 3 are
"I'-El(&m‘?) = Df’p— %( =2 HE}B—EP.— %{ = 'J"'}';'E}:‘

o=exp(im/4)(2))"/?, (6.16)
PJ‘PML:;'“PA.M [JaiP;_ }"{'A.#zz.l’)\‘l':a.;u

and for elliptic cylinder coordinates 4 they are

Ce,(a,q)ce, (B, q)e™,

¥ (a,B,2) = g=d*\’/4,
1 SEH({I’Q)SEH({)'?I?)EA:‘ ( }
6.17
(-”31 +d°P} )ql:‘n...n ] L P ¥y =Ny
Corresponding to spherical coordinates 5 we have solutions
!
DUpse=( o @, e =me,
J -J‘I’f,fjn= —I(/+ I}‘Ifffn. (6.18)

For prolate spheroidal coordinates 6 the separated equations take the
form (1.20) with w=0 and typical solutions are

P (coshn)P” (cosa)e™®: (6.19)
that is, (1.21) with w=0. Similarly, for oblate spheroidal coordinates 7 the

separated equations are (1.22) with w=0 and the eigenfunctions are of the
form

P™ (—isinhn)P" (cosa)e™, (6.20)
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For parabolic coordinates 8 the separated equations are (1.24) with w=0
and the separated solutions are

J o (iVA &) ., (VA m)e™™, (6.21)

For paraboloidal coordinates 9 the separated equations are (1.26) with
w=0 and the separated solutions are Mathieu functions of the form

Ce,(a, —Ac/2)ce, (B, —Ac/2)Ce, (y+im/2, —Ac/2),

Se, (@, —Ac/2)se,( B, —Ac/2)Se,(y+im/2, —Ac/2). (6:22)
For ellipsoidal coordinates 10 the separation equations take the form
(1.29) or (1.33) with w=0. Thus the three separation equations reduce to
the Lamé equation and the single-valued solutions in R? are products of
three Lamé polynomials (see [7, p. 228]).
Finally, for conical coordinates 11 the separation equations are (1.35)
with w=0. The single-valued solutions in R? take the form

[r‘r_!_l JEﬁq ({I)Ejf,"" (B), I=0,1.2,.... (6.23)

r

where the E functions are Lamé polynomials; see (3.24). Such products of
Lame polynomials are called ellipsoidal harmonics in analogy with the
spherical harmonics ¥, (0, ¢), (6.18) [136a]. The overlap functions relating
spherical and ellipsoidal harmonics have already been computed in Section
33,

The remaining separable coordinate systems for the Laplace equation
are purely R-separable and do not lead to separation for the Helmholtz
equation. The coordinate surfaces for these systems are orthogonal families
of confocal cyclides. A cyclide is a surface with equation

a(x* +y‘?+zz)2+ P(x,y.z)=0 (6.24)

where @ is a constant and P is a polynomial of order two. If a=0. the
cyclide reduces to a quadric surface. Now it is well known that the
coordinate surfaces of the eleven separable systems listed in Table 14 are
confocal families of quadrics

2
%= PRI A L
a i+ ay+A  a;+A

a;constant, (6.25)

and their limiting cases, (see [13,97,98,136a]). In particular, all these
coordinates are limiting cases of the ellipsoidal coordinates and the coordi-
nate surfaces are ellipsoids, hyperboloids, and their various limits, such as
paraboloids, spheres, and planes.
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We know that under any conformal symmetry of the Laplace equation
an R-separable system is mapped to an R-separable system. However, the
inversion operator I, (6.11), maps a quadric surface to a cyclide with a0,
as the reader can easily verify. Thus one cannot avoid the appearance of
cyclides in the study of R-separable coordinate systems for the Laplace
equation.

It 1s straightforward to check that the family of all cyclides is invariant
under the action of the conformal group and that this group maps
orthogonal surfaces to orthogonal surfaces. Instead of using families of
confocal quadrics to construct orthogonal coordinate systems, one can
more generally use families of confocal cyclides. By direct computation it
can be shown that such families define orthogonal, R-separable coordinate
systems for the Laplace equation. Moreover, all separable systems for the
Laplace equation can be obtained in this manner.

Since we regard coordinate systems related by a transformation from the
conformal group as equivalent, to obtain all distinct cyciidic systems it is
obviously necessary to decompose the family of cyclides (6.24) into confor-
mal equivalence classes. Among the equivalence classes of cyclides are
some which contain cyclides (6.24) with a=0. These correspond to the
eleven separable systems listed in Table 14. The remaining classes contain
only cyclides with ¢#0 and lead to new R-separable systems. The details
of this construction can be found in the classic book of Bécher [17]. Our
primary aim is to provide a group-theoretic characterization of the coordi-
nate systems listed by Bocher. This characterization was first given in [22]
and 1is contained in Table 17.

For each coordinate system { p,»,p} the R-separable solutions of (6.1)
take the form W(x)=SR'*(u,»,p)A(pn)B(r)C(p) and these solutions are
characterized by the eigenvalue equations S;¥=A¥ where A},A, are the
separation constants.

More specifically, for system 12 the parameters vary over the range

0<p<Ll<r<b<pu<a

and each factor in the separated solution satisfies the equation

A A
(@YEL U@ &~ 62+ 72+ E%)]A(g)=n, (626

fE)=(E—a)E—b)E—1)E &= ., p.

Here (6.26) 1s the standard form of an equation with five elementary
singularities [51, p. 500]. Very little is known about the solutions. For
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Table 17 Additional R-Separable Systems for the Laplace Equation

Commuting operators §,, S5

Separable coordinates

a b+ 1

(p-a)(v—a)(p—a) /2

o arkd o) =1 .
(p=b)(v—>b)(p—b) 12
+ﬂ:b{P3+K3}1+J§+M§+ahzm y=%"! {#(a-}(g:;(b-}{gb } ;
_a 5 12h _ | (e=Dr=D(p—1) 1172
S, 4{P3+K1}+4[P1+K]}2 z=% TECE) ,
p 11/2
+%(P3+K3}2 m=1+[ﬁ}
wpz ol Bos vn o (B=DE=D=1) ]2
13 S|—2EEJ3+ 7 {P:;Kz}+ Z(Pz KZ} A '@i— (H—I)(b_I) :
[ we 17
+%{P11Kl}+iﬁiﬁlz—fllz}i J"'=m' 1.__%]
$,= S (P K} + 5 (PI—KD) :=6."
i(p—a)(v—a)(p—a) ]'/*
2, 022 o -
+(ﬂ +B }JJ gi.— ER.EI: (ﬂ—b)(ﬂ—t}ﬂ ] ¥
a=b=a+if,a,preal
14 8, =J; x=%R""cosg,
48, =(P3+ K;)—a(P;— K,)’ y=%R"!sing,
3=m_l[_%]lf1:
s (p—a)a—p) |2 [ (p=1)(1-p) 7172
| a(a-1) [ a—1 1
15 §,=J2 x=%R""cosg,
485, = —4aD*—(P;— K3)? y=%R"sing,
(p—a)(a—p) |'/2
—q—|
z=% [ ala=1) ] ;
pp 12 [ (p—1(p—1) |'/2
ﬂz[?:l +[ (a—1)
16 §=J}
28, =a{ Py, K3} + B(Ki— P} x=%R""cosep,
: y=%"sing,
z==060"1 —%Tﬂ
[ i(p—a)(p—a) |12
6. =2 Re =5 ] :
a=b=a+iB

4SI=(P3+K3}2

x=A""'sinh£cose,
y=G""sinhfsing,
z=%""cosy,
% =cosh&+siny
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system 13 the parameters vary in the range

—0<p<0<p<I<r<oo.

The separated equations are (6.26) with a=b=a+ip. For system 14 the
parameters vary in the range p>a>1,p<0,0< ¢ <27 and the solutions of
Laplace’s equation have the form ¥=& '/2E,(p) E5(p)e™* where

Y9®)%(2®)" 5 +(5 —ml)s—h]%(s)=ﬂ,

j=L2, §&=pp, PE=E-a)E- 15 (6.27)
iJ;¥Y=mY, S,V =AV.

If we set p=sn*(a,k),p=sn’(B,k) where a=k ~*, then we find
x=R"'cosp, y=R 'sing, z=ik®R 'snasnp,
R =i(k’)”'dnadnB—i(kk’)”'cnacnp

: (6.28)
Y=R2AL_1(a,k)AL_1( B k)e™
where A?(z,k) is a solution of the Lamé equation
dlﬂ N kF 2 2 - 29
—— +(hZ—n(n+1)k’sn (z,k))A=0. (6.29)

dz

The parameters a, 8 range over the intervals a €[iK",iK’'+2K], 5 E[2K—
iK',2K+iK'] in the complex plane.
For system 15 the parameters vary in the range

I<p<a<p<oo, O0< <27

and the separation equations are (6.27). Making the same elliptic function
substitutions-as in the previous case, we find
x=®R"'cosp, y=%R"'sing, z=f(k"?R}_ldnadnB,
R =k(snasnfB+cnacnf/k’), (6.30)
T=@ V202 _1(a,k)AL_L(B.k)e™

where a,f8 range over the intervals a €[iK",iK'+2K],8 €[K,K+2iK'] in
the complex plane.

For system 16 the parameters satisfy p>0,p<0,0<@<2#, and the
separation equations are (6.27) with

PE)=(E—a)§-b), a=b=a+ip.
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Setting p=sn’(y,?),p=sn’(0,1) where 1=(s+is)s—is)" ', s*=(la|—
Rea)/2|a|, we obtain solutions

V=R _i(y,0)AL_1(8,1)e™ (6.31)

where yE[—iK',iK'],0 €[2K—iK',2K+ iK'].
Finally, for system 17, toroidal coordinates, the eigenfunctions have the
form

¥ =(cosh&+siny)'/E (&) expli (A + me)]
U ¥=m¥, (P3+K;)¥=-2lY,

m 2
sinh2¢

The associated Legendre functions F;”1(cosh £), Q" 1(cosh§) provide a

basis of solutions for this last equation.

We can check explicitly that the coordinate surfaces are cyclides in all
these cases. For systems 14-17 some of the surfaces are cyclides of
revolution. Systems 12-16 are relatively intractable and only the toroidal
system 17 has been widely used in studies of the Laplace equation. The
toroidal and spherical coordinate systems have much in common. (Indeed,
for the complex Laplace equation these two systems become equivalent
under the complex conformal group.) Bipolar coordinates [12, p. 108] are
frequently used in connection with separation of variables for the Laplace
equation but these coordinates are conformally equivalent to spherical
coordinates. They are, however, inequivalent to spherical coordinates with
respect to the more physical scale Euclidean group, generated by £ (3) and
dilatations exp(aD).

Nine of the seventeen R-separable systems for the Laplace equation
correspond to diagonalization of the operator J5: systems 2,5-8, 14-17.
These special systems have the property that their eigenfunctions take the
form ¥(x)=®e™?, iJ ;¥ =m¥, where ® is a function of the remaining two
variables. If we substitute this ¥ into the Laplace equation and factor out
e"™¥ we obtain a differential equation for ® which in cylindrical coordi-
nates 1s

(sinhg) ™' < smh£ ks (1/4—,*1— E(§)=0. (6.32)

(9, +r= '8, —r *m*+9,,)®(r,z)=0. (6.33)

Expression (6.33) for fixed m >0 is the equation of generalized axial-sym-
metric potential theory. The real symmetry algebra of this equation is Z
isomorphic to s/(2,R). Indeed, a basis is provided by the operators @
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K5, P3, D, (6.2), with commutation relations
[D,P;]=P;, | D,K;]|=—K,, | P, K3]=-2D, (6.34)

and, from the identity (6.13iii) it follows that (6.33) can be written in the
equivalent operator form

(3PF+3K3—D2)o=(1+m?)o. (6.35)

It is shown in [139] (see also [63]) that the space of symmetric second-order
symmetry operators in the enveloping algebra of s/(2,R) modulo the
subspace generated by the Casimir operator 5 P2+ 1 K2— D? decomposes
into nine orbit types under the action of the symmetry group SL(2,R). The
nine coordinate systems listed above are exactly those which permit
separation of variables in (6.33) and it is straightforward to check that
these systems correspond one to one with the nine orbit types. That is,
there is perfect correspondence between the list of operators S, where
J3, 8, defines each system and a list of representatives of the orbit types.

3.7 Identities Relating Separable Solutions of the Laplace
Equation

It is not possible to find a Hilbert space model for the solutions of the
Laplace equation such that the action of the conformal group is given by a
unitary representation. Indeed, if such a model existed, the momentum
operators iF;, j=1,2,3, would be self-adjoint on this Hilbert space. How-
ever, the identity P+ P+ P?=0 and the spectral theorem for self-adjoint
operators imply P,=0, which is a contradiction.

Nevertheless we can use Weisner’s method to relate separable solutions
of the Laplace equation and we can construct non-Hilbert space models of
this equation in a manner analogous to that of Section 3.5. Consider the
expression

‘I’(x,y,z)=LIJﬂ Cl%h(ﬁsf)explﬁ(r'ﬂ_])
+%ﬁ(;—f")—ﬁz]=f(h), (7.1)

where 4 is analytic on a domain in ¢X ¢ that contains the integration
contours C; X C; and is chosen such that 7 (k) converges absolutely and
arbitrary differentiation with respect to x,y,z is permitted under the
integral sign. It is easy to verify that for each such h, ¥=1(h) is a solution
of the Laplace equation (6.1). Moreover., integrating by parts, we find that
the operators P.J,K,D, (6.2), acting on the solution space of (6.1)
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correspond to the operators
Pt=-ft, P =—p' P'=—if, D=B03+1,
J*=itBdg—ir*d,, J =—iPt7'8;—id, J°=13,
K*=1B7'(B3z—13)(Bdz—13,—1),
K==t7"B7'(Bds+13)(Bdz+13,—1),

KO=iB~'((13,’—(B3p)") (7.2)

where

e

Jo=FLtily, o JJi=il,

with similar expressions for P=, K*, and so on. Here we are assuming
C,,C,, and h are chosen such that the boundary terms vanish for each
integration by parts:

PEY=[(P=h), J=V=I(J*h),

and so on.

For our first example we choose C,C, as unit circles in the 8 and ¢
planes, respectively, with centers at the origin and oriented in the counter-
clockwise direction. Then for '

h(B.O=B""Y(), Jj()= é o [=0,1,2,..., (7.3)
m=—1

we can evaluate the 8 integral by residues to obtain

? — Hi 2W 1‘}? - - . l’- Ix
(x,v,2)=1(h)= _,-'_!f [ ixcosa+iysina—z] j(e)da. (74)
: Y0

From (7.3), h is an eigenfunction of D with eigenvalue —/—3, so by
(6.13ii)

JeJ¥=—[(I+1)V.

Furthermore, ¥ is a solution of the Laplace equation which is a homoge-
neous polynomial in x,y,z of order /. In particular, for j(f)=t", —I<m<
[, we have J°P=mV¥, so ¥ must be multiple of the solid harmonic
p'Y/"(#,p), expressed in spherical coordinates (5 in Table 14). Evaluating
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the integral in the special case where #=0, we find

2 ! 2 :
;"(ﬂ_""r”’*)=—%ﬂL [fsinﬁ'cns{q;—a}—cnsﬂ}fe*“’”a‘a
- Yo

=167*(= 1) i"p [ 4n QU+ 1)(1— m)(1+ m)!]_]ﬁ}’,’” (8. 9).

(7.3)

Another example is provided by the contour C, in the 7 plane, the

contour €'}, which goes from =0 to + o0 along the positive real axis in

the B plane, and the analytic function h(B.0)=B4™1=0,1,2,...,m=1.

[—=1,...,—1 Here ¥=](h) satisfies DY =(+)¥,J-J¥=—/(+
D¥,J%¥ =m¥ and it is easy to verify that

!(Ba",m}=ﬂrzp—f—|f

0
=y 16w (1= m)!(1+ m)l/(21+1) 'Y (0.¢), (7.6)

L

[ —isinf cos(p— cr}+c:-::15t9] N

e Iy dﬂ

where p,8,¢ are spherical coordinates and 0< §< 7 /2.
Now consider the equations

({JJ.PE}—[P“JE})I-——-—?J,, J = mf, (7.7)

for eigenfunctions corresponding to the parabolic system. In terms of the
model (7.2) these eigenfunctions are

Rom(B.t)=exp(=A/28) B '™ (7.8)
Setting A= f{*) in (7.1) and choosing the contours C,,C,, we find
2 _
YO, =1(/8))=— 2wf Ju[ 5{2}&)”2(3 — X Ccosa — jysin {I}Iﬁ]é’,mﬂ do
0

= —47Y,,(~iVX §)J,, (VX n)eim, \7:3)
x=£gncosg,y =£nsing,z=(£2—n2) /2.

As usual, the fact that variables separate enables us to compute the
integral. For h=f{7) in (7.1) and the contours C’, C, we obtain

'«Ifff;,-——F(f,{f’j,)=2wf”’+’e"’"¢fﬁxjm(Br) exp(—Bz—A/2B)dB/B

27 .
=2;f Ko[ (20)'/3(z — ix cosa— ivsina)'/? | e de
()

=4miK, (VA )1, (iVX n)e™,  A>0,¢>|n| (7.10)
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The second and third equalities are obtained by performing only one of

the integrations. Note that the second equality yields the expansion of our
solution 1n terms of cylindrical waves.

Similarly, performing the ¢ integration in (7.6) first, we find the expan-
s10n

I(Bm)=2mim* e [ "), (Brie Fpldp, z>0,  (1.6)
0

of a solid spherical harmonic in terms of cylindrical waves.

Applying the transformation / (with contours C,, C,) to both sides of the
identity

fﬂ..(ﬁ,r)=r’“§ﬂ(—h/2)’ﬁ-f-*/n,
we find the expansion
¥ (x)=— fi; | 167%™ [ 4 (21+ 1)(I—m)!({+ m)! ] i
X (N/2)' (1Y) Y" (0,9) (7.9

of products of Bessel functions in terms of spherical harmonics.

Corresponding to the oblate spheroidal system 7, the eigenvalue equa-
tions

(J=J+a*Pl+a*Pi)f=—N, J%=m,

in the model (7.2) yield the eigenfunctions
Kn(B.0=B"Y4,(aB)t™, »V=X+q: (7.11)

Choosing the case where m is a positive integer and »=/+; (where
[ > —1) and applying the transformation / (contours C;, C,), we find

V0, 00=1(fD) =27+ te ), (Br)J,(aB)e " dB/ B>

=27i"* Y (acoshn) ' *T(m+ [+ 1)e™® (7.12)

=
b4 P‘r—m (C(}S{I}P e

e

(tanhn),  0<a<Z,0<u,

where a, 1, @ are oblate spheroidal coordinates (7 in Table 14). Note that
the second equality gives the expansion of our solution in terms of
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cylindrical waves. Again the integrals are rather easy to evaluate because
we know in advance that variables separate in the solution. To determine
the remaining four constants we need only examine the behavior of the
integral near the values n=0 and a=0, 7/2.

In the case where v=/+3,/=0,1,2,...,we can expand (7.11) as a power
series in B and apply the transformation / term by term to obtain

= T o M —1=2n—|
Fhm(x)= (zm;r )(%) (i)’ +In!FT.*’+n+3/2_]
= max 0

2

1 /2

(/4+2n—m)!(/+2n+m)!
: Y/ (0,9), (7.13)

16
4 (2/+4n+1)

X

which is an expansion of a spheroidal solution in solid spherical harmon-
ICS.
For the toroidal system 17 the eigenvalue equations

(PO°+K®)f=2If, J%=m],
in the model (7.2) yield the eigenfunctions
SRBD=" (B Fi( gy [2B). n=—t=m=1. (114
We choose n, m=0, 1, 2,... and apply 7 (contours C{, C,) to obtain
V(X)) =1 (S
—n

= 2j"+ I f e, (1B) B™ F ( 5y 1 [208) a8
.;, _

= V2 7(—1)" (= )" (2m)!(coshé +siny)"/
Xexp|i(my+hy+m/4) P, ""(cosh§), (7.15)

An explicit computation yields

exp(aPs) fil)= X a),B"
NYN=m - (?‘]6]
48 _("ﬁ_” (—r?,m—s 21 )
(s—m)! '\ 2m+1 |a+i)

mom
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SO
- (s—m)!(s+m)!
exp(aP; )P (x)= al ' ="y 16ert Y™ (8
p{ 3) ' ( ) jmz’n A, M p w (23‘-'—1) 5 ( :'F')

(7.17)

is the expansion of this toroidal system solution in solid spherical harmon-
ics. (The term-by-term integration used to derive (7.13) and (7.17) can be
justified with the Lebesgue-dominated convergence theorem [69].)

As the foregoing examples indicate, the non-Hilbert space model permits
us to derive integral representations and expansion formulas for the
Laplace separable systems. (In some cases, however, the models yield
third- and fourth-order differential operators.) The analysis for systems
related to the Lamé and Whittaker—Hill equations proceeds in analogy
with Section 3.3. The number of examples can be greatly multiplied by
choosing other contours in the B8 and ¢ planes. In addition, the Hilbert
space expansions for solutions of the wave equation (Section 3.9) can be
reinterpreted as Laplace equation expansions by replacing ¢ with iz for
z>0.

The most useful functions for application of Weisner’s method are those
associated with the spherical system. These functions are characterized as
common eigenfunctions of the commuting operators D and J° We shall
now study the eigenfunctions in greater generality than earlier by first
considering the model (7.2). In this model the solutions of the equations

J% =mg, Dg=(!+%)g, m,l e,
are multiples of 87™. If the eigenfunctions are normalized so that
gl)— ji=mpigm (7.18)

it follows easily that the action of the operators (7.2) on this basis 1s

Jrgdm(=ltmyg,  J%D=me,

PO = — g+, Prgi=Fglth
De{P=(I+4)g?, K= (1"~ m?) gl ~",

K=gO=5(UFTm(ITm—1)gic). (7.19)

We shall study our model in the case where /,€ ¢ is fixed with /,+ 5 not
an integer, /=1yl = 1,l,x2,..., and m=1[/—1,/—2,.... Note that the
corresponding set of basis functions { g\’} is invariant under the action of
so(4, 1). In particular, the eigenfunction g\’ is mapped to zero by each of
the operators J ¥, K% K.
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Due to the simplicity of the recurrence relations (7.19), we can easily
exponentiate the Lie algebra operators L to obtain the local action exp(al)
of the conformal group with respect to the basis (7.18). (Indeed one can
use local Lie theory to exponentiate all operators (7.2) except the second-
order K operators. However, the K operators can be formally exponenti-
ated in the { g{} basis by using the recurrence relations (7.19) and the
results will be valid for the Laplace equation model (6.2).) The matrix
elements of the group action have been worked out in some detail in [84]
and the results applied to derive identities for the Gegenbauer polynomi-
als.

To see how these functions arise, we consider a complex coordinate
system {w,,p} that is complex equivalent to the complex spherical coordi-
nates {#,p,p} (5 in Table 14). (Since we are interested in analytic expan-
sions, 1t 18 now useful to consider solutions of the complex Laplace
equation.)

w=cosf=z/p, f=€"q"(1—'W2)1f1=(x+1}’)/ﬂ=

(7.20)
p={x1+y2+zz)lﬂ.
In terms of these coordinates the operators (6.2) become
Po=it3, ' Jr=-=ip J =t (1—w"d,—2wtd),
D=—(3 +pd,), —iP°=wd,+p'(1-w?d,—p 'wrd,

—iP*=13,—p 'twd,—p~ 1?0,

—iP =t (1-w?)d,—p " w(l—w?)d +p '(1+w?d,

p
—iﬁfﬂ=pw+p2waﬁ+p(w2— )ad, +piwa,,

— Kt =pt+p% d, +ptw d, +pt?0,

—iK " =pt (1—w)+p% (I —wz)ap—p(] + w0, +pt " 'w(l—w?o,.

{7.2])
Now we search for functions ¥UXw,¢,p) that satisfy the recurrence rela-
tions (7.19) when acted on by operators (7.21). (Since P+ Pg!’=0 in model
(7.19), the ¥!) will automatically be solutions of the Laplace equation

corresponding to system 5.)
The relations

JODO=1¥N,  D¥P=(I+1¥),  KO¥H=0

imply W\"=T(/+3)20)'(p/i)"""' to within a constant multiple. From
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(7.19) we have

= (ia)”
exp(—iaP? )Pl = E Q*lf‘i;’,*"? (7.22)

and from (7.21),
e:{p(ﬁiaPﬂ)?ﬁ}(wJ,p)=»pﬂ}[(w+ﬂ/p)(1+ﬂz/pz+2ﬂw/p)—1 2

t(1+ ﬂl/p1+2crw/p)_”2, o(1 +ﬂ.’2/p2+2ﬂ’W/p)U2], (7.23)

Substituting (7.23) into (7.22), setting m=/, and using our explicit expres-
sion for ¥!", we obtain a simple generating function for the eigenfunctions
W+ Comparing this expression with (5.24), we find

Y (w,t,0)= (1= m)!T(m+)Crtr(w)20)" (o/i) """ (7.24)

Indeed, we can check directly that all of the recurrence relations (7.19) are
satisfied by these functions. (The relations coincide exactly with the known
differential recurrence relations obeyed by the Gegenbauer polynomials.)
The general identity for Gegenbauer polynomials obtained by substituting

(7.23) into (7.22) 1s

[1-2w+a?] " * 2 [(w=—a)(1=2aw+a?) /7]

=2“n(k:”) (W),  |at=2aw|<1,
n=10

which reduces to (3.24) when k=0.
Similarly, consideration of the expression

exp(—aP* )¥()= ‘l’ﬂiilf.?
n= IZ}
leads to the identity
= on T(F+ ﬂ)
I.,_. —v—k/2~p = =342 i ) y+n ;
(1-a) [ w(1—a)™"?] ;”! o) G, lal<t;

(7.26)
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consideration of exp(aK®)¥!) leads to

(14+2aw+ ﬂ:‘j‘)kﬁC;[(w+ a)(l +2aw+ﬂt2)_u2]

- iﬂ’(zﬁnf‘_l)ﬂ;ﬁ’_n(*v)a (7.27)

n=>0

and so on. For a more complete list of such expansions see [84].

Another type of identity obtainable from (7.19) is closely related to the
Maxwell theory of poles. The identity (P°g"’=(—1)"g/"*™, obvious from
(7.19), leads to

—p—n—= — - B —p—a
nlp 2Cy(w)y=(wd, +p~'(1—wH)d,—p w(r—3))p "2
n=0,1,2,....

More generally we can use Weisner’s method to derive expansions of the
form

T(g)¥(w,t,0)= D, @, ,CT5F (w)i™ [ E } (7.28)

even when g is bounded away from the identity element in the conformal
group or ¥ is a solution of the Laplace equation not on the spherical orbit.
We give one simple example related to the cylindrical orbit. A solution of
the equations

P-P¥=0, —iP¥=A¥, JOU=m¥, m,AEC,
18
‘P(WTI:P)= I:I/(}\(Wz_ l)lfl)]mg‘hwpfm[hp(wl_ l)l.-"q]

where I, (z) is a modified Bessel function. In this case (7.28) yields

(]

¥(w,t,0)= 32 a,(Np™*"t"Cr+2(w).
n={0

The constants a,(A) can be evaluated by setting w=1 on both sides of the
equation, yielding the final result

— M

I'(m+ l)[p(wz— l}uz} e’“’"fm[p(wz— 1) Iﬁ]

=i '2m+1) el o 799
'2m+n+1) " )™ (729)

n=0
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Every analytic ¥ obtainable from separation of variables in the complex
Laplace equation will lead to an expansion (7.28). Such functions can be
obtained by analytic continuation of the separable solutions of the real
Laplace equation and by continuation of separable solutions of the wave
equation

(an‘ _52)‘1’(}:!_}*!1‘) =0

to be studied in the following sections. (Set f=iz.) Thus there are an
enormous number of generating functions for Gegenbauer polynomials
that are obtainable in this way. In general (7.28) is a double sum but if
T(g)¥ is an eigenfunction of J then m is fixed and only / is summed.
These functions are just the solutions of (6.33) and can be obtained by
choosing ¥ as one of the separable solutions corresponding to this equa-
tion and g as an element in the complex group SL(2,&) generated by
P° K° D. In [129], Viswanathan has given a detailed derivation of the
generating functions that can be obtained in this manner, with the excep-
tion of the difficult Lamé systems. Equation (7.28) also reduces to a single
sum when T(g)¥ is an eigenfunction of D. Then / is fixed and only m is
summed. Coordinate systems in which D is diagonal are discussed in
Section 4.3.

Finally, we remark that quadratic transformation formulas for the
hypergeometric function ,F, can be obtained from the conformal symme-
try of the complex Laplace equation [93].

Exercises

I. Show that & (3) is decomposed into three orbits under the adjoint
action of E(3).

2. Verify that the Helmholtz equation separates in parabolic cylindrical
coordinates x=(£*—1?%) /2, y=£n, 2=z, and that the corresponding defi-
ning operators are {J;, P,} and P;.

3. Use expressions (4.10), (4.11) to compute the bilinear expansions of
the function sin(wR)/wR in terms of separable solutions of the Helmholtz
equation in spherical and prolate spheroidal coordinates.

4. Compute the symmetry algebra of the Laplace equation A5y =0.

5. Show that the change of variables x=u, y—iz=s, y+iz=2t and the
substitution ¥ = ™ ®(¢,u) reduce the complex Laplace equation (3., + 0,
+d,,)¥ =0 to the heat equation for .




