CHAPTER 4

Lie Theory and Confluent

Hypergeometric Functions

In the last chapter fundamental properties of the cylindrical functions
were deduced by relating those functions to the representation theory
of %(0, 0). Here, analogous arguments will be used to study confluent
hypergeometric functions as they relate to the representation theory of
%(0, 1). Besides treating the general confluent hypergeometric functions
F(a; b; x), we shall also consider certain special cases: the Laguerre
polynomials L7(x), the parabolic cylinder functions D,(x), and the
Hermite polynomials i, (x). These special cases arise naturally.

In Section 4-11 we will introduce a real (global) Lie group .S, whose
Lie algebra is a real form of %(0, 1). We will examine the relationship
between the irreducible representations of #(0, 1) and the unitary
irreducible representations of S, . This study leads to addition theorems
and orthogonality relations for the Laguerre polynomials. The problem
of decomposing tensor products of unitary representations of .S, into
irreducible parts will also be considered. The solution of this problem
leads to identities expressing the product of two Laguerre polynomials
as a sum of Laguerre polynomials (Section 4-17), and as an integral over
Bessel functions (Section 4-19). Furthermore, the product of a Laguerre
polynomial and a Bessel function can be expressed as a sum of Laguerre
polynomials (Section 4-20). Each of these expansions will be given an
explicit group-theoretical interpretation.

Finally in Section 4-21 we will use the fact that %(0, 0) is a contraction
of %(0, 1) to derive a formula for Bessel functions as limits of Laguerre
polynomials.
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Note: There is another real form of %(0, 1) (the Lie algebra of all
real matrices (1.30)), distinct from the one we consider here. A study of
the representation theory of this new real form leads to integral identities
involving confluent hypergeometric functions (see Vilenkin [3]).

4-1 The Representation R(w, m,, p)

The irreducible representation R(w, m,, p) of %(0, 1) is determined
by complex constants w, m,, p such that g % 0, 0 << Re m, < 1, and
w -+ m, is not an integer (Theorem 2.2). The spectrum of this representa-
tion 1s the set

S = {m, + n: n an integer},

and the representation space V has a basis { f,,}, m € S, so that

J?:fm = mfmr Efm :f-"‘fmv ]4- e ‘zf’l’fm-l—,ll
I_fﬂl - (?ﬂ _|_ {”)fm—l » Cl}.lfm B (J+]_ "1 Elg)fm . mem -

The commutation relations satisfied by the infinitesimal operators are

BBl =4]5 [O4)]1=-E U5E=[FE=0. “@2)

(4.1)

We will find a realization of this representation in such a way that the
operators J*, J3, E become the linear differential operators (2.36) acting
on a vector space of functions of one complex variable, 2. Let the repre-
sentation space ¥, be the complex vector space consisting of all finite
linear combinations of the functions 2,(2) = 2%, n = 0, -1, 4-2,..., and
set A\ = m,, ¢ = m, + w in Egs. (2.36) to obtain the operators

1
Pemtrs, E=p Jrop =Tl

d
+2= (43)

-4

on ¥;. Define the basis vectors f,, of ¥, by f,.(2) = h,(2) where
m = m, + n for all me .S. Then

o = (o + 2 52) 2 = (my + ) & =
i = (p2) 2" = pa"tt = pfy

I = (B ) 2 = (4 @) 5 = (1 + @) fu
Efn = Wfm 5

and we have a realization of R(w, m, , ).
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As in Chapter 3 we use this realization by differential operators to
obtain a local multiplier representation of the local group G(0, 1) whose
Lie algebra 1s 4(0, 1). The matrix elements of this local representation
with respect to the basis { f,,} will be confluent hypergeometric functions.

Although the realization of R(w, m,, 1) given above was constructed
from the differential operators (2.36), it could also have been constructed
from the operators (2.37). As far as the computation of matrix elements
is concerned it makes no difference which operators we use. The matrix
elements are uniquely determined by the Lie algebra relations (4.1) and
do not depend on the particular realization of these relations.

In Section 1-2 it was shown that %(0, 1) is the Lie algebra of the local
Lie group G(0, 1):

1 ceT a T
G{ﬂ, ]) = g E: E; g » a, b! C,TE g r (4‘4]
O 0.8 A

We can extend the realization of R(w, m,, 1) defined on ¥#7 to a local
multiplier representation of G(0, 1) defined on (7, , where (Z; is the
complex vector space of all functions of 2 analytic in some neighborhood
of the point & = 1. Clearly (7; O ¥7 and (Z; 1s invariant under the ope-
rators

d m, — w d

3 — i — + — -
P=m+z—, E=p Jr=ps ] L

According to Theorem 1.10, these operators generate a Lie algebra,
isomorphic to %(0, 1), which is the algebra of generalized Lie derivatives
of a multiplier representation 4 of G(0, 1) acting on &7, . We will compute
the multiplier » explicitly. From the theorem, the action of the 1-par-
ameter subgroup {expc¢ #—,ce @} of G(0,1) on 0/, is obtained by
solving the equations

dz d
I:;l —
o I o v(2°, expc f) =

m, + w

- (&% exp c f)

with initial conditions 2(0) = 2° #£ 0, »(2° e) = 1. Here, e 1s the
identity element of G(0, 1) and exp ¢_#— is given by (1.33). The solution
of the differential equations is

£ ﬂta-l-u.r
o )

z(c) = 2° + ¢, v(z% expc f) = (1 o
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Thus, if f € 0/, is analytic in a neighborhood of 2° then
i ™Mt
[Alexp e SN 1) = (1 +—) & +0)

and A(expc #7)f is an element of (Z; for |¢/z°| << 1, 2° + ¢ in the
domain of f. Similarly we obtain

[A(exp b 77) f1(2°) = exp(ubz) f(2°),
[Alexp 7 .7%) f1(2°) = emo" f(e72%),
[A(exp aé) f](2°) = e f(2°).

If g € G(0, 1) has coordinates (a, b, ¢, 7) it 1s easy to show that

g = (exp b F*)(exp ¢ #~)(exp 7 F°)(exp ad).

Thus, for |c|, | 7| sufficiently small, the operator A(g) acting on
fell, is given by

[A(£)f1(z) = [Alexp b,#%) A(exp ¢ #7) A(exp 7.77) A(exp aé) f](2)

c Mt
— ehlbzta)+am s (1 _I_;) f(efz_'_gﬂ's)l (45}

To make sense out of this expression we restrict g to the open set
M CG(0, 1) where M = {ge G(0, 1): | ¢ | < 1}. As a local Lie group,
M 1is isomorphic to G(0, 1). For every f e (/; let D; be the domain of {,
.e., the open set in ¢, containing 1, on which f is defined and analytic.
Define %,(g), the domain of g€ M, by Z,(g) = {f e, : (1 + c) € Dy}.
It follows from these definitions that for any g e M and fe Z%,(g) we
have A(g)fell,, where A(g)f 1s given by (4.5). In fact, D, =
{zel:|¢c/z| <1 and e(z+c)eD,;}, so 1€Dy,,. (The factor
(1 4~ ¢/z)™Met« in (4.5) is defined by its Laurent expansion about 2 = 0.)
The problem of properly defining the domain of the operator A(g) on
(l, is analogous to the problem of defining the domain of an unbounded
operator on a Hilbert space.

We can given a precise interpretation of the representation property
of the operators A(g) as follows: If g, , g, , 2,2, € M and f € 0/, such that

feRi(g,) and A(g,) fe Ay(gr), then fe Hy(g1g5) and
Ag:18:) [ = A(g)[A(g) fl e &, . (4.6)

The problem of properly interpreting (4.6) is analogous to the problem
of defining the product of two unbounded linear operators on a Hilbert
space.
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The elements of #7 are analytic for all & £ 0 so for any fe 77,
g € M, the expression A(g)f is well defined as an element of 7, . In
fact Dy = {ze@:| 2| > |c|}D{1}. Consequently, if 2€ ¥ then
D, = {| 2| > d,} where d,, 1s a constant such that 1 > d;, >=0. (Recall
from Section 2-2 that 77 is the space of all finite linear combinations of
functions of the form A(g) f where g € M and fe ¥; . By definition, ¥}
is invariant under A.) Thus, if e ¥] then & has a unique Laurent
expansion

Bg) = Y @&z, a4,
which converges absolutely forall | 2| > 4, .
According to the above results the subspace ¥ is invariant under 4,
and the basis functions f,(2) = A,(2) = 2", m = m, + n, for ¥] form
an analytic basis for 7] (see Section 2-2).

As usual the matrix elements A4 ;(g) of the operators A(g) on ¥] are
defined by

[Al@hd(z) = Y Au(g) (=), geM, k=0,+£l1.., (4.7
f=—c0
or
Enthz+u}+{mﬂ+kh(] 4 ﬂfﬁ}mﬂ+‘“+kﬁk = E z‘i'u;(g’)z‘, |E-'fla3'l i I (4{3)

[=—o0

Furthermore, from the representation property

A(g182)he = Alg1)[A(ge)] (4.9)

we obtain the addition theorem

An(61g2) = 2 Aig) dnlge), Lk =0, %1, £2,...  (4.10)
Equation (4.9) is defined only for those group elements g, , g, € M such
that g,g, € M and A(g,)h; € #,(g,). However, we shall soon see that the
matrix elements 4 ;(g) are entire functions of the complex group param-
eters (a, b, ¢, 7) of g; hence, the matrix elements can be defined by
analytic continuation for all g € G(0, 1). Moreover, the group parameters
of g,g, are entire functions of the parameters of g, and g, :

&la, , by.y 01.57Ty) 2a(a; by.y Cay Tp)

= &182(@ + a5 + 1by€7, by - €niby 0 - e7Tigy , Ty F 7). (4.11)
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Thus, by analytic continuation the addition theorem (4.10) is valid for
all g, , g, € G(0, 1).

To derive an explicit expression for the matrix elements 4,(g) we
expand the left-hand side of (4.8) in a Laurent series in 2 and compute
the coefficient of z!. The result is

ok be)s I -1k -1
Aplg) = emarmpbin(uhy—k Y = (nbe)® I'(p )

R4+-sllp+2+1—3)’°

where the sum extends over all nonnegative integral values of 5 such that
the summand is defined. For convenience we have set p = m, + w.
Comparing with (A. 10) we have

exp[pua + (m, + R)7] I'(p + k + 1) k=1
(k=D T(p+1+41)

s F(—p — L R — 1+ 1; —pbe) it Rl

Aylg) = exp[pa L{Ermi :}f)ﬂ(#‘b)i—k

Bil~p — B3l —k4-1; —ube) if Ik

Here, p is not an integer. 1'he functions (£, are the confluent hypergeo-
metric functions defined by their power series expansions. It is clear
from (4.12) that the matrix elements are entire analytic functions of the
group parameters.

Perhaps the most convenient form in which to express the matrix
elements is in terms of the generalized Laguerre functions L{”, (A. 15):

A,(g) = eratimethlrh=lL U —ubc), k, [ integers. (4.13)

Aulg) =

(4.12)

Substituting (4.13) in (4.8) and simplifying, we obtain the generating
function

o0

el 4t = ¥ L0, 0<|t] <l (4.14)
[=—oc0
Note that the Laguerre polynomials L\, n an integer, do not occur as
matrix elements of R(w, m,, p). Laguerre polynomials will arise in the
computation of matrix elements of 7, , and |, , to be considered later.
We can obtain addition theorems for the Laguerre functions by substi-
tuting (4.13) into (4.10). After some simplification there results

e=t(ey + )" LiP[(8 + by)(e + )]

= ¥ @ Lmale) Ll (4.15)
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where n is an integer, p is not an integer, and b, b,, ¢;, ¢, € €. The
following limits can be verified from (4.14):

0 if 2>0,
LB = 10 o 20
(—H)I —— 1
+ (4.16)
p+mny .
"L (be),_, = (5 e i nz0,
0 if <0,

where » ‘1s an. integer. Therefore, if ¢; =8, =0, e =1, b = x'in

(4.15), we obtain

L™ (x) =
W L A\-n g
Z( %) (P}JI) if n<0,

which is the power series expansion for the generalized Laguerre func-

tions.
Ife; =0,¢, =1, b, = x, b, = y in (4.15), one obtains

(

LM(x +y) = Z

[}

while:fore) = lyep= ;0. =%, 8; =9,

L{ﬂ](x _|_y) — gV Z ( Lf:i-i—ﬂ}(x)_

Ifey = —¢;,= 1,0, = x, b, = —y we have

o0

o L Y (YL (),

nl ok f—nt

[

W
[=

je—an
and
0= Z (—LY LU LD (),  n >0,

J=—ic0

As a final example, set ¢; = ¢, = 1, b; = x, b, = y to obtain

(=4

e2"LiM2(x + )] = Y, LU(x) LD ().

J=—c0
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4-2 The Representation 7, ,

The irreducible representation 1, , of (0, 1) i1s defined for each w,
p € € such that g % 0. The spectrum S of 1, , is

S = {—w -+ n: n a nonnegative integer}

and there is a basis { f,, , m € S} for the representation space V' with the
properties

}Efm = mfm ) Efm — f“‘!‘fm J ]+fm = #fm-i-l y
]hfm == {?ﬂ' B m)fm—l 3 Cl].lfm i (Iq-]q — Ela}fm — f-’:mfm ,

(Heref , ,=0,s0]J7/_,=0.)

As in the last section, we can construct a realization of this representa-
tion such that J=, J3, E take the form of linear differential operators
(2.36) acting on a space of functions of one complex variable. Namely,
we designate by 7, the space of all finite linear combinations of the
functions A,(2) = 2® n =0, 1, 2,..., and define operators on ¥, by
setting A = —w, ¢; = 01in (2.36):

d d

]Ez_w_l_ggﬁr;: E:F"!‘ I+:'u.3', JHZE- (4.1?)
The basis vectors f,, of ¥, are defined by f,(2) = h,(2) = 2™ where
m = —w -+ n and n = 0. These operators and basis vectors satisfy the

relations

J+fm — (-I”*g) BN = Mﬂ+1 — P‘fm+1 :

p (4.18)
Vi = Ezmzﬂ = nz"! = (@ +m) [t
Efm = f-‘*fm

for all m € S. Relations (4.18) yield a realization of T,,,.

We can extend this realization to a multiplier representation of G(0, 1)
defined on (7, , the complex vector space of all entire analytic functions
of z. Obviously, (7, is invariant under the operators (4.17) and contains
¥, as a subspace. According to Theorem 1.10, the operators (4.17)
induce a local multiplier representation B of G(0, 1) acting on the space
of all functions analytic in a neighborhood of 2 = 0. However, it will
turn out that B(g) fe l, for all fell,, g € G(0, 1), so without loss of
generality, we can restrict B to (7, .
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Since the differential operators

d d
-, J— 1 P — —= T = e
P=m+s—, E=p Tr=p, JF=x

are formally identical with the operators (4.2) for the case m, + w = 0,
the action of G(0, 1) on (¥, induced by these differential operators is
obtained from the corresponding result (4.5) in Section 4-1 by setting
m, = —w. Thus, we have operators B(g) defined for all ge G(0, 1),
such that

[B(g) f1(z) = er®*+@==" fez +-e7c),  fells. (4.19)

The multiplier v is given by v(2, g) = exp[pbz + pa — wr]. Clearly, if
fell,,ie., if fis an entire function of z, then B(g) f is an entire function
of z; therefore the space (7, i1s invariant under the operators B(g).
Furthermore, the operators B(g) are defined on /, for all ge G(0, 1)
and satisfy the representation property

B(£:4:) [ = B(£)[B(g) f] (4.20)

for all fe (Z, and all g, , g, € G(0, 1). Equation (4.20) is a consequence
of Theorem 1.10. However, it is simple to verify its validity directly.
Thus, if g, and g, have coordinates (a, , b;, ¢;, 1) and (a,, by, €5, 75),
respectively, then g,g, has coordinates (a; + a, + em¢iby, by + emb,,
¢ + e ¢, , 74 + 7,) and we find

B(£)[B(g:)f1(z) = exp[phyz + pa; — omy][B(gz) f1(ex + €716y)
= exp[p(by + em1by)z + play + ay + eneyhy) — w(ry + 7))
.f(E{TI-l-fg}E AL Effi-h'rﬂl(i;] 1 E_Tiﬁg])
= [B(£1£)/1(2)
for all fe(l,.

Every function fin /, has a unique power series expansion

=S aan- el

convergent for all 2 € €. Thus, the basis functions £,(2) = 2", n = 0,
of ¥, form an analytic basis for (Z, . With respect to this analytic basis
the matrix elements B (g) are defined by

[B(g)kk][z) = z BEL{E) h;(}.’:], g S G(U: I}: k = D: l.. 2‘!'"! (421}
=0
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or, from (4.19),

E.l.t{bz'Ta:lHk-w}'r(g + ,;_-)"-3 — Z Bm(g}zi. [422}
1=0

The group property (4.20) leads to the addition theorem

By(g1£:) = z Bij(£1) Bjr(gs), Lk =0, £, 8:€ G(0, 1). (4.23)

i=0

The matrix elements B (g) are easily determined by expanding the
left-hand side of (4.22) in a power series in = and computing the coefficient
of 2. The result is

= {(—wtk)r -k (P‘.bﬂ:]s k!
Bﬁﬁ:{g) =igRes (lu'b) ZS,{! —F e j}! Sll:k — S)! ? 'kl / .-:':::” Dt (4‘24}
where the (finite) sum is taken over all nonnegative integral values of s
such that the summand is defined. We can express these matrix elements

in terms of known special functions. Comparison of (4.24) with (A. 10)
yields

a + (k — w)r]k!
By(g) = S (fj_{ ! f!wH =t Fi(—L k — 1+ 1; —pbe)

if 2=1>20

.4 — T , (4'25)
Bu(g) = = p{“‘ii{i), i (ub)'=* Fy(—k; I — k + 1; —pbc)

i L2k =0,

The matrix elements can also be written in the convenient form
B, (g) = erntb—ohghlLU=D(_pbe) R 1 >0, (4.26)

where the functions L;™ are the associated Laguerre polynomials.

Substituting (4.26) into (4.22) and simplifying, we obtain the generating
function

e 2 8 DL g () A (4.27)
I=0

Note the great similarity between the expressions for matrix elements
of 1, and the matrix elements of R(w, m,,p) given by Egs. (4.12),
(4.13). The matrix elements computed here can be obtained from the
earlier results by setting p = 0 and restricting the indices /, % to non-
negative integral values.
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In accordance with our usual procedure, we can obtain identities for
the associated Laguerre polynomials by substituting (4.26) into the
addition theorem (4.23).

The results are (after simplification)

e~%(e, + 6,)" LM[(b, + b,)(e, + ¢)]

— Z ({;1);'—.!Lii—n[blcl](ﬂﬂ]wn-j L;L+ﬂ—§}[b2521, (4.28)

=0

where n, [ are integers, [ >0,/ +n >0, and b, , b,, ¢;, c, L.
Comparing (4.26) and (4.24) we can easily derive the relations

0 if n = 01
cmLiM(be)|,_p = {(=b)" if 7 <0,
(—n)!
(4.29)

(n:l')':ﬂ if n>=0,

0 if n<0.

£“L§“’{bf:)lb=ﬂ =

These relations can be used to derive identities for the associated
Laguerre polynomials which are simple consequences of (4.28). Thus,

if ¢i = b3 =10; 6= 1, b; = x; (4.28) reduces to

S (—=xy g +n :
f =0,
;1 7! (} -+ n) e
Li"(x) =
141 . ¥
(—=)" Y (x}(fTﬂ if n<0, I+n>0,

?ru = n)!

which is the series expansion for the associated Laguerre polynomials.
Fore; = 0,0, = 1,0, = %, b, = y, Eq. (4.28) reduces to

o .

CLiM(x +-y) = E

I {ﬂ-]-!l:'{l};)j

and ifc; = 1, ¢ =0, 8y = %; & =y, it becomes

L:;a}(x + ) = e Z ( Lm"'j]'(:-:}.

j=0
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Foregy = —¢, = 1,5, = % b, = —2 the resulting expressions are

o S 5 (s L),

= =
nl b

forall /] =z = 0, and

0 = 3 (—1YLy-5(x) Ln-3(y),
j=0

forall,n = 0.1fc; = ¢, = 1, b, = x, b, = vy, we obtain

o0

LM+ y)] = T LID(x) L-(3).
§=0

4-3 The Representation |, ,

As was stated in Theorem 2.2, the irreducible representation |, , of
%(0, 1) is defined for each w, pu € ¢ such that u £ 0. The spectrum of
lw.u 18 the set

§ = {—w — 1 — n: n a nonnegative integer},
and there is a basis { f,, , m € S} for the representation space V such that

Ffm = mfm » Efm = _ul"'fm! ]+fm = _(m 1= - l)fm+1!
]_ﬁm = n'-‘(‘fm-—l > Cﬂ,lfm = {]+J“ = Elﬁ)fm == _wam .
(Wesetf ,=0,s0]JH ., =0)

It 1s impossible to find a realization of this representation in terms of
differential operators of the form (2.36). In fact, if J+ — pz it is impos-
sible to find a nonzero analytic function J-w-1(2) such that J*f . = 0.
We could find a realization in terms of the operators (2.37). However,
it 1s more convenient to use the following modification of (2.36):

(4.30)

d . d
]3:—-m—l—z£, E = —pu, ]T:d-_g*

J- = pz.  (4.31)
As 1s easily seen, these operators satisfy the commutation relations (4.2),
hence they generate a Lie algebra isomorphic to %(0, 1). We will define
a realization of |, , such that J% J3, E take the form of the differential
operators (4.31) acting on the vector space ¥} of all finite linear combina-

tions of the functions %,(2) = 2", n = 0, 1, 2,... . Namely, we define the
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basisvectorsf,, of ¥,by f,.(2) = h,(2) = z"*wherem = —n — w — 1 € S.

Then we have
I3, :(_m—l—zi)zﬂz(—w—l—n]3”=mf
m dg oy

d
]+fm o Az P =n"t = —(m+w+ 1) frui,

]_fm — {-”"3} 2= szﬂ i Hfm—l )
Efm == _P"‘zﬁ = _f":'fm

for all m € .S. Comparison with (4.30) shows that our choice of differential

operators and basis vectors leads to a realization of |, , .

As in Section 4-2 we can extend this realization to a multiplier
representation of G(0, 1) defined on the complex vector space (7, of all
entire analytic functions of z. Since the details of the computation are
so similar to the computation for 1, , it will be sufficient to merely list

the results.

The generalized Lie derivatives (4.31) induce a multiplier representa-

tion of G(0, 1) defined by operators C(g), g€ G(0, 1), on {7, :
[C(g)/1(2) = explplez +- bc — a) — (@ + I)7] fle7= + 77D
for all fe 0, , 2 € Z. The representation property is

Clg:18)f = C(e)[C(gs) fl, £1,8<G(0,1), fel,,

and the matrix elements C ;;(g) are defined by

[C(g)h)(z) = Z Cu(g) hi(2), rR=01,2,.,

f=0

or

exp[p(cz + be —a) — (o + k + 1))z + bk = ) Cufg)z',
1=0
geG(0,1), k=0

The addition theorem for the matrix elements is

Cul(£18:) = Z Cii(£1) Cirlg), Lk =0, g,8G0,1)

i=0

(4.32)

(4.33)

(4.34)

(4.35)
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From the generating function (4.34) we can obtain the following explicit
formula for the matrix elements:

C,(g) = exp[p(bc — @) — (w + &k + D)r]b* LiFP(—pbc), k,1=0. (4.36)

We can derive addition theorems for the associated Laguerre polyno-
mials by substituting (4.36) into (4.35). However, the resulting expres-
sions are identical with expressions (4.28) derived 1n the last section, so
we will omit this computation.

4-4 Differential Equations for the Matrix Elements

The individual matrix elements of the representations R(w, m, , u),
Twn» and |, , are all entire functions of the complex group parameters
a, b, ¢, r and can be considered as analytic functions on the group
manifold of G(0, 1).

Let (Z[G(0, 1)] or X for short, be the complex vector space of all entire
analytic functions on G(0, 1). There is a natural action of G(0, 1) on
(¢ as a transformation group. For every g’ € G(0, 1) we can define a
linear operator P(g'): (7 — (I by

[P(¢)fl(e) =f(gg'), [fel, geG(0, 1) (4.37)

From this definition it is evident that P(g,g,) f = P(g,)[P(g,) f] for
all g, , g, G(0, 1).

Clearly each of the matrix elements A;(g), B (g), Cj(g) computed
above is a member of (Z. Furthermore, the action of P on these matrix
elements is easily determined. We have

(P(e)A5)(e) = Anleg) = 3. Aulg) Au(e),

=

], k integers,

[P(g')Bi)(8) = Bilgg) = ;i By(g') Big), (4.38)

j, k nonnegative integers,

[P(2')Cul(e) = Cinleg’) = f Cule’) Cale),

J, k nonnegative integers.
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Comparing these expressions with (4.7), (4.21), and (4.33) we see that
for fixed j, the functions {4;,} form a basis for the representation R(w,
m, , ), the functions {B;,} form a basis for the representation 1, ,,
and the functions {C;;} form a basis for the representation |, , . There-
fore, the Lie derivatives J*, J—, J3, E defined on (¥ by

J/(8) = = [P(exp tH)f1(8)|

E==(}

I(e) = 2 [Plexp t#) F ()|

=0

i (4.39)
*f(e) = g5 [Plexp £.£)1g)]| .

, | fed,

t=0

Ef(g) = = [P(exp 1€)£1(¢)

must satisfy the commutation relations (4.2), and their action on the
matrix elements 4, , B, , C;;, must be given by

PA;(g) = (m, + k) Aulg), J*A45(8) = pd; k()
J-A5(g) = (m, + o + k) A; . 4(8), EA;(g) = pAip(g),
Co.1du(g) = (JT]- — EJ?) A;(g) = podul(g)

for all integers j, %,

(4.40)

JBj(g) = (—w + k) B(g), ]+B:r'a:(§) = pB; 1(2),
I7Bji(g) = kB; 11(8), EB;.(g) = nBiu(g),
Co.1Bi:(g) = pwB;(g)

for all nonnegative integers j, k&,

(4.41)

PCulg) = (—w — 1 —k)Ci(g), JTCilg) = kC; 14(8),
J_Cjk{g) = P“Cf' .fc+1(€]: EC}E(g} - _F"Cih(g):
CoaCin(g) = —pawCi(g)

for all nonnegative integers j, A.

(4.42)

These expressions yield recursion relations and differential equations
for the matrix elements. To evaluate them we must compute the Lie
derivatives |+, J3, E defined by (4.39). In terms of the usual coordinates
(a, b, ¢, 7) for elements of G(0, 1) the Lie derivatives will be linear differ-
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ential operators in these four complex variables. However, the confluent
hypergeometric functions and Laguerre functions associated with the
matrix elements 4, , By, Cj. are functionally dependent only on the
product be of the group parameters. For this reason it is convenient to
adopt new coordinates [a, 7, ¢, 7] where g, ¢, 7 are defined as before, but
r — be. This new coordinate system is not uniquely defined over the
whole group, but only for those group elements such that ¢ # 0.

If g € G(0, 1) has coordinates [a, 7, ¢, 7] and

I e L
;e et b0
) [ SR
O 0 0 1
then the coordinates of gg’ are
[ﬂ +a' +ech,r (l =+ E_: + e I_'rETbE ],f: T - s -r’]

in the new coordinate system. Using this result and the definition (4.39)
of the Lie derivatives, we obtain

s, e ¢ r o
T — pT N A s T L
] Eﬂ(ﬁﬂ+ﬁr)' J 5 (ﬁc 1 fﬁr)’
% ¢
3 = — — — 4.43
] 5 B 2’ (4.43)
o L B 8 e |, B @
=T T Ve " T e " “ocoa  oOroa’

In terms of the new coordinates, 4, and By, are given by
A () = erortmgtRingt =L (—pr),  p = m, + @,
B_-jjl;;(g} = Epa+l—m+ﬂ'ﬁTﬂk—jL;F:—f}(_‘L”,a].

Substituting these expressions into (4.40), (4.41) and simplifying we
obtain the relations

2 . | .
2 LW(r) — L) = —LH),
r -(f—ff;i{f} + RLAr) = (p + R)LU(), (4.44)

ar o alrs o :
¥ ELELL“(T} —+ (k - 1 — T) E—;LL“(?‘) —+ pLLH{f} — U,
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valid for p € , k an integer. In fact, these relations follow from (4.40)
when p is not an integer and from (4.41) when p is an integer.

Similar results can be derived for the matrix elements C;;(g). However,
we will omit this computation.

4-5 The Representation {, , ® 1. .,

As was demonstrated in Section 4-2, the representation 1, ,, p % 0,
of (0, 1) can be realized on the space ¥/, of all finite linear combinations
of the basis functions #,(2) = 2%, k = 0, 1, 2,... . In terms of this basis
the matrix elements Bji")(g), g € G(0, 1), are defined by (4.26). (The
superscripts have been added to denote the particular representation 1, , .)

We will define a representation T, , & 1., . of %(0, 1) on the space
¥, Q@ ¥, of all finite linear combinations of the basis functions
b (2, w) = 2fw!, k, [ = 0, 1, 2,... . Note that ¥, & ¥, is contained in
the vector space (7, %) (7, consisting of all entire functions f{z, @) in the
complex variables 2 and w. The functions %; (2, @) form an analytic
basis for (¥, ® (I, since every element f of this space has a unique
power series expansion

=y
f{.ﬁ, ﬂ-") — Z Hki-gkwaﬁ 1 E E:
k=0

convergent for all 2, we €.
The operators T(g),

[T(2) /12, w) = exp[b(pyz + pow) — (wy + wo)r + (g + po)a]
- f(e"z + e7c, e'w -+ e7c), fell, ® 0,, (4.45)

where g = g(a, b, ¢, 7) € G(0, 1), clearly satisfy the group property
T(g182) f = T(&)[T(ge) f]

for all g,,g,€ G(0, 1) and thus define a multiplier representation of
G(0, 1) on &, & (X, . This multiplier representation of G(0, 1) induces a
representation of %(0, 1) in terms of the generalized Lie derivatives

o d

]3=—w1—w2+3a—|—w5w: IV = iz + pew,
5 i (4.46)
L)
Iﬁ:az_kawl E:F‘l+|u2‘

The representation of %(0, 1) on ¥, ® ¥, defined by these operators,
which we denote 1, , ® 1., ., , is not irreducible. We will decompose
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¥, & ¥, into a direct sum of subspaces such that each subspace is
irreducible under the action of (0, 1) as given by (4.46). Successful
completion of this task will enable us to derive formulas expressing the
product of two associated Laguerre polynomials as a sum of Laguerre
polynomials. In order to carry out this decomposition, however, we must
require py , py 7 0, py + pp # 0.

Let Q[.,.] be the complex symmetric bilinear form on ¥, ® 7,
defined by

k! 1!

Q{}Ik.l 3 kk*.ﬁr] —_— ak‘k" EE.E." T, k, k’, I, P —— {], ]., 2,-.. . (41.4?)
g6 Lt

Thus, Q[ f,,f,]€ € for all f, , f, € ¥>5 ® ¥, and
Q[f1 sfa] = Q[fz:f]L

Qla, fi + @ fo, fal = aQlfi,fal + @Ql fa, fil

for all a;,a,€C, fi,[fo,[s€Y> X ¥, . Equation (4.47) together with
(4.48) completely determines Q. We will use this bilinear form as a
bookkeeping device.

(4.48)

Lemma 41 If J+ J-, J3, E are defined by (447) and f,,
fo€73 @ 73, then
(1) QLI /o]l = Ql /i, Il
(1) QI fol = Qlf1s JTHe),
(i) Q[Ef, [l = QLA Efsl.

PROOF Properties (1) and (111) are trivial. Since Q is bilinear, it is
sufficient for the proof of (1) to consider the case where f; = 4, ; and
fo = hy p . From (4.47) we have

QUi ] = Ql(paz + paw) 2™, 2% w"]
— Q2! 2% w!] + uQ[akw! L, 2% 'w!']

(R0 R

] ak,k’ aHI+1*E"

= Sp1,x Or,1”

[T eyt
and
gy o koot {9 O\ ke
Qlhy.i, I hy y] Q{Hwa(az—l—aw)ﬁw]
= R'Q[zFut, 2¥ ] 4 I'Q[zFw!, 2¥'w!' 1]
(4 1)1 A k')
= Ek+l.kr EI.E‘ Hiﬁé —|_ 3?::.17* aﬁ+1.f ,l'-f-_ff-;g: ¥

which proves (ii).
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The bilinear form Q was defined by (4.47) just so Lemma 4.1 would
be valid.

We will decompose ¥, %) ¥, into subspaces, each of which forms the
basis space for a representation 1, , of %(0, 1). One way to determine
this decomposition is to compute the eigenvectors f of J3 which are of
lowest weight, i.e., the eigenvectors of J® such that J=f = 0 where J3
and J~ are given by (4.46). Thus, we look for solutions of the equations

Pf(s, ) = (—y — @y + 5 5=+ @) f(z, 1) = M(z, w),

/(2 w) = (Ei o ai)f(z, w) =0

where the eigenvalue A is to be determined. To within an arbitrary
constant the solutions are the functions

feol, @) = (2 —w)’, s=0,1,2,... (4.49)
In fact,

Ffs,u = (5 e Mo Wﬂ)fs.u 3 ]_fs.ﬂ — s (‘1-50}

From (4.47) and (4.49) it is a straightforward computation to obtain the
result

Qv fue] = st (LLTH2Y (4.51)

[

(Recall the assumption g, + p, # 0.)
We now define basis vectors f, . € ¥, ® 7, by

Tse = (1 + ) (TH)* fvo (4.52)

for all integers s, & = 0. It is easy to see that each function fsx s a
polynomial of order s + %k in 2 and w. Moreover, for every positive
integer / there are exactly / + 1 functions f, , such thats + &k = [, i.e.,
there are [ - 1 such functions which are of order / in = and w. Hence, if
the set { f; .} is linearly independent it forms a basis for ¥; ® ¥, and
an analytic basis for 7, &) (7, .

Lemma 4.2

(1) JSer = (u1 + 2) [ k1 s

(W) JFox = Foa,
() J¥fsp = (—wy — oy + 5+ &) for,
(v) Efer = (p1+ pa) fope -
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PROOF (I) J+fs‘.‘c = (g + FE}_k(J_[_)k_l_lfs.ﬂ = (l“l =i #2)f3.k+1 .

(1) The identity [J2, (J*)*] = k(J*)* for all k = 0 is easily proved
by induction. Then

Y oie = (a1 + p2)™* P(J*)* fo0
= (1 + o) (T Is0 + (i1 + pa) ™ R(JH)E £,
= (—wy — @y + 5+ B) (i + pa) () foo
=(—w; —wy+5s+R)fo:.

(iv) Obvious. (ii) We use induction on k. From (4.50), J-f,, = 0,
so the equation is valid for & = 0. Assume it is valid for £ < k,. Then

JFo ks = (1 + 1) 2T-T*, . from property (i). But, J-J+ = J+]- -+ E,

so from (1), (1v) and the induction hypothesis we have
]-}+fs,.ﬁ:ﬂ = ]+I_fs,k, + Efa,kﬂ
== kaﬁfa.kﬂq + (1 + Pz}fs.kﬂ

= (ko + )(1 + po) ferr, -

Theretore, J7f, 1 11 = (B + 1) fo,- Q.E.D.
Lemma 4.2 implies that for a fixed value of s, the vectors f ., k=0, 1,
2,..., form a basis for the representation T, .4, s .4, Of %(0, 1) (compare

Lemma 4.2 with Egs. (4.18)). Thus, the action of G(0, 1) on the vectors
Jazi1s

o

[T(g) fo(z w) = ), Bigrresswtual(g) f, (2, w),

=0

k,s 20, geG(0,1), (4.53)
where the operator T(g) is defined by (4.45) and the matrix elements
BijptesSkrtie) (g) are given by (4.26) (w0 = w; + @y — 5, g = py + po).

Lemma 4.3 Q[fs,k yJorw'] = 054 ak,k'Msk where

M, = s Rl (py + pg)** *
: (Ppia)®

PROOF From Lemmas 4.1 and 4.2 we find

Q[fﬂ.k rfs.h::l — (Ju"l T F‘E)Pﬂ Q[]+fﬂ.k—1 , ]+fa,k—1]
T {F'l + I‘LE)_E Q[fs,k—l » J_]+f3.k—l]
= (11 + p2)RQL fo .1 s ol
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Since

Q[ /050l = 3! ("‘1 T s )3

Hqltts

by (4.51), it is an easy induction argument to obtain Q[ f, ., fo x] = Mg

for all s, £ = 0. The property Q[ caaitiis] = Q[ fer» I3 1] implies

{E _I_ kR — s — hr) Q[fs_-k !f::-",k’] = 0. HE‘“CE! Q[fs,.fs: :fs',k"] = 0 unless
S+ kR=¢s -+ k. If R>Fk it is obvious from (ii), Lemma 4.2, that

(J7)fer - = 0O for all s = 0. Thus,

Ql fonsfor '] = (11 + pa) ™ QLU foi0 0 [t ]
= (g1 + 1) * QLS50 ¥ fer]l =0 forall 5,5 =0,

and Q[ f, z» fo' '] = Ounless k2 = &’. Collecting all these facts together,
we have the lemma.

Among other things Lemma 4.3 proves that the vectors {f, ,} are
linearly independent. Hence, by our earlier remarks they form a basis

for ¥, ® ¥, and an analytic basis for , ® Z,. ¥, ® ¥, can be
decomposed into a direct sum of subspaces

Va®Voz2 ) @Y

S=ai)

where ¥7; is the subspace spanned by the basis vectors { f, ;}, k = 0, 1,
25 The ¥, transforms under (0, 1) according to the irreducible
remesentatmn Tw tew,—s,urtu, - 1 his decomposition induces an analogous
decomposition of (7, &) U/, .

Thenrem 4"1 T-r.rjl,y.l @ TWEJFE = _Z{] @ Tr:::—-—cu — 8, iy Ha If ]u’]_:l 2 5
p + e 7 0.

We define Clebsch—Gordan coefficients H(y, , /; o, j | 5, k), nonzero
onlyif s + k = [ j, by

s+k
fﬁ,ﬁ: - Z, H(Iu'] 1 E.‘- Hea s _I_ k h 'E | 5, k} h!.s-l—b-—.', y k_., § ..; 0: (454}
=0
i.e., fon(® w) = X586 H(py, L po s + & — 1|5, k) 2'aws+%-1. A simple
consequence of thlS deﬁmtmn and (4.47) 1s the relation
! 41

: 4! :
Qlfors brsl = Hlpy s L g, 7 1 5, k)ﬁl—;ajimm ks, l,j =0. (4.55)

172
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We can use this relation to invert Eq. (4.54). Since {f, ;} is a basis for
¥, @ ¥, we can write

[

hy; = E di ;T eris—ar LLj =0,
g=0

for suitable constants af ; . An easy computation using Lemma 4.3 gives

QL Sk s Pral = a1, 08,005-sM . - (4.56)
Comparing (4.55) and (4.56) we have

Il 1
pipdM,

ﬂ?§=H(}A1,f;p2,j|£,f—i—f—5)

and finally
L i, g g )5 147 — 5) 1L
Byegi= G RN o s (4.57
¥ szu 1“1‘“’3 8,14j—s Jaus- )

It is easy to obtain a generating function for the Clebsch—-Gordan
coefficients directly from (4.53). In fact, for k. = 0 and g = exp b #+
in (4.53) one obtains the generating function

=)

Plrrian (s —uy = y AL p o o)

=0

o s+l

[ I
= % Y DL By, s Ll D) Pt (458)

[=0 j=0

Equating coefficients of 4! on both sides of this expression we find

s+k

H® + pow)\” : . ~ -
2 —w) = Y H(uy,fip0,5 +k—7j|s, k) 2wtk
(H1+H2)( ;Zn (k1 2 J )

or

H(Pl:j;#275+k_.jlsrk)

Rl P i (B | L 1 ;
R M ¢ B e ey e A R

where the sum on the right-hand side is taken over all integral values of
n such that the summand is defined. The Clebsch—Gordan coefficients
are independent of w; and w, .
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These coefficients are closely related to the Jacobi polynomials.
In fact,

{_1]$+.i||:—j 5!
(1 + pa/p)*® (s + & —j)!

F(—k,—s—k+jij —k 4+ 15 —pofp,)
: J 4.
B — k1) o

H(py 05 125 -|—-k—j[£,k) 5D

where we adopt the convention (A. 5) on the right-hand side of this

equation.
If we apply the operator T(g), g € G(0, 1), to both sides of Eq. (4.57)

we obtain

Y Blww(g) Biwd(g) by, .,
1, i =
© i Y I 1 i s g
¥ E Z (11, 45 i:’-*:s_-.f % 4] 5) Il Bﬁ?ﬁ;mﬁi_ﬁ}[g]fmk [ (4.61)
k=0 s=0 H“;M g,147—38 -

The right-hand side of this expression can be expanded in terms of the
basis vectors %, . Equating the coefficients of 4, ; on both sides of the
resulting expression we get

min[l+k, 1 +k"]

Blavm)(g) Blental(g) = )

=0

_H(#lvf;#21k|srf+kF3)H(“1 F.P‘E E | o .I_k’ _5)
Ms.t"-&i:"—s i , ’

VLR i "
G D) geGO), LIk K =0,1,2,.., (4.62)

Or

]Il‘iﬂ[!-l—k.lj-l-kl] (_l)k_i_krsl I.r!

iVl = Y gorp—a

a=0

o (pelp) ™ F(s—1—k, —kys —k+1; —pg/py)
(1 4 pafpg)* I'is —k 1)

Bl =1 —F, =2 — B ==Y s covene
' I's —k +1) ==L (g + gl (4.63)

The reader can work out some of the special cases of this formula for
himself.
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The above analysis demonstrates in a particular case the close connec-
tion between the reduction of tensor products of group representations
into irreducible parts and identities expressing products of special
functions as sums of special functions. We could carry out the same
analysis for the representations |, , & l,, . . However, this procedure
would lead to no new results for the associated Laguerre functions, so we
omit it.

The method presented here for the reduction of a tensor product of
representations works only if the tensor product can be decomposed
into a direct sum of irreducible representations. In particular, representa-
tions of the form R(wy,m;,p,) @ R(w,, m,, ;) or o7 N [
cannot be so decomposed and our procedure fails. However, when we
consider unitary group representations in Section 4-18, we will be able
to use the tools of functional analysis to obtain deeper results relating
the properties of Laguerre functions to tensor products of group repre-
sentations.

4-6 A Realization of R(w, m,, p) by Type D' Operators

In the first four sections of this chapter the irreducible representations
of (0, 1) were realized on spaces of analytic functions of one and four
complex variables. Now we will construct realizations on a space of two
complex variables, x and y. In fact, we will study those realizations of
irreducible representations of %(0, 1) such that the operators J*, J3, E
take the form

I3 — %} Jt = etv (i E% = %FI), E=pu (4.64)

where . is a nonzero complex constant. These are the ¢ype D’ operators
defined in Section 2-7. (The constant ¢ occurring in the expression for
the type D' operators can be set equal to zero without any loss of
generality.)

T'o begin with we construct a realization of R(w, m, , 1) (0 << Rem, < 1,
p # 0, and m, + w is not an integer). Thus, we look for nonzero func-
tions f,.(x, y) = Z,(x)e"™ such that

]Efm = mfm ' Efm — f‘l'fm ]
w = o, Tha=m+ o) fos, (4.65)
1"r'-_:llll.l.Ji‘;r.'r: = (]+]_ —E)jm = pwfm
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for all me § = {m, + n: n an integer}, where the differential operators
J= %, E are given by (4.64). In terms of the functions Z, (), relations
(4.65) reduce to

6) (32— b) Zal) = pZpn(s),

() (o — hux) Zu(s) = (1 + @) Zos(o), (4.66)

d*= Fias
(i) (g + 55— — 41— plm + @) Z,(x) = 0.

The complex constant w is clearly irrelevant as far as the study of the
special functions Z,, is concerned, since we could remove it by relabeling
the functions Z,, = Z,,,,. Hence, without loss of generality we can
assume w = 0. Also, there is no loss of generality for special function
theory if we set p = 1.

The solutions of Egs. (4.66) are well known. As remarked in Section
2-7, (111) is the parabolic cylinder equation and its solutions are the para-
bolic cylinder functions D, (x), see (A. 16). In fact, for all m € S the
following choices for Z,, satisfy (4.66):

(l) ‘Zm{‘x) — (_[jm_maﬂm{x:}:

(4.67)
{2} Z:rn{I} = D-r.rr( —I).

Since w = ( we must have 0 < Re m, < 1; hence, the elements m of .S
are not integers.

It follows from the above discussion that if the functions Z, , m € .5,
are given by either (1) or (2) in (4.67), then the functions f, (x, y) =
Z,,(x)e™ form a basis for a realization of the representation R(0, m, , 1)
of %(0,1). By Theorem 1.10 this representation of %(0, 1) by Lie
derivatives can be extended to a local multiplier representation of G(0, 1).
Thus, if we denote by (7 the space of all entire analytic functions of x
and y, the operators (4.64) will uniquely define a multiplier representation
T of G(O, 1) on ZZ.

We will compute the induced multiplier representation in the usual
manner. Since J© = e¥(d/ox — 1x) it follows that

[T(exp 6,77) f1(x, €¥) = v(x, €', exp b %) f[x(b), e*™],
bel, fed,
where

d d
= _.l'[E:IJ'
T e = db”
d

E 1*'(..1:1. ey, EEP. f}j"} — — %T(bj E.!.rff-l]'l,.(;{" EH} EEP bd¢-+)

(5) = 0,
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with initial conditions x(0) = «x, y(0) = ¥, v(x, e¥, ) = 1. The solution is

[Texp b #4) f1w, ) = exp (— 5 — 222 f(x + b1, 1)

where £ = e¥. Similarly we find

f=2c2 xt—1¢

[T(exp ¢.#-) FI(x, 1) = exp (— ) f(x — et 1),
[T(exp .29 f1(%, £) = f(x, e't),
[T(exp a&) f(x, t) = ef(x, ).

As mentioned in Section 4-1, if g € G(0, 1) has parameters (q, b, ¢, 7) then

g = (exp b fF+)(exp ¢ #~)(exp 7 #%)(exp aé).
Thus,

T(g)f = T(exp bF7) T(exp ¢ #7) T(exp 7.7°) T(exp ad)f
for all fe (/. Direct computation gives

12h2 xth xt ¢ t—2¢2  b¢

[T(e)flet) = exp (— - — 5 — 5=+~ —5 +4)
- f(x + bt —ct-1, e't) (4.68)

for all g e G(0, 1), fel. (Note that t = e¥ = (.)

According to Section 2-2 the matrix elements of the operators T(g)
with respect to the basis vectors f,(x, t) = Z,(x)t™ are given by the
matrices 4 ,(g), Eq. (4.13) (w = 0, u = 1). This follows from the fact
that the functions f,, satisfy condition (B). Thus, we obtain the relations

[T(g}fmﬂ+k](x! t} — i Hik[g]fmquf-E{'rs t.}: k= 01 :i:I: '_":2:'*': {469}

b=y

valid for all g € G(0, 1), or

%% xth xt=1c §5p5 be
- — — oL - L
exp ( 5 3 j 3 ) D, (x+b ct—1)

= ¥ (—OLG(=be) D, (9, i Z,(x) = (—1y"mD,,(x). (4.70)

I
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Various special cases of these relations are worth investigating, If we
set ¢ = 0, f = 1, and make use of the limits (4.16) we obtain

€Xp (_ I?: T ;b) Dm(:ﬂ i b) i ;L;(__Hbiﬂm+t(xj'

If x = () this relation becomes
b)Yt I'(3)(2)im+bi2

[! F(l—;ﬂ—!)'

D,.(b) = exp (%) ;é(

Forb = 0,t = 1, Eq. (4.70) reduces to

op (5 + ) Dt 01 = £ (7) Dt

i=0

and, for x = 0, to

c) = ex _i i ﬂlP(%)(jg)tm—mz i ‘
D(¢) P( 4);“1“(]#’2”*'5) (g)

4-71 A Realization of 1, , by Type D’ Operators

To obtain a realization of the representation 1, , of 4(0, 1) by type D’
operators acting on (7 it 1s necessary to find nonzero functions f,,(x, y) =
Z(x)e™ (m = —w + k, R = 0) such that

Ffm ' mfm ) Efm o T F’fm ) I+fm -— P’fm-a—l 1 ]_fm e {m S w)fm—l '

‘ (4.71)
Cl}.lfm ==} (J+]'_ = EJd)fm = l""’wfm ¥
where
P=g F=ev(tz—ius) E-u

In terms of the functions Z, (x) these relations take the form (4.66)
where, as remarked earlier, without loss of generality we can assume

w =0, 4 = 1. Thus,

(_dfx' - %x) Zn(%) = Zmia(%),
£ j‘x — 1) Zn() = mZps(), (4.72)
(—; +T -%f—m)zm(x)ﬂ,
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m =0, 1, 2,.... We can use these relations to explicitly compute the
functions Z,(x). In fact, the relation J-f, = 0 implies

(5 + 1) Zux) =0,

which has the solution Z,(x) = c exp(—«?/4), ce €. Choose ¢ = |.
For m > 0 we define the function Z,,(x) by

Zn(x) €™ = fru(%, ¥) = (JF)" folx, ») = (JF)"(Zo(x)).

A straightforward induction argument yields

0 O i %
Z,(x) = E::-;p( - )ammexp (_T) m=0,1,2.. (473)
At this point we have found functions f,(x, y) = Z,(x)e™, m = 0,

such that
JEfm = mfm ’ ]+fm zfm-q-], ) ]_fu — 0.

We can then proceed exactly as in the proof of Theorem 2.2 to show that
these functions must actually satisfy all the relations (4.71) for w = 0,
p = 1. Hence, the functions Z,(x) defined by (4.73) are the solutions of
(4.72). The Z,(x) are easily expressed in terms of parabolic cylinder
functions or Hermite polynomials H, (x). In fact,

Zp(x) = (—1)" Dy(x) = (—1)™ exp(—a?/4) 2-™/2H,,(2-1/%%),
m=0,1,2,... (474)

According to the above discussion the functions f,(x, y) = Z,,(x)e™,
m = 0, form a basis for a realization of the representation 1, , . As usual
this representation of %(0, 1) can be extended to a multiplier representa-
tion T of G(0, 1) on ZZ. The action of the operators T(g) has already been
determined and is given by (4.68). The matrix elements of this repre-
sentation with respect to the analytic basis { f,,} are the functions B(g)
computed in Section 4-2 (w = 0, 0 = 1). Thus, we have

[T LI = 5 Baleflet),  B—0,12:,

1=0
or
t2h2 xth xt—1c {22 be

[ iy o 1 - =1\
e:{p( 1 5 5 hE 7] Z)Dk(-’f"i“f’f e B

— Y (— LI —be) D) £ (4.75)

L=0)
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where ¢t = e¥. This last relation is valid for all b, ¢, x, £ € € such that
t == 0. In terms of the Hermite polynomials

H,(x) = exp(x[2) 272D, (2 %%),  m =0,1,2,...,

Eq. (4.75) takes the form

exp(—t2? — 2xtb)H(x + bt — ct=1)t* = ) (—c)*'LI=D(—bc)H (x)t". (4.76)

L=0)

If c = 0, t = 1, this equation reduces to

o —b I
exp(—b* — 2u) Hy(x + b) = Y S m o,
=0

and in the special case k = 0, b = —y, it becomes

exp(2xy — y*) Z Hz{x) (4.77)
{=0

which is a well-known generating function for the Hermite polynomials.

Finally, when b = 0, t = —1, Eq. (4.76) reads

i

Hyx—c)=Y ( f) cF-VH ().

t=0

We could find a realization of the representation |, , using Zype D’
operators in exact analogy with the procedure for {1, ,. However, this
construction will be omitted since the analysis leads to no new informa-
tion about special functions.

4-8 Transformations of Type C' Operators

The type C” operators classified in Section 2-7 take the form

______;_E), E=pup (4.78)

0 " ( 159 | g
i éx xéy 4 ' x

where ¢, p € Z, p 7% 0. (Without loss of generality, the constant p in the
expression for the type C’ operators can be set equal to (.) These opera-
tors generate a complex Lie algebra isomorphic to %(0, 1). In analogy
with Section 4-6 we try to find a realization of the representation
R(w, m, , 1), where now the operators J*, J3 E have the form (4.78).




4-8. TRANSFORMATIONS OF TYPE C" OPERATORS 107

Thus, we look for nonzero functions f, (%, y) = Z,(x)e™, me S =
{m, -+ k: k an integer}, such that

}aifm = mfm: Ef = Ffm » ]+fm =i f“'fm+1 )
JTa=m+ &) fua, Coafw =T — EPF)fa = paf,

where the differential operators are given by (4.78). As was shown in
Section 2-7, the functions Z (x) must satisty the equation

(4.79)

_li[xi m{x)]Jr[(m—'?}ﬂ — sulm 4 g+ 1) + ”f”ﬂ] Zon(%)

x dx

= pwl, (x), me S.

The solutions of this equation are called the functions of the paraboloid
of revolution, Erdélyi et al. [1], Vol. II, p. 126. In particular, one such
solution is

(x%/4)" exp(—%(8) Jy(€ —n + 4 5 26 + 15 %%/4)

where £ = 3(m — g)and n = $p(m + q + 2w + 1). If m — g i1s not an
integer there is a linearly independent solution

(x2/4)~¢ exp(—«?(8) \Fy(—€ — 7 + § 5 — 2¢ + 1; 2%/4).

Expressed in terms of generalized Laguerre functions, there are linearly
independent solutions
(1) (s24)f exp(—sY8)LE_(x34)  and
(4.80)

(2) (x/4)¢ exp(—a2/8) L2, (x/4).

If we wish to study directly the properties of the confluent hypergeo-
metric functions (or the generalized Laguerre functions), however, it is
more convenient if we can find differential operators whose eigenfunc-
tions are of the form

Tl ) = L2 (x)(e")™ (4.81)

We shall transform the #ype C’ operators into a new set of differential
operators to bring about this desirable situation.

To begin with we assume w = 0, p = 1. (As far as special function
theory 1s concerned this 1s no loss of generality.) Then, the first solution
(4.80) is f,(u, t) = u=92e %L m~D(y)t™ where the variables u, t are
defined by u = x?/4, t = e¥x/2. Denote by .%# the space of all functions
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analytic in a neighborhood of the point (¥°, #°) = (1, 1) and define the
transformation ¢ of % onto # by [ f](u, t) = u=U% %" f(u, t), fe F.
We can consider the mapping ¢ to be multiplication by the function
@(u, t) = w92/ This mapping is invertible with inverse ¢~ defined
by [ f](u, t) = ut2/2e™/2 f(u, t). Under ¢~ the basis function f,,(u, £)
defined above is mapped into [¢~'f, |(%, ) = L™ 2(u)t™, which 1s 1n
the desired form (4.81).

If ] is a linear differential operator on % define the linear differential

operator J# on # by J*e@lf) = (e 1Je)e1f) = o Jf) for all
feF, e, J* = o 1]Jp. As a consequence of this definition we have

Lemma 4.4

(1) [, K] =[] K¥,
(2) (a] - bK)? = aJo - bK%,  a bef,
3) Jf=h< oo f)=97'h, [ heZF,

for all linear differential operators J, K on #.

PROOF (1) Forall fe#,

[J, KJ¥(7Y) = @[], K]f) = o H{J(Kf) — K(]f)}
= @ H{J(Kf)} — @ {K(Jf)} = ()P (Ef)} — (K)o (Jf)}
= [J%, K7](o7f).

Properties (2) and (3) are trivial. Q.E.D.

Thus the map | — J#is a Lie algebra isomorphism.
If

J= At e+ e o) fifefa€ P

an explicit computation gives
Jo = it ) + Flts 1) 7 + fults ) + 973w )
el TR TR e

(Al + filw, 1) ), -~

where @(u, t) = u=92e~%/%, ¢~ Yu, t) = u2/%e*/?, (Although we have made
a special choice for ¢, Lemma 4.4 and Eq. (4.82) are clearly valid for any
nonzero function ¢ in %)
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Armed with these facts, we can compute the operators (J%), (J*),
(E)® where J3, J*, E are given by (4.78) (» = 1). In terms of the coordi-
nates #, t (u = x%/4, t = e¥x/2), the results are

P =ta, EF=1,

(4.83)
g =t(m—1) (=1 (-up—te+a)

As an example we verify the computation of (J*)?. Under the change
of variables from (x, y) to (u, £), J* becomes

]+=Ey(i_li+‘iﬁf)zr(£ g 1)

ox xdy. x4 2/
Moreover,
¢ 0 tq t
~1 Rt — ul/2p%(2 _ [y=9/2e-u/2] — = — _
7, )t o [, £)] = u0en? o [ut/ei%] = — oL — 3
Therefore,

gy =1 () = oG- 1)

The other relations are proved similarly.

4-9 Type C' Realizations of R(w, m,, )

By construction the differential operators (4.83) generate a Lie algebra
isomorphic to %(0, 1). These operators can be used to find a realization
of the representation R(w, m,,p) on #. Thus, we look for nonzero
functions f,(u, t) = Z,(u)t™ defined for all me S = {m, + k&, %k an
integer}, such that relations (4.79) are valid.

Here the differential operators are given by (4.83) and the superscript
¢ has been omitted. (There is no loss of generality for special function
theory if we set w = 0, p = 1.) In terms of the functions Z,(u) these
relations are

(d% = 1) Z, (1) = Z,(u), (_u h m) Z, (1) = mZ,_4(u), .

dE
(it lg—m— 140 e ) Z,w) =0
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for all m € S. The solutions of these equations are generalized Laguerre
functions or, what is the same thing, confluent hypergeometric functions.
Indeed, for all m € S the choice

Z (u) = (—1)y"" Li"=9(u) (4.85)

satisfies (4.84), see (A. 13). (It is left to the reader to find additional
solutions.) Since w = 0 we must have 0 << Re m, < 1, so the elements
m of S are not integers. In the special case where m, — g is an integer
the functions (4.85) have been obtained as matrix elements of representa-
tions R(w, m, , u). However, when m, — g is not an integer these func-
tions do not occur as matrix elements.

The above remarks have established the fact that the functions
fol, t) = Z,(w)t™, m € S, form a basis for a realization of the representa-
tion R(0,m,, 1) of %(0, 1) if the Z,(u) satisfy (4.84). In the usual
manner this realization can be extended to a local multiplier representa-
tion T of G(0, 1) on the space &.

According to Theorem 1.10 and relations (4.83), the local multiplier
representation takes the form

[T(exp b.F*) f1(u, ) = ef(u + bt, 1),
[T(exp c.#-)fl(u, t) = (1 — el o f(u(l —clt),t—), |cft] <1,

(4.86)
[T(exp 7 72) f1(u, t) = f(u, e't),
[T(exp aé) f](u, t) = e*f(u, 1)

for fe #.If g€ G(0, 1) has parameters (a, b, ¢, 7), then

T(g) = T(exp b.#*) T(exp ¢.#-) T(exp 7.#%) T(exp af)
and
[T(g) fl(u, t) = a1 — c/t) 2 f[(u + bt)(1 —cft),e(t —c)] (4.87)

for | ¢/t | <1, fe.Z. The matrix elements of T(g) with respect to the
analytic basis {f,,(u,t) = Z,(u)t™}, (4.85), are the functions Aulg)
defined by Eq. (4.13), (w = 0, » = 1). (The fact that this basis is analytic
follows from (2.2) and the ¢ dependence of the basis functions.) Thus,

[T(g) frn, el ) = f A 8) fng12(ts 1), =0, 1, +2,..., (4.88)

[=—o0
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which simplifies to the identity

e (1 + ¢ft)? L [(u + bt)(1 + ¢ft)] = i ) R (be) Lir+D(u)t!,
[=—o0

p+a+1
left| <1, p,qe €, p -+ qnotan integer. (4.89)
Using the limits (4.16) we can investigate two special cases of this

identity: If ¢ = 0, ¢ = 1, there follows

LP(u +b) = & Z (=0 E’)I L+ (u),
=0

while if 5 = 0, ¢ = 1, there follows

o

(1 4+ c)PLP[u(1 + ¢)] = ¥ 'L (u), le] <1.

=0

4-10 Type C’' Realizations of 1,

To obtain a realization of the representation 1, ; of %(0, 1) by operators

]3__.,4::?, E =1, J+"_t(£_l)*
]—mz—l(—ua%—t%—l—q): g€ L,

acting on % we must find nonzero functions f, (u, t) = Z, (u)t™,
m =0, 1, 2,..., such that

]Ffm N mfmp Efm :fm , J+fm — fm+1:
7S =Mfuas  Coafn= (1" —EP)fn =0

for all m = 0. (We assume f_; = 0.) Conditions (4.90) will be satisfied
if and -::mlj,r if the special functions Z,,(u), m = 0, satisfy the equations

(4.90)

(;u = 1) Zn(#) = Zmia(10), (—u {;iu — 1+ ) Zn(t) = mZys(),
(4.91)
( ud;i;_l_(g—m—liu}d )Zm(u)z{}_

(Here, Z_,(u) = 0.) Equations (4.91) determine the functions Z,, to
within an arbitrary constant. Thus, the relation J-f, = 0 implies
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(—ud/du + q) Zy(u) = 0, which has the solution Z,(x) = cu?, ¢ an
arbitrary constant. T'o normalize our solution we set ¢ = 1. For m = 0
the functions Z,(u) can be defined recursively by Z,,(u)t" = f,(u, 1) =
(TH)™fo(u, 8) = (JH)"Zy(u). A straightforward induction argument yields

Zou) = e (%)m (u%e—4), iS00 2w (4.92)

By definition the functions f, (u, t), m = 0, satisfy the relations

]Efm == mfm » ]qu ‘:fm-i-l 3 ]_fn = 0.

However, it follows immediately from the proof of Theorem 2.2 that
the f,, must actually satisfy all of the relations (4.90), and the functions
Z(u) must satisfy all the equations (4.91). The special functions Z,, are
conveniently expressed in terms of associated Laguerre polynomials
L m a positive integer. In fact,

Z (u) = ml u=mLem@w),  m=0,1,2,... (4.93)

This realization of %(0, 1) can be extended to a multiplier representation
T of G(0, 1) on & where the action of the operators T(g), g € G(0, 1) is
given by (4.87). The matrix elements of T(g) with respect to the analytic
basis { f,,} are the functions B () studied in Section 4-2 (w = 0, p = 1).
Thus,

[T(e) fil(w, 1) = gﬂ Bule)fii 1), E=0,1,2,

which leads to the identities
Rl e (1 + btu)t*Liu(l 4 btfu)(l — c[t)]t*

== k=T (k—T)( __ 1 ggk=1T (a=D {30\ 41

Eﬁﬂ LiF3(—be) Il w*='LieNu)t?, (4.94)
valid for all b, ¢, t, u, g€  such that | bt/u | < 1. Making use of the
limits (4.29) we can derive some simple consequences of (4.94). For
=) =11

TR Leow, 1kl <1,

ev(1 4 By LWl + b)) = Y b (T )L
=0

and, setting & = 0 in this expression we obtain a well-known generating
function for the associated Laguerre polynomials:

ao

e (1 4 b)1 = ) b'LIE(u), ge€, |b| <l

[=0
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When 6 = 0, # = 1, Eq. (4.94) becomes

k
LOw—c) =Y t;—:Lé‘*‘_*E”[u).
=0 ~°
We could also use the type C' operators to find a realization of the
representation |, , . However, the identities for Laguerre polynomials
obtained from such a realization are just (4.94) again, so this analysis
will be omitted.
In Chapter 5 we will derive additional identities for the Laguerre
functions by relating these functions to the representation theory of si(2).

4-11 The Group §,

S, 18 the real 4-parameter Lie group of matrices

1 e @ 6 — wi/8
gw, 0,8} = [0 et — 1w (4.95)
0 0 0

where w = x + 1y e , 0 < o < 2m, (mod 27), and § is real. The group
multiplication law for S, is

glw, o, 0} - g{w', o, &}
=g jw+ et o+ o, 8+ 8 + & (@wlets — wﬁ’eﬂu}f . (4.96)
Thus, £{0, 0, 0} is the identity and the inverse of a group element

1s given by
gHw, o, 8} = g{—e*"w, —a, __S} (49?]

As a basis for the real Lie algebra & of S, we can choose the elements

0 =i 0 D3 0
Jﬂ(ﬂ 0 iﬂ), .fg(ﬂ 0 —13)
0

0 0 0 0 0
_ (4.98)
0O 0 0 0! 9
Fs = (D —1 0), — (ﬂ' 0 ﬂ)
0 0 0 0 0 0
with commutation relations
[j“fz]:%,@, [ﬁgiﬂg.l]:ﬁa: [fﬂ:fz]z_agl: [aﬂ::ﬂ]zm:
(4.99)

R=1,2.3.
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The 3 X 3 matrices £+, ¢, 78 &,
t=FAhtih, FP=ify, &=-—i

must then satisfy the commutation relations
[fasji]:'ijir [jir:f_]:_éir [(f}ji“]:[éﬂ:f?-]:{f}

Clearly, the complex Lie algebra generated by the basis elements (4.98)
1s 9(0, 1). Thus %(0, 1) is the complexification of %, and %, is a real
form of %(0, 1) (see Section 3-5). Due to this relationship between the
two Lie algebras, the abstract irreducible representations R(w, m, , ),
T, and |, , of (0, 1) induce irreducible representations of %, . We
shall investigate which of these irreducible representations of %, can be
extended to an irreducible unitary representation of .S, on a Hilbert space.
The technique for carrying out this investigation was discussed in Section
3-6 and applied to the real Lie group E; in Section 3-7.

4-12 Induced Representations of %,

As in Section 3-6 we consider a unitary irreducible representation U
of 5y on a Hilbert space # and define the infinitesimal operators J, , J,,

Ja:QbF

d
Lif: EU(EKP tjk)f ’ k= ]-: 2!3:

=0

. (4.100)
Qf = 7S Ulexp t2) f

t=0

for all feZ. Here, & is a dense subspace of # satisfying properties
(3.45) and (3.46). On Z these operators obey the commutation relations

[Jl » JE] = 3Q, [Jan }1] = Iz: [Ja:]z] = —]1: []L::Q] = 0,
B =ay:d%

as follows immediately from (4.99). Moreover, the operators J%, J3, E
defined by

P 4ily, P=il,, E=—iQ (4.101)
satisfy the commutation relations
s El=+8 [REl==]%  [5E =00 E =0

hence, these operators determine a representation p of the complex Lie
algebra (0, 1) on 2.
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We shall first investigate which of the representations R(w, m, , u) of
%(0, 1) can be induced by p on some dense subspace %’ of @. According
to Lemma 3.1 we must have

<ka: k> — _<f!- ]kh>: k= l, 2! 3:

for all f, h € @, where {.,.} is the inner product on 3#. Using (4.101) we
can write these conditions in the form

I by = (f, I3h, Tk = TR, CEf,hy = (f, Eh) (4.102)

for all f, he Z. The representation R(w, m, , p) is determined by the
relations

]Efm mem: Efm zﬂfms
I+fm = Wms1 s J_fm " (m 1 @) fina

where u # 0,0 < Rem, < 1,m = m, + kand k runs over the integers.
We will assume that the basis vectors f,, are in 2 and use conditions
(4.102) to find restrictions on w, u, and m, . Thus,

ﬁ(fm :fn> 1 <J3fm :fn> i (:fm 3 ]’Efﬂ> = n"{fm 1fn>1 {4!04}

or (i — n) { fou»fn2 = 0 for all m, n in the spectrum of J%. Setting
n = m, we can conclude that m is real, hence Im m, = 0. If m +# n we

have {f,,f,> = 0. Similarly, the relation (Ef, ,f,> = & Ty By

proves that p must be real. Finally, the relation

plfm s> = T s fnd) = {Jner s To> = (M + @) frny s furd  (4.105)

implies 0 << | £, |?/| fu—i |2 = (m 4+ w)/u for all m e S. Since this last
condition can never be satisfied for all m € S it follows that none of the
irreducible representations R(w, m, , p) of (0, 1) are induced by unitary
representations of .S, .

However, we shall have better luck with the representations Tw,. of
%(0, 1), determined by conditions (4.103) where now u = 0,
w Is arbitrary, and m = —w - k where k runs over the nonnegative
integers. As in the preceding case, in order that the operators (4.103)
be obtained from a unitary representation of S, we must require (i)
Jm>Jn> = 0 1f m 5 n; (ii) the spectrum of J? is real, i.e., w is real:
(1) p 1s real; and (iv) O < |f_piper %] fowir |2 = (B + 1)/ for all
nonnegative integers k. Condition (iv) implies # > 0. From (3.46) we
can show

(4.103)

Ulexp o fy) frn = exp(—ia]?) f,, = e~'rof,,
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for all m in the spectrum of J2. Since exp 27 ¢; = exp @ = e (the
identity element of S,), we must have e = | for all m in the spec-
trum of J3. Thus, m and w must be integers. If we define new basis

vectors j, by

‘ k2

T = W.ﬁ-—w-}-k 3 kR = U:— 1! 2:*“:
it 18 a simple consequence of conditions (i) and (iv) that {j., j.-> =
b oy ;- for all &, " = 0, where b is a positive constant which without loss
of generality can be set equal to 1.

We can draw the following conclusions from this analysis: Any irreduc-
ible representation f,, of %(0, 1) induced by a unitary representation
U of S, must be such that w is an integer and x > 0. Furthermore, the
vectors {j,} form an orthonormal basis for # and satisfy the relations

B = (—w + k) ji, Ei = wh,
]+j;; == [H(k s I}:ll‘mfﬁ:-lrl , 7k = (R)Y2 11y

forall R >0 (j_; = 0).
Conversely, we will soon show that each such representation (4.106)
induces a unitary irreducible representation U of S, on a Hilbert space.
A similar analysis proves: If the irreducible representation |, , of
%(0, 1) 1s induced by a unitary representation of S, then w is an integer,
p > 0 and there is an orthonormal basis {j,}, 2 = 0, 1, 2,..., for 3 satis-
tying the relations

(4.106)

Pir =(—0—1—=~)jx, Ei=—w,
T = [Pk)l‘m}'kq 3 I = [p(k + l)]l‘mfk—n

forall 2 = 0 (j_, = 0). Conversely we will show that each such represen-
tation (4.107) induces a unitary irreducible representation of S, on a
Hilbert space.

From (4.95) and (4.98) it 1s easy to verify the relations exp y ¢, =
g, 0,0}, expx g, = g{x, 0,0}, exp o ¥, = g{0, », 0}, and exp 82 =
£0, 0, 8} for x, y, o, & real. If w = x + 1y it follows from (4.96) that
8w, o, 8} = (exp x F)(exp y f)(exp o Z)(exp(é + xy/4)2). Thus, S, is
uniquely determined by the elements %, , %, , % , 2 of ¥, and according
to Egs. (3.46), the operators U(g), g € S, are uniquely determined by the
infinitesimal operators J, , J,, J5, Q defined by (4.100). The irreducible
representations (4.106) and (4.107) uniquely determine the unitary
representations from which they are derived.

Before proceding with the determination of the irreducible unitary
representations of S, it 1s useful to examine a realization of the represen-

(4.107)
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tation f,,; of & which is of importance in quantum mechanics: the
occupation number space formalism for bosons. Let 5# be a complex
Hilbert space with orthonormal basis vectors | n), n = 0, 1, 2,... . On
 we consider the annihilation operator a and its adjoint, the creation
operator at, defined by

alny=n?|n—15 at\mpy=m+1)12n+1>, n=01,2,.., (4.108)

and linearity. The number-of-particles operator N is defined by N = ata
and has the property

N|n) =n|n), =101, 200» (4.109)

As the names of the operators suggest, the eigenstates | n) of N are
interpreted as eigenstates of # bosons. The vacuum or no-particle state
18 | 0). From their definitions it is easy to verify that the four linear
operators a, at, N, I, (I is the identity operator on ) satisfy the com-
mutation relations

[a+= 3‘] = —I, [N, 3+] = ar, fN, a] = —a,

(4.110)
[a+, 1] = [a,]] = [N, I] = 0.

Comparison of Eqgs. (4.106) and (4.108)—(4.110) shows that the occupa-
tion number space formalism gives a realization of the representation
To1 of (0, 1), hence, of & . In Section 4-14 this representation will be
extended to a unitary representation of S, .

4-13 The Hilbert Space #

Our aim is now to extend the representations (4.106), (4.107) of %,
to unitary irreducible representations of S, . For this purpose we first
define the Hilbert space % on which these representations will operate.
# 1s the space of entire analytic functions f of the complex variable ¢
such that

[ £0) de(t) < oo,

where d§(t) = n—! exp(—#t)dx dy,t = x+} iy, and the domain of integration
1s the complex plane. Every function fe % can be expanded uniquely
in a power series f(f) = Y 5_o4a,t" which converges everywhere. The
inner product {.,.)> 1s

by = [fO) ) ), fihe . (4.111)
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[t 1s easy to see that the functions j, () = */(n!)*/%, n = 0, 1, 2,..., form
an orthonormal basis for #. In fact, introducing polar coordinates
t = re*?, we have

i 1
Cnor ) = m(n! n'1)1/2

2ar o0
f E.ﬂn—n’ilﬂ dg J. r-r:+'n'+1 EKP[:—?'?') d‘i".
0 1]

Hence, ol
<J’n :}ﬂ’> = Snm’ . {41 12}

For any two functions f(t) = Y a,t® and A(¢f) = ¥ b,t" in & we find

B = f nlab, (4.113)
n=0
and
Gy = i nl | a, |3 (4.114)
=0

From (4.114), an entire function f is an element of 5 if and only if
>n—on!|a,|* < 0. Equation (4.112) shows that the vectors {j,} are
orthonormal while (4.114) shows that they are complete; hence, they
form an orthonormal basis for .

The space # was introduced by Segal [1] and studied in detail by
Bargmann [3, 4]. We mention here some of the special properties of this
space.

I. Define the function e, €% for some complex constant & by
e,(t) = exp(bt) = ¥ o (bt)*n!. It follows from (4.113) that for
any fe %,

5, BBy ey €5 — ey — Exp(T)

Fim=)

Thus, e, acts like a delta function. Use of the vectors e, will greatly
simplify the computations to follow.

II. Define the norm of a vector fe % by|| f|| = </, f )'/2. From the
Schwarz inequality, | f(B)] = [<e,, £ <l - II£ll = exp(65/2)]| £
Thus, if f, he #, then | f(b) — h(b)| < exp(bb/2)|| f — k| which shows
that convergence in the norm of % implies pointwise convergence,
uniform on any compact set in (.

III. Finally, we quote without proof a theorem from Bargmann [3]
which will be needed to justify several of our computations. Let R* be
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k-dimensional real Euclidean space and £™ be m-dimensional complex
space. We are concerned with integrals of the form

Flz)= [ f(z,7)d",

where D is a measurable set in R* and z = (2, ,..., 2,,) is a point in an
open set (@ of ¢™ Assume that, for every z in a neighborhood
N(|z; — b; | << p;) of the point b 1n @, f is analytic in z for every T,
measurable 1n 7, and

fz) <n(r), |2 —b;| <py,

where % 1s summable over D. Then F(z) is analytic in N, and its partial
derivatives are obtained by differentiating under the sign of integration,
the resulting integrals being summable. In the following computations

we freely interchange summation and integration without explicitly
constructing the appropriate (7).

4-14 The Unitary Representation (A, /)

We will now verify that all of the representations 1, , of (0, 1) with
w an integer and p > 0 induce unitary irreducible representations of
S, . To find these representations of .S, note that for w an integer the
multiplier representation (4.19), induced by 1, ,, depends on the param-
eter 7 only in the form e:

[B(g)f1(z) = ert®ztd(en)-« flez + e7c), fell,, (4.115)

where g € G(0, 1) has parameters (q, b, ¢, 7). (If w is not an integer (e7)~«
is not a single-valued function of e7.) Thus, the operators B(g) define
a multiplier representation of the 4-parameter matrix group G(0, 1)
with elements

1 ¢ a
glaber)=0 e b), abecrel, (4.116)
0 0 1

The matrices (4.116) are obtained from expression (4.4) for the matrices
of G(0, 1) by eliminating the last row and column. G(0, 1)’ is not simply
connected. In fact, g'(q, b, ¢, 7) = g'(a, b, ¢, 7 -+ 2mi). However, G(0, 1)
and G(0, 1)’ are 1somorphic as local Lie groups, i.e., they have isomorphic
Lie algebras.
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Comparison of (4.95) and (4.116) shows that .S, can be considered as
the real subgroup of G(0, 1)’ consisting of all matrices g'(a, b, ¢, 7) such
that Rer = 0, 6 = —¢, and Re(—b¢/2  a) = 0. Thus,

glw, o, 8} = g(15 — wiv(8, —w|2, B2, —ia)

1 e w2 i3 — ww|8
=0 g —wf2 |e§,,

0 0 1

where we ¢, 0 < o < 27, (mod 27), and 8 is real. Since S, can be
embedded as a subgroup of G(0, 1)’ we can obtain a global multiplier
representation for S, by restricting the operators B(g), (4.115), to the
group elements g in S,:

[B(£) f1(z) = exp[p(—w=z/2 + i — wit|8) + iwa] fle =z + e~*@(2), (4.117)

defined for every entire analytic function f and every element g in S,
with parameters {w, «, 8}. It will be convenient to write this expression
in a slightly different form. To emphasize the fact that g and @ can
assume only restricted values we set & = / > 0 and w = A where A is an
integer. Further, we introduce the new complex variable ¢ defined by
t = ['/?z and the polar coordinates re*® = w/2. In terms of these new
variables (4.117) becomes

[B(g)f1(t) = exp[—I*2tre®® 118 — Ir?|2 + ida] f(te~ i + [MPre—i==19) (4.118)

where f is an entire function of ¢,
The generalized Lie derivatives of this multiplier representation of
S, are readily computed:

/2 d PE d
=7 (=) h=7(-t+F)
: d ;
h=iA-tgp) Q=1
Thus,
Jr=—Ta+ily =B, J= 4T il = Br L
d

]32i13=_&—|—fﬁ, E=—£Q=f.
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Applying these operators to the basis functions j,(Z) = #*/(n!)72,
n=01,2,.., we have

P = (n — A Ef, = b;“
T = [l R s o = Uﬂ}lmjﬂ—’- '

These relations are identical with the relations (4.106) derived in Section
4-12. Thus to define unitary representations of .S, induced by t,, we
need only introduce a Hilbert space such that the functions j, form an
orthonormal basis. The action of the group on this Hilbert space will be
given formally by (4.118). As we saw in the last section the Hilbert space
& has the required property.

Using the preceding facts as motivation we now construct the unitary
representation (A, /) of S, on #. Here, A is an integer and [ > (. Let g be
an element of §; with parameters {w, o, 6} = {2re%%, o, 8}. Define the
linear operator U(g) on & by

[U(g)f1(t) = exp[—2trei® — 2|2 + ild + ika] f(te— + D Pre—i—i0),  fe F.
(4.119)

If g, and g, are elements of .S, with coordinates »; , 0, , «; , 8; and 7, , 0, ,
ay , 05, respectively, one readily finds the coordinates 7», 6, «, 8, of
£18: € S, to be given by

ret® — r et - roettfa—o), &= 0oy + a,

+ (4.120)
8 = 8; + 8, + ry7ysin(ey + 6, — 6,).

Theorem 4.2 (A, /) is a unitary representation of S, .

PROOF (i) Unitarity. Using the inner product (4.111) on F we
have

U(8)f, U(@)hy = m* [ exp[—1MPFre=0 — I'Ptre® — Iy?]

. f‘(re—iu _|__ il,ﬂ'ﬂm—ia—fﬁ}

* h(te ™ + PPy~ exp(—itt)dx dy, = x4 1y,

for all ge S, f, he #. With the introduction of the new complex
variable t' = x" |-y’ = te~'* | ['/%re~?+—10 this integral simplifies to

1 J' F() h(t") exp(—t't") dx' dy' = { f, b>.
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(1) Representation property. If g,,g,€.S; with coordinates as
given above, we have

[U(g,) U(g,) f1(t) = exp[—3tr et — Ir2[2 + 48, + iAoy ][U(g,) f]
(e + [y e—iniy)
— exp[—I2tret® — %2 + iI5 + iXal] f(te—ix -+ [1/2pe—in-if)
= [U(£:£2)/1(2)

for all f € #, where the variables r¢%, o, § are defined by (4.120). Q.E.D.

4-15 The Matrix Elements of (A, /)

Given g € §; with coordinates re'f, o, 8, we shall compute the matrix
elements

Uﬂ.m(g) == <jﬂ ! U(g}jm:}! n, m — UJ 1: 21*-*:

with respect to the orthonormal basis {j,,}. In fact we can easily derive a
generating function for these matrix elements. To do this note that

Eﬂ-

e(t) = exp(it) = _zﬂj;mm = afﬂ(z)mﬂg,

and define the generating function G* Y g; s, u) by

GH4(g; ) = Ceu, Ulg)ea> = 3. s Ulelid iy~ (4121

T, =)

Due to the delta function property of e, we obtain

(e;, U(g) ezx» = [U(g) ea)(s)
= exp[ida + tl6 — Ir?|2 + ue—®(s + D/%re—%9) — [/%ref]

= Y Usule) = ::;1 - (4.122)

=0

where the last equality follows from (4.121). By equating coeflicients of
powers of s and u we easily find expressions for the matrix elements
themselves. The result is

U, .(2) = exp[ic(A — m) -+ ils + i(n — m)f]

. exp (_ E)( ! )”2 (riL/2ym-nLim—m)(}y%), (4.123)

2 /\m!
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or,
U, m(g) = explia(A — m) + ild + i(n — m)0]

I | \1/2
* exp (_ "%') (%’) (—rlB AL (1),
where the functions L!*), a, b integers, a + b = 0, are the associated
Laguerre polynomials. This result can be used to derive a new generating
function for the associated Laguerre polynomials. Choose f = o =

0 = 0, / = 1 and substitute (4.123) into (4.122) to obtain

= plm—mn)
gus+riu—g — z
m, =0

Lo (y2) smym, (4.124)

m!

Lemma 4.5 The representation (A, /) is irreducible.

PROOF The method of proof is completely analogous to that of
Lemma 3.2. Assume the lemma is false. Then, there exists a proper
closed subspace  of # such that U(g) fe # forallge S,, fe . Let
P be the self-adjoint projection operator on J. Since .# is a proper
subspace of & 1t follows that P = O, I. Moreover, U(g)P = PU(g)
for all g € S, . Let g, be the element of S with coordinates {0, «, 0}, i.e.,
re® = § = 0. Then, U(g,)j, = e>*Y, for all n > 0, which implies
U(g) Py, = e**Py. . Thus, Pj, = a,j,,a, a constant. Since
P? = P we have a; = q, for all # > 0; hence, @, = 0 or @, = 1. By
hypothesis there exist integers #, , n; = O such thatPj, = 0,Pj, =j, .
Thus, Uy (&) = <ny» U@) Pia.> = (Pjy, U@)fa> = O for  al
g€ sS,;. This is a contradiction since none of the matrix elements
(4.123) 1s identically zero forallge S,. Q.E.D.

The generating function G*¥(g; s, #) and the matrix elements U, ,,(g)
are functions of the group parameters 7, #, «, §; hence, they can be
integrated over the group manifold with respect to a suitable measure.
As 1s well known from the general theory of topological groups (Naimark

[1]), there is a unique (up to a constant) measure d(g) on S, with the
property
| f(ego) (o) = [ f(e) dle) (4.125)

for every integrable function f on S, and every g, € S, . (The domain of
integration is the entire group manifold .S, .) This measure is called the
(right invariant) Haar measure. The suitably normalized Haar measure
on S, 1s given by

rdr df do do
dg) = 1673
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where 7, 0, o, 0 are the coordinates of g € S, . Thus,

[ f(e) d(e) = El;a- [ l f : [ : j: £(r, 8, o, Sy dr O det do.

The reader can verify directly that d(g) has the property (4.125). The
constant (167%)~1 has been chosen for purposes of normalization.
We now compute the integral

f GMi(g; u,5) GMV(g; ', ') d(g) = )} fU;.';:i.(g)

p.q.n,m=0
Py ng'm

. Al
Uﬂ.m

(The superscripts A, [ are used to denote the representation (A, ).) The
first integral can be evaluated directly if one makes use of the simple
expression (4.122) for G(-) and the properties of the vector e, . The result
of the straightforward integration is

f GrHg; u,s) GYV-¥(g; u',5') d(g) = aa{il;ff}ﬁm, exp(du’ + §').

Here 9, ,» 1s the Kronecker delta while 8( — I') is the Dirac delta
function which arises from the symbolic integration formula

R . e _L. i ix(l—1")
81 —1) = 5 J_m e dx.
Theorem 4.3 J‘ Ual(g) Ur-l'(g) d(g) = SUT:IESA.A* Y

Theorem 4.3 gives orthogonality relations for the matrix elements of
the unitary representations (A, /). If the matrix elements are expressed
in terms of associated Laguerre polynomials by (4.123), these orthogo-
nality relations reduce to the formula

% !
J‘ exp(—r?) r* LI (,2) 10 (r2) dr = (n ‘,;; lk)' 8, n (4.126)
5 .
valid for all integers m, » = 0 and all integers %k such that n + & > 0,
m -+ k= 0. |
The group property U(g,g,) = U(g,)U(g,) leads to an addition
theorem

Cn s U(g182) Iy = Z Cny U0 <Jx > U(g2)my

k=0
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for the matrix elements of (}, ). Substituting expressions (4.123) for the
matrix elements and simplifying we obtain

(refym=n Lim—n)(y2) exp[ . 7 ¢i61-0)]

i Z (?-leiﬂl}ﬁ:‘n L:lﬁr—n](ff)(rﬂeiﬁg]m-—k L;{ﬂm—r.i.:}(ré‘l)’ {4_127)
k=0
where m, n > 0 and 7e®® = 7,6t | 7,i% This formula is, of course,
only a special case of the addition theorem (4.28) for the matrix elements
of Poins
We can use (4.127) to derive a simple integral formula for the product
of two associated Laguerre polynomials by setting 6, = 0 and multiply-
ing both sides of the equation by ei@-me: Integrating with respect to 6,
we obtain

rf—nffin— i LL I.‘r-ﬂ}l{ffJ Li} m— i”’"(fg)

I = , : .
=5 jﬂ expli( p — m) 6, — r,r,e=1%](ret)m—n Lim=n(r%)df,, (4.128)
where 7e*® = 7, |- 7,¢"% and p is a nonnegative integer.

Since the operators U(g) are unitary and the basis vectors 7, have
norm one it follows that

| Un.m(gﬂ == |<jﬂ ? U(g)jm>| "‘-{-. 1." H:r m ; {}.1 EES 1

which implies
| L7 (r?)| << (m][n)1/2 pi=m exp(r2)2).

4-16 The Unitary Representations (), =)

In exact analogy with the work of Section (4-14) we can construct
unitary irreducible representations (A, —/) of S, on the Hilbert space #
which are induced by the representations baiof (0, 1) (A an integer,
! > 0). Rather than repeat the motivation for this construction we merely
present the results.

The construction of the representations (), —I) of §; on F is very
similar to that for (A, /). Define the linear operator V(g), on # by

[V(£)f1(t) = exp[l*/3tre=t® — Ir%[2 + fa(X + 1) — 113]
 flte™ — [ipgintit)y  fe F

where g € S has coordinates re®®, «, §.
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Theorem 4.4 (A, —/) is a unitary representation of S, . The matrix
elements of (A, /) are given by

Vﬂ.m(g) = '<j-n ’ V(g)jwt>= §€ S-.l ;

In analogy with (4.121) and (4.122), we obtain the generating function

adl SHH?H
GA=Hp: s, ) = Z Vam(8) (n] ml)i72

., =0

= explic(A + 1) — I8 — 1r® ++ ue™(s — IM2re®®) + Misre9], (4.129)
with the result
Vam(g) = explic(A + m + 1) — 1l + i(m — n)6]
© exp(—Ir?[2)(n! [m)) (D Brym—n Lim=n)(]y?), (4.130)

Note that the matrix elements (4.123) and (4.130) have the same r
dependence. They differ only in their dependence on «, 8, and 6.

Lemma 4.6 The representation (A, /) is irreducible.

MW =Dy

4! A AT T pn Tqum "

Theorem 4.5 ij (@) VY-t(g)d(g) =

Note that
[ TEite) vt () d(e) = O,

because of the integration over the variable 4.
The infinitesimal operators of the representation (A, —/) corresponding

to the elements ¢, , Z,, #;, 2 of & are given by

RSB ST N T

]3:5(A+1;r—‘i-), o

dt
Hence,
d .
JF=—J + "-]1 = 12— df J- = ]2 ‘I‘fll = [1/2,
]ﬂ:ﬂﬁ:_a—-t_t—‘f— E— —iQ = —I

di *
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and the action of these operators on the basis vectors j,(£) = 7/(n!)1/2 is
Yhm=A(=A—=1—n Ej= 1,
Vo = ()2 gy Jjn = [ln + 1) fpin

for all # = 0. These relations are identical with Egs. (4.107) (w = A
n = ) and show that the representation (A, —/) of .S, induces the repre-
sentation |, ; of (0, 1).

417 The Tensor Products (A, /) ® (', I')

We begin a study of tensor products of representations of .S, by consid-
ering the representation (A, /) @ (A", I) where A, X’ are integers and /, [’ > 0.
This representation is defined on the space F, o~ F X F of entire
functions f(¢, p) of the complex variables ¢ and p such that

L J |12, p)|* d&(t) d€( p) < oo,

where d£(t) = nlexp(—tf)dxdy, t = x + iy, and the domain of
integration is £2. Clearly &, is a Hilbert space with inner product

WY = [[FEP) b, p) de) dE(p),  fihe F,.

The action of g € S, on fe %, is given by

[U*Hg) ® U¥(g) f1(t, p)
- Eip[—(fl-'rgf 2 I{’lfﬂp) rett — %(j -+ f'}rﬂ -+ fct(}-_ - 4};"] - I-‘S“ 1 F}]
,f(fg—fu A Eljﬁfe—ia—iu} PE-—-'!'-& 2L E’lfﬂre—fﬂ—iu} {4_131}

where g has the coordinates 7, 8, «, 8. It is simple to check that the opera-
tors U*¥(g) & U*-¥(g) define a unitary representation (A, [) ® (X', I) of
S, on %, . However, this representation is not irreducible. The following
paragraphs will be devoted to decomposing (A, 1) ® (X, I') into irreduc-
ible representations. Since S, is not a compact group, general theorems
on locally compact groups tell us only that (A, /) ® (X, /) is unitarily
equivalent to a direct integral of unitary irreducible representations of
S, . However, we shall show that in fact it is unitarily equivalent to a
direct sum of unitary irreducible representations of S, .
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The vectors j,, , = t"p*/(m! n!)'/2, m,n = 0, 1, 2,..., form an orthonor-
mal basis for #, . By means of a change of variable a new basis can be
introduced in #, on which the action of (A, [) ® (X', I') becomes more
transparent. Define new variables # and v by

T (jlfﬂp e g’ljﬂt)f(g 8 ;*)1;2?

4.132
v = (I + PRI+ T)H2, o

These equations can be inverted to give
t = (120 — I"2)[(1 4 1)1,
p = (I + PRu)(1 + )22,

Furthermore, by evaluating the appropriate Jacobian it is easy to show

dé(t) dé(p) = dé(u) dé(v). (4.133)

A polynomial in £, p can be written as a polynomial in #, 7, and conver-
sely. Indeed, if fe %, , then f(t, p) = h(u, v), where ¢, p, u, and v are
related by (4.132) and £ is an entire function of u, v. Again the converse
holds. From these remarks and (4.133) we see that the functions
wy™(m! nl)12, n,m = 0, 1, 2,..., form an orthonormal basis for %, . We
now apply the operator U*Y(g) @ U +¥(g) defined by (4.131) to the func-
tion h(u, v) = u™k(v) € #, , where n is a nonnegative integer and £ is an
entire function of v. The result is

[Un(g) @ UM ()hl(u, v) = exp[—(I +I')1/Z vre® — J(I 4 ')
+da(A + X — n) + i8(1 L IN]urk
c(ve L r(l - ' /2 e 00, (4.134)
Thus, the functions u"k(v) € #, for fixed n form a basis space for the

irreducible representation (A + A" —n, [ 4 /') (compare with (4.119)).
This proves:

Theorem 4.6 L) @M\, 01) =~ Y @A+ N —n, 1+ 1),
=0

To study this decomposition in greater detail we adopt a new nota-
tion. Set

i) = 7 KOy, )

ml nl)1/2
iy
~ (mlnl)yiR’

g = 0 12255



4-17. THE TENSOR PRODUCTS (\, ) ® (\', I) 129

Here, the superscripts on % denote the representation to which the
corresponding basis vectors belong. From the last theorem, both the
collection of vectors {j,, ,,} and the vectors {AO+*~™ ) form orthonor-
mal bases for &%, . Thus the j basis vectors and the % basis vectors can
be expressed as linear combinations of one another, the coefficients of
the expansion being known as Clebsch-Gordan coefficients. We now
compute these coefficients.

Clearly,
RO+ —n, 1Y) i (J oo BRI 5
i1 i .8 m 7,8
Thus,
who™ (M2 — IRy L [i/2g)m
T m) 2 = [alml (1 & Py
= % iy hmistry EP (4.135)
oty (T '

Define the Clebsch~Gordan coefficients K[J, g; /, s | n, m], zero unless
g+ s=n-+m, by

K[ g; Uy s | nym] = (i, , ROHN=n10y

iq,s?

From (4.135) we obtain

K[l,q; l',s | n,m]

0 if m+tn£qg-s

[(”}! (m)! (m +-n — q)! (g)! (fﬂ’)”‘"“]l*’2
(T + [rymn

_ (=D*=(r)e : -
LA am—alm—gTal I mEm=gts @136
Here the summation is taken over all integer values of a such that the
summand is defined. Clearly, the Clebsch-Gordan coefficients are inde-
pendent of A, A’ and depend only on the ratio //I' of / and /',
It is easy to prove from (4.136) that

Klhg;l'ys|n,m = (=) K[l,s; L, q|n, m).
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It 1s also easy to find generating functions for the coeflicients K. From
(4.135),

[3(ap 4 wt) + IV2(wp — at)
EXp [ (.-,I = Ir)lfg

] — piutwy

gﬂﬂfﬁ"i tqpﬂ

— Z K[f, q; Vs | n, m] (?ﬂ ) _?! 51}1;2 7

L, =0

(4.137)

Since the left-hand side of this expression is invariant under the
simultaneous transpositions w < p, { <> 3,

K[, q;U,s|n,m| = K[,n; ', m| g, s].

The decomposition of (A, [) ® (A, I) into irreducible parts as given
by Theorem 4.6 can be considered as a special case of the decomposition
of the representation 1, , & T., ., of (0, 1) studied in Section 4-5.
In fact, if w; =A, wy, =X, pu; =1, u;, =1, the Clebsch—-Gordan
coefficients H, Eq. (4.58) in Section 4-5, are related to the coeflicients K
by the equation

H(l,g; l'yn +m — q|n,m

(. 1\n (M}l (n)(I'[])ym—a 1/2 ) -
iges (m+n—g)l(g) (1 + 1l }mﬂ] K[l g;l'\n+m —q|n,m]

=: (_1}“+quﬂ! Fl—m,g —n—m;qg—m+ 1; —1'[l)
Cmtm—g) (1 U™ Tlg—m = 1) . (4.138)

The H and K coefhcients differ by multiplicative factors because they
have been defined with respect to different basis vectors.
In analogy with Eq. (4.62), we can derive the formula

UMt (g) Ud-V(g) = E K[, s;I',q|k s+ qg—R]

fes=()

K[, m;U',n|k,m +n — k] UMY ‘t':“fi_ (8),

fi—+n— +

geS,, (4.139)

expressing the product of two matrix elements as a sum of matrix
elements. The sum over % is finite because the coefficients K are nonzero
for only a finite number of values of k.
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By definition the Clebsch-Gordan coefficients satisfy the unitarity
conditions

oo

Y, Klhagi;l, s | n,m K[l g3 U,sy | nym] =8, . 8

193 ~ 85189 2

1, =)

(4.140)

g

> KiLgl,s|n, my K[Lg; ', s | ny, my] = Dint i, Do -

7. 5=0

These conditions can be used to derive identities for the Jacobi poly-
nomials.

The method needed to decompose the tensor product (A, =) @ (X, =)
(A, A" integers, , I' > 0) is almost identical to that for AD W, D).
We define the unitary representation (A, —I) ® (A, =) of S, on &Z,
by means of operators VA~ g) ® V¥~V (g), g€ S, , given by

(VA4 (g) ® V¥~ V(g) f1(1, p)
= exp[(P/2t 4 I'\2p) re~#® — J(I + W2 4 (A + X + 2) — i(l & [')8]
- flte's — ei]1/2peit peix _ pin]'1/244i0) (4.141)

Introducing the variables «, v defined by (4.132) we can easily decompose
this representation into its irreducible parts. The result is

Theorem 4.7 (A -) Q@ N, )Y @\ + XN 4+ n + 1,-1-1).
n=>0
The Clebsch—Gordan coeflicients for this decomposition are

<jq,.5r y hfﬂ+ﬂ'+ﬂ+1.—ﬁ—ﬂ*]>f = K[!, l:-?; ir? g | n, m], (4' 142)

T

where the coefficients K are defined by (4.136).

4-18 The Representations (A, ) ® (\, —1’)

The problem of decomposing the unitary representation AD@W,-T)
where A, A’ are integers and /, I' > 0 is more difficult than the problems
considered in the last section. It naturally divides into three cases:
(1)I>1,(2)I' > I,and (3) ] = I'. In each case we define the representa-
tion (A, /) @ (X', —1') on &, as follows: For each g €.5,, designate by
Utl(g) ® V¥—"(g) = W(g) the operator

[W(g) f(It, p) = exp[—I/2trei® 1 ['1/2pye—it
— 3+ +iad X + 1) + il — I')3]
- f(te = L [1/2pg—it—ta peix — iflfﬂreiﬂ-l—iﬁ] (4.1 43)
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for all fe 5, . It is easy to verify that these operators yield a unitary
representation of S, on &, .

CASE1. I >=1I. We could treat this case by Lie algebraic
methods in analogy with the work of Section 4-5. Indeed, we
could compute the possible eigenvectors f, in &, of the operator
JP=—A—X —1+tolot —po/op with the property J-f, =0,
where J— = ['/2 g/ot + I'V/%p. For each such f, we could then show that
the vectors (JH)*f,, n =0, 1, 2,..., form a basis for an irreducible
representation of S,. Here, J* = P2t 4 I'V/2 §/8p. Rather than work
out the details of this construction it will be more convenient to present
the results and verify that they are correct. We define the function

G(u, v, t, p), u, v, t, p complex, by
G(u, v, t, p) = exp[(ut + vp)(1 — I'[)/2 + (uv — tp)(I'[D)/2] (1 — I'J1)1/2

o0

WO (e, p) 4.144)
= 3 GiaE A00) (4.

G(-) 1s a generating function for the vectors 2" € %, which are defined
by (4.144). Clearly, G(-) is an entire analytic function of each of its
variables. Also it is square integrable with respect to either of the measu-
res dé(u) dé(v) or d&(t) dé(p) taken over the domain (2,

It will be shown that the vectors A" form an orthonormal basis for
#,, and the matrix elements of W(g) with respect to this basis will be
computed. To this end we evaluate the inner product

{G(u, v,.,.), [W(g)] G(w, 2, ., .))'

I - ukﬂﬂﬂﬂgm n Nt
p: ?_—f.r:.ﬂgm=u Rl nl gl ml)1/2 B2, W(g) k™Y, geS;. (4.145)

The integration is carried out over the variables p, ¢. The inner product
on the left-hand side of (4.145) can be evaluated directly by making use
of the definitions (4.143), (4.144). This integration is elementary and can
be performed with no other tool than the delta function property of the

vectors e, . The result is
exploze™ — uwe ™™ — u(l —I')'2re?® — 31 —U'W? + da(A + X' 1)
+ 18 —I') + w(l — I')1/2 pe-is—ia]

ol = ukghgpigm
= Z (k! n! gl m!)1/2

£, 1., m=0

A, W(g) hi™, (4.146)
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where g € S, has coordinates 7, , «, 5. We can draw several immediate
conclusions from this equation.

Lemma 4.7 (&M, W(g) h{™>' = 0 unless m = n.

Lemma 4.8 For fixed n,

expluwe — ure®®(l — I'YV2 — 3(1 — ') + (XA + X 41 -+ 1)
+10(l — ') + w(l — I')/2 ye—it—ia]

g ¥y !
N kg‘;n (k! gl)172 R, W(g) kén}> . (4.147)
PROOF Equate the coefficients of (v2)* on both sides of (4.146).
Comparing the generating function (4.147) with (4.122) we see that
the vectors A", k = 0, 1, 2,..., form an orthonormal basis for the irre-
ducible representation (A + A" + n + 1,/ — I') of S, . Furthermore, if g
is the identity element in S, (r = 6 = « = § = 0), then according to
Eq. (4.146) the vectors {h}}, n, k = 0, 1, 2,..., form an orthonormal set.
We must still show that the {#{'} form a basis for &%, . To do this we
evaluate the inner product

<G(: o I, T'}): G('T .3 I’p):}J

f o T e (B
=77, 2| G g1 aT miyr 96) dE() K 0 B, )

ke.n,q,m=0

= I——Ef Y. hM(u, o) (8, p), u, v, t,pel.

'Il-l ﬂ'=ﬂ

This inner product can be computed directly by using the vectors e, .
The final result is

exp(@t + 9p) = ), h'"(u, ) (L, p). (4.148)

k.n=0
We have proved only pointwise convergence in (4.148), but convergence
in the mean (d¢(z) dé(p)) follows from the orthonormality of the A{™.
Sete,,,(t, p) = exp(it + 9p). From I, Section 4-13, we find (e, ,, f>' =
f(u, v) for all fe %, . Thus,

oo

fl,0) =<e, ,,.[>' = Y <A, B5)(u,v),

k.n=0

proving that the 4" form an orthonormal basis for %, .
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Theorem 4.8 If/ =1 = (0 then

AD@WN, —) = Y @A+ +n+1,1—1).
1=0

The basis vectors h{" are easily computed from the generating
function G(-):

B, p) = exp[—(L[1)M2tp) Y, (kY ml)/2(L)/2(1 — I [0kt /2-a)

5 o= ﬂpﬂ— vl

Tk —aim—ar 2= hLA

The summation is carried out over all values of @ such that the summand
is defined. Using this expression we can calculate the Clebsch—Gordan

coeflicients
{Jos oM = GlL g 1, 5 | n, R],

where j, (2, p) = t9%/(q! s!1)}/2, ¢, s = 0. The result is
Gl qg;1l',s | n, k]

0 if s4+ks#£qg+n

gl (g +—n — k) Rl nl (I'/l)3-*91/2 (—L)y=*(—I'[ly*(1 — I'[l)-
[ (1. —I' [y e-%2 ] ~(q —k +a) al(k —a)l (n —a)!

if s+k=¢qg+n (4.149)

From (4.144) one readily deduces the generating function

expl(ut + vp)(1 — I/ + (uw — tp)(I[I2)(1 — LJI)H/2

=] H""'ﬂﬂﬁps ol .
= oo GTqr sty Ol g s [ (4.150)

This function is invariant under the simultaneous transpositions f < p
and u <> v which implies

G[lLg;l's|n, k] = G[l,s; 1, q| &, n]
for all g, 5, n, K = 0. Another symmetry 1s u <> £, v <> p, which 1mplies
GIL g; Iy s | my B = (—1)"0 G A Uy | 5, g].
Comparing the generating functions (4.137) and (4.150) we find
Gll,g;l',s|n, k] = (1 =U/YRK[I -1, q;1',n|s, k]
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As a simple consequence of the definition of Clebsch—Gordan coefh-
cients one obtains the formula

ULl (g) VA¥—V(g) =) G[Lg;l',s |k g+ k—5]

kn\l}

c G[lLm; Uy n | kym -+ k — n] UMAHERLL-L(g)

M=ndk,g—54k

expressing the product of two matrix elements as a sum of matrix ele-

ments. In terms of the associated Laguerre polynomials these relations
become

exp(—I'r2)(—lr?)s=n Li=m(1r2) Ls-(1'7?)

_ L= St et me— ) (D

m! n! -
J(—=m —ma—n 4 1 =T —=V)F{—g—ssk—s - L; =L |(i=1)
I'lk —n 1) I'(k—s + 1)
 L{a—s—mim[(] — [')r?), (4.151)

CASE 2. [’ = [. Inthiscase the functions z;" are no longer elements
of #, (since '/l > 1) and we must modify our procedure. In terms of our
Lie algebraic method we would look for eigenvectors f, of J? such that
J*f, = 0 and use these vectors to generate a new orthonormal basis for
F, . However, we omit this and merely verify the validity of the results.

The functions fi™ (¢, p)e #,, n, k=0, 1, 2, ..., are defined by means
of the generating functions F(u, v, ¢, p):

F(u, v, 1, p) = exp[(up + vt)(1 — II'Y* 4+ (wv — tp)(I[I')/Z](1 — YI')H/2

- uty" (n) ¥
— z @ ﬂ!)lfﬂfk (t, p), i, 9t pEY,

k. n=0

As in case | we have

(1 — I <{F(u,v,.,.)[W(g)] Flw, 2, .,.))

) ukvﬂwﬂgm n st
- k.ﬂ§m=n (kl ﬂl q'! mI}l,"ﬂ <f:k}j W(g}f[q :|>

— exp[— 30 —Dr® Fia(A XN 1) —i8( — 1)
— wr(l! — D)2 goti0 (I’ — D)12 yei8 4 pre—ic | ywels],

where g € S, has coordinates 7, 6, «, 8.
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Lemma 4.9 { fi", W(g) f™> = 0 unless m = n.

Lemma 4.10 For fixed »,
expluwe’™ + u(l' — I} re=# — (' — D)r® 44X + X + 1 — )

ooy

'3(3" j'} / U”E r Z 1k
— S = w — E‘I-II T —
) r( ] e (kl g!}”ﬂ

CF, W) fmY,

Comparing this expression with the generating function (4.129), we
see that the vectors { f{"}, & = 0, 1, 2,..., form an orthonormal basis for
the representation (A + A" —#n, —(I' — 1)) of S,. Finally, in analogy
with case 1 we can show

eu(tsD) = exp(ti +pi) = Y £t ) g,

k. n=0

where the convergence is in the mean. This is the completeness relation
for the set { f{™} and proves:

Theorem 4.9 If!' > [ > 0 then

(A, D) &N, =) i DA+ —n, — =1D)).

ri=0

The Clebsch~Gordan coefficients for this decomposition are given by

Jas S22 =Gl s U, q | m, B]

where G[-] is defined by (4.149). Note the interchange of s and ¢ in the
above expression.

4-19 The Representations (A, /) ® (A, —I)

According to (4.143) the representation (A, /) ® (A, —I) acts on %, as
follows: Let g € .S, with coordinates 7, 0, «, 8. Then,

[(W(g)fI(t, p) = exp[I3( pre=i0 — tret®) — Ir® + oA + X' + 1)]
* ftemt™ - rlli2e=t0—tx peis — y[1/216+in) (4.152)

for every fe #,. This representation of S, is independent of the param-
eter 8; hence, every element of the normal subgroup D of S, ,

D ={geS,:g = expd2, d real},
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is mapped into the identity operator on &, . Thus, this representation
can be considered as a representation of the (global) factor group
S,/ D =~ E, . In fact, if g, , g, €S, have coordinates r,, 0, , «; and r,,
0, , oy , respectively, then the element g, g, € S; has coordinates 7, 0, «
given by

'rfiﬂ p— flﬂiﬂl _|_ TEEHEE_GI}, o= {11 + ':EE
(we ignore the parameter 8). For ¢ = —a these relations become
re¥ = reth +ref%tn), 9 =@ + ¢,

which are identical with expression (3.43) giving the coordinate transfor-
mation for the product of two group elements in E, .

From (4.152) it is easy to show that the infinitesimal operators ],
k = 1, 2, 3, and Q of the representation (A, [) ® (A, —I) are given by

/2 0 {Ae ( o

== (t+5+o+ p) Ji=—(—t4 7 +P—

)"

]3:£(3—|—h’—!—l—-t--—l—p p] Q=0

with commutation relations

[]1’]ﬂ=0’ []3’]]]212: []3:]2]=_

Thus the infinitesimal operators generate a real Lie algebra isomorphic
to &, .

According to the above remarks, (A, ) & (A", —I) can be considered
as a unitary representation of E; . From the general theory of representa-
tions of locally compact groups we know that this representation can be
decomposed into a direct integral of irreducible representations of Ej
(Naimark [1], Chapter 8). In terms of special function theory this would
yield an expression for the product of two associated Laguerre poly-
nomials as an integral over Bessel functions. We will determine this
decomposition explicitly.

Our realization of (A, ]) ® (A, —/) on the Hilbert space #, is not a
convenient one to use for this decomposition. However, there is another
realization which is more convenient for this purpose. Bargmann has
studied & and #, in connection with the relationship between the usual
representation of the canonical commutation relations in quantum
mechanics and the Fock representation (Bargmann [3]). In the course of
this study, he established a useful unitary mapping A of the Hilbert
space Ly(R) onto #. The Ly(R) is the space of all complex functions on
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the real line, square integrable with respect to Lebesgue measure, and
with inner product

s ) = fi:; m%iﬁ*) dg, i, s € Ly(R).

The unitary map A of L,(R) onto # is defined by f = Ay where

) =@h0) = [ Atue)d,  feF, peLyR), (4153

—

A(t, q) = 7714 exp[—(22 + ¢*)/2 4 1/2tq]. (4.154)

Since A(Z,.) € Ly(R) for each te, the above integral is always defined.
To understand the origin of the operator A and to verify its unitarity,
we compare (4.154) with the generating function (4.77) for the Hermite
polynomials. Clearly,

A(t, q) = Z (Hljl,gwﬂ(q} Zﬂjﬂ(ﬂ%{q) (4.155)

where

exp(—¢°/2) H,(q)
(Vanl2nytz

Palq) =

It is elementary to verify the integral formula

fm A(z, q) A(L, q) dg = exp(1Z) = e,(2).

On the other hand, using property III, Section 4-13, we have

0 — i Fntk o0
f...m A(z, q) A(t, q) dg = ;.,Zu nl RD)I2 f_w ®.(9) ®1(q) dg.
Thus,
f (@) Pr(9)dg = 8,1, n,k =0. (4.156)

These are the orthogonality relations for the Hermite polynomials, and
they show that the functions {g,}, n = 0, 1, 2,..., form an orthonormal
set in Ly(R). In fact, it is well known that the {¢,} form an orthonormal
basis for Ly(R). We shall not demonstrate this here since group theoretic

methods do not appear to simplify the proof. However, see Courant and
Hilbert [1], and Bargmann [3].
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If ypeLy(R), then ) can be written uniquely in the form, i =

> ne0 CnPr » € € €, where convergence is in the mean. From (4.153) and
(4.155) we have

f=A¢ = Eﬂnanﬁ
n=0

where the {j,} form an orthonormal basis for %#. Thus,

1Ay =191 = (3 leal?)

where the first norm is in & while the second is in L,(R). Therefore, the
linear mapping A is one-to-one, onto, and norm preserving, i.e., A is a
unitary mapping from L,(R) onto % .

By construction we have

n = Ag, , =015 2
so the inverse map A~ of & onto L,(R) must satisfy the relations

¢, = A7Y, . This suggests that the unitary mapping A1 is given by the
integral

(Af)q) = | A de(t) (4.157)

for all fe &#. However, this integral is not properly defined because
A(., g) 1s not an element of & for g € R. (Recall d£(t) = 7 exp(—tf) dx dy
where t = x - ).) To get around this difficulty note that

| A(Z, ¢)] < Cexp(| t%2)

for all ¢ €  where C is a positive constant depending on ¢. If 0 < p < 1
we have | A(ut, q)| < Cexp[(u? | 2 [%)/2]. The A(ut, q) is square integra-
ble with respect to the measure d¢ for all g € R; hence, A(pt, g) is in F.
Indeed direct computation (using property III, Section 4-13) yields

| Aut, g) A, g') ety

— [m(l — ]2 exp [ZPFWJ _E{E] ‘l;ﬁ:;?]@ﬂ =+ ‘FFE}]

where 0 << u << 1 (Bargmann [3]). However,

f A(ut, ) A(ut, ¢') dE(t) = i e, (q) pi(g”) f Ja(t) Ji(t) dE(2)

., k=0

- § it
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Equating these expressions we obtain

(1 — 7 exp [P AT L] 3 o (g ),

0 <p<l1, (4.158)

which is equivalent to Mehler’s formula. (This is a special case of a
generating function for Hermite functions which will be derived in

Chapter 9.)
Returning to the problem of justifying (4.157) we see that if

f=2r0cjn€F and 0 < p < 1 then ¢, € Ly(R) where

bi9) = [ At 9)f(1) dE(t) = ¥, weugne)

7t=0

If we define ) e Ly(R) by 4 = A1 f = ¥ ¢, we have

I — sl = ) [ A1 — ™) < || 4|2

=[]

A simple limit argument shows
lim || — ,[/* = 0

30 b, — i in the mean as u — 1. Therefore, the unitary map A of &
onto Ly(R) can be defined by the expression

(AY)(g) = lim | Afut, g) f(2) d&(2) (4.159)

for all fe #. Clearly, f = A4 if and only if ¢ = A-Yf for i € Lo(R),
fe &,

Using the unitary maps A and A~' we can define operators T*(g),
T*=¥(g), on L,(R) such that

T (g) = AU (A,  THY(g) = AVAY(g)A,

The operators T4+/(g) for all g € S, define unitary representations of
Sy on Ly(R) unitarily equivalent to the representations (A, 1) of S, on Z.

These operators can be computed explicitly. If [2] is the element of
S, with parameters (7, 6, o, 8) = (7, 6, 0, 0), where 5 = & + iy = 2[1/2r¢t®,
then

[T T=]f1(g) = [ATU*[2]A](g). (4.160)
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Following Bargmann [3], we set

f=Ap  [=UMESL  THEY =k
Then,
file) = [ expl—ta]2 — 25/8) A(t + 512, 9) ¥(a) dg

and from the identity
exp[—1z/2 — 25[8] A(t + %/2, q) = exp[}iv(—+/2q + x/2)] A(t, ¢ — x/+/2)

we obtain

Ay = [ A(t,q) expl— biv(v/Zg + 3/2)] g + x/+/2) da.
Thus,
[T[z]1(g) = ala) = expl— iv(v/2 + /2] ¥lg + x/+/2) (4.161)

for all b € Ly(R). Similarly, if (8 is the element of S, with coordinates
(7, 0, «, 8) = (0, 0, 0, 8), we easily obtain

[T18041(q) = €%(q), Y eLy(R). (4.162)

Let (o) be the element of .S, with coordinates (0, 0, «, 0). Then,

[T*H)g](g) = lim e f A(pt, q) A(e™™1, ¢') (q') d&(t) dg'.

If e = ] then T*¥«) = I, while if e~ = — 1 we have [T* Y )] (q) =
¥(—q). However, if e* 5 -1 it follows from Fubini’s theorem that

[TH(l(g) = e lim [ o(e® ¢, ) f(g)dg (4163
where

o(e, ¢, q) = [ A(t, q) Ale~*t, ¢') dE(t)

An explicit computation yields

' g reim(AL3) 0 i i 1qq’
o(e*,9,9) = @2 [sna iR exp [z. g —2'_ 7%) cot @ — 4 ] (4.164)

SITl @
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Here, « = 2km -+ B, k an integer, e = +1,0 < B << 7. (See Bargmann
[3] for details. Equation (4.164) is presented for completeness. It will not
be needed in the proofs of the various identities for special functions to
follow.) When o« = /2, T*¥#/2)¢ 1s the Fourier transform of .

In a similar manner we can compute the operators T»~(g) on Ly(R),
induced by the operators VA~(g) on #. The results are

[T {=})(g) = exp[— biv(v/2q — %/2)] g — /+/2),
[TA-183](g) = e*4)(g), (4.165)
T (@) = e lim [ ofet™, ¢, 9) ¥(g) df

for all b € Ly(R), where the function ¢ is given by (4.164).

From the relation Up,(g) = {ju» U*(gm> = {pn, T*(gon>
and Eq. (4.161), we obtain the identities

exp(x?[8)(x/2)" =" Ly="(x%/4)

= [}t [~ expl—g? — gx/y/2] H(o) Hulg + 5/v/2) da,

(4.166)
exp(—2/8)(y/2)m—n Lim—"(y?/4)

v

= [r/22mienl] [ exp[—q* — igy|+/2] H(q) Hulg) dg

-0

where m, n are nonnegative integers and x, y = 0.

Equation (4.152) defines the representation (A, /) & (A, —[) acting on
F, ~ F K % . We shall find it more convenient to consider this repre-
sentation of S, as acting on the Hilbert space Ly(R?) =~ Ly(R) & Ly(R).
The appropriate transformation is easily carried out through the use of
Eqgs. (4.161)—(4.165).

The elements of Ly(R?) are complex functions square integrable with
respect to Lebesgue measure in the real plane R?. The L,y(R?) is a Hilbert
space with inner product

W0 = [ Flar 4 s> @) 43 das, ¥, P EL(RY),

The operators

TH(g) @ TH4(g) = A~ ® A~(UM(2) ® V¥~(g) A ® A = M(g)
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are defined on L,(R?) as follows:

L1715 0) = exp [~ 55 a1 + 0] ¥ (0 + 50 00 — =)

= x 4 1y,
[M{¥(1, 2) = (g1 5 32),

(4.167)
M()](q5, 92) =Jim | [ etsracsn

f:xp[ (?1 +—e—g

5 )Cﬂtm

929> — 1dh )] a1, 92) 500 g0
1712

+i( SIN o 27 | sin e |
for all ¥eL,(R?). For notational brevity we have suppressed the depend-
ence of M on A, X', I. The operators M(g) generate a unitary representa-
tion of 5, such that M{8) = I for all (8> € S, . As remarked above this
representation can be considered as a unitary representation of E, .
As such it can be decomposed into a direct integral of irreducible unitary
representations (p) of E; . We will carry out this decomposition.
Given ¥ € L,(R?) we define the function @ € L,(R?) by

—8 55 —8§; — §
qj(‘?l y 32‘] = ( L’,E 2 y :,l\/j 2): §1, 5 E R, {4163)
Introducing the change of coordinates s, = —(¢; + ¢.)/4/2, $, =

(g1 — ?z)ﬁ/?, we obtain

& (”Q’;{E 9’21 ‘?1;;'2 )

== ]IU(‘?I » ‘_?2)'

Note that dg, dg, = ds, ds, . The operator M[z] acting on ¥ induces an
operator, which we will also call M[z], acting on @,

[M[2]D](s, , 55) = €VD(s, , s, + x). (4.169)
Let the function @ be defined by

B(s, , u,) — (2m) 112 J'm end(s, , ) ds,,  w,eR.  (4.170)

-0

(To be more precise we should write lim ﬂ_,x[:l in place of the integral
in (4.170). However, this will be assumed to be understood in the follow-
ing paragraphs.)
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It is easy to show that M[z] acting on @ induces an operator, which
will also be called M[z], acting on @ and given by

[M[2]D](s; , u,) = eftsv+usddd(s, | u,). (4.171)

We now pass to polar coordinates and set

x=7cosf, y=ssind, Uy = p COS ¥y, §; = p sin vy,

where from (4.160) we have 7 = 2['/%r. Note that ds, du, = p dp dy.
Define @ by

D(p, y) = D(psinvy, p cos y).

The action of M[z] induced on @ then becomes
[M[=]B](p, 7) = eire cosr-0b(p, ) (4.172)

where @ is square integrable with respect to the measure p dp dy. A
comparison of Egs. (4.172) and (3.56) gives the motivation for the above

manipulations.
We collect our results and use them to compute the matrix element

(W, , M[z]¥,>, ¥, ¥, €L,(R?. The result is (by use of the Plancherel

theorem for the Fourier transform)

o a2
MW = [ [ e n-0By(p, ) Bulp, Y)p dp dy,  (4173)

where the @, , j = 1, 2, are defined by

o : —8 + 5, —8% — §
Biosy) = Bifor, ) = @uy 2 | st =t —ot) dy . (4174)

Using the Fourier integral theorem, we can invert (4.174):

¥i(qy 5 qz) = 2m) 12 _[1 explitty(q; — g2)/1/2] ‘ﬁj (lErl ; . ) “2) du, . (4.175)

Finally, a straightforward computation gives

¥ M(ﬂﬂ)_ ¥, = exp[—ix(A + A + 1)]
. J‘: J‘:T @1(1’5}1 7) @"2(1‘}} y — a)p dp dy. (4.176)

Comparing these results with the formulas for the irreducible representa-
tions (p) of E, derived in Section 3-8, we obtain

Theorem 410 (A ) ® (N, —) = D f: (p)p dp.
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Theorem 4.10 is merely a symbolic way of denoting the relationship
between (A, ) ® (A", —I) and (p) given by Egs. (4.173) and (4.176).
Explicitly, we can use our decomposition to relate matrix elements for
the representations on the left- and right-hand sides of (4.173). The
vectors ¥, ,.(¢1, 95) = ®a(q1) ©u(gs), 0 < n, m << 00, form an orthonor-
mal basis for L,(R?). From (4.174) the transformed vectors @, ,.(p, ),
pe” = u, - is, , are given by

Cﬁn,m{P: T’) — (zﬂ.)—lm fiam E—iugs@n (—Sif;lz-_ 52) Pon (_S;/,; 52) .isz

= M= i2 exp(——p?|2)(m! ! ) 3(pe~tv)ri—m Lin—mi(p2)  (4,177)

where the last equality follows from (4.161) and a change of variable.
Equation (4.175) then yields the relation

_ L
H,(q7) H,.(g:) = exp [{"}"1 7 7>) ] m! (2)tmtn=1)[2(f)-n—mz—1/2

2

| jmm SR [(iﬂﬂ QI;;E) i %] [H2 11 ('?1J;'2)]““"*

. Lin-m [ug " (9?1 J;E)E] i,

between associated Laguerre polynomials and Hermite polynomials.
The matrix elements of M[z] acting on L,(R?) are given by

Fpr M2) ¥, > = U2 ([2]) Vi 7([2])-

LT

On the other hand, from (4.173), (4.177), and (3.57), we have

2
Uifn{[ﬁ]] V;:;:;_,_E([z]} = (gt fm f gioT CO8(y—8) giln—kcti—m)y
0 Yo

A
'“‘p(_"}ﬂ}( 7l iz!

- (%) LY(p?) dp dy,

1/2
—k4+m—j+1 J (n—k)
) {P}ﬂ +pr— -+ Lkﬂ

s0
EKP( - Tﬁfd-)(‘?'}'lz :}ﬂ1+f—ﬂ —k L:’tm _ﬂj(Tﬁfq-‘] LIE*-A::I (TEJ'.';‘]

= 2(;!/n!) f : exp(—p*)(p)* " Jrsm—n—i(pT)

 L{p=0(p?) Ln-(p2)p dp, (4.178)
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where m, j, n, k, are nonnegative integers. This equation is the desired
identity between associated Laguerre polynomials and Bessel functions
whose existence is suggested by Theorem 4.10.

As a special case of (4.178) set & = j = 0 to obtain

exp(—72/4)(r/2)"" Lim—")(724) = (2/n!) fﬂ exp(—p®) p"*" ] _ .(p7)p dp.
Also, if 8 = 0, » = j, we have

exp(—r 42" L (r%4) = 2 [ " exp(—p?) ],y pr)o" L6 d.

4-20 The Representations (p) ® (A, )

As we have seen, the representation (p), p > 0, of E; on the Hilbert
space £, constructed in Section 3-8, can be considered as a representa-
tion of S, . Thus, it makes sense to define a representation (p) ® (), 1)
of S, on the Hilbert space 3# ) %. We will decompose (p) ® (), [) into
a direct sum of irreducible representations.

The elements of # X % are formal series

s

font)y= 3 3 ceimt/(hye

f=——oo k=0

such that

"ME

YlalP<o; tiiel, 0<y <2 (mod2n).
o =)

HN=r

Clearly f(y,.) € # for almost everyy and f{(., t) € 3# for fixed ¢. In general
f(y, t) does not converge pointwise. # & F is a Hilbert space with
inner product

Zr e ——
S =g [ [ formn v dee),  fhet ©F.
Thus, if fly, t) = 3 chett5|(R)12, h(y, t) = 3 bEeinvtk/(R1)1/2, we have

fihy=3 3 &bt
fi=—w k=0 -
The vectors f, ,(y, t) = e™%/(kR)1/2, n, k integers, £ >0, form an
orthonormal basis for 5# ® %. (For a careful treatment of tensor
products of Hilbert spaces see Murray and von Neumann [1].) Corre-
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sponding to every g € S, with coordinates (7, 0, «, 8) we define the operator
T (g) ® UMY g) = N(g) on 3¢ X % as follows:

[N(2) F1(y, t) = exp[—tIrel® — 22 + i + il
+ tpr cos(0 — y)] f(y + o, te ™ - [MPre—it64ad),
fed ®F, (4.179)

where A is an integer and p, [ > 0. It is a straightforward computation to
check that the operators N(g) yield a unitary representation (p) & (A, [)
of S, . The infinitesimal operators J; , k = 1, 2, 3, and Q corresponding
to this representation are

Ja=f(h—t%) -%, Q=i

These operators satisfy the commutation relations

[]1 3 JE] = %Q: [.]3 ) II] o ]2: []3 ’ ]E] — _Jl » [Jk ’ Q] — 01
Bi—=:1,243,

so they generate a Lie algebra isomorphic to .%, . As in Section 4-5, we
can use the operators

. o ip
Jt= —J, +i], = P — ’;e—w J-= 4l +ils = BR e,
. D o8 .

to decompose # () F# into a direct sum of subspaces, each subspace
irreducible under the action of N(g). Rather than repeat this analysis,
however, we will merely present the results and verify that they yield the
desired decomposition.

Let n be an integer, u € ¢, and N(n, u; vy, t) the function

N(n, u; v, t) = exp[—p*/8l -+ tny + ut + upe=t7|21/2 — tpeiv[2]1/2]

i kl);fﬂ Ry, t). (4.180)

N(-) is a generating function for the vectors A") € # R F defined by
(4.180). Clearly, N( ) 1s an entire function of the variables «, ¢ and is an
element of # X) % for all values of # and u.
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We will show that the vectors AV, k = 0, 1, 2,..., n = 0, 41, +2,...,
form an orthonormal basis for 3 &) % and will calculate the matrix
elements of N(g) with respect to this basis. T'o do this we compute the

inner product (in # & F)
> T
(N(m, 3; ., .), [N(@] N(n, u;.,.)) = ), (;;)m (' N(g) A" (4.181)

q. k=0

where the integration is taken over the variables y, #. (The validity of the
expansion on the right-hand side of (4.181) follows from property III,
Section 4-13.) The integral on the left-hand side of this expression can
be evaluated directly using the delta function property of the vector

e, and the fact that -
@yt | ettmrty dy = &,
0

The result of the integration 1s

8. €Xplic(A + 1) +- 7l8 — Ir*|2 - ue=(s + PPre=1%) — sl'/Pre'”]

o sfj‘uk
= ¥y i N@ BD. (4.182)
g. k=0 V1"

The following are immediate consequences of (4.182):
Lemma 4.11 If m 5= n, then (B2, N(g)fzif’} = Qforallge S,.

Lemma 4.12 For fixed n the vectors {hi:”}, k=01, 2,.., form an
orthonormal basis for the irreducible representation (A + n, [) of S, .

PROOF If m = n, Eq.(4.182) is identical with the generating function
for the matrix elements of the representation (A - #, [).

Equation (4.182) shows that the totality of vectors {h{"}, k = 0, 1, 2,...,
n =0, +1, +2,..., form an orthonormal set in 2# & #. We will sketch
the proof that they span # & #.

Suppose the vectors (Y} do not span. Then, there exists fe H# @ F,
f 5 0, such that { f, S =0, k, +n =0, 1, 2,... . From (4.180)

0 = (N(n, @ ., . ), [
1 2 ¢

~ 2 J 0 Jgf (, t) exp[—p?/8 — iny + ut + upe™[21* — tpe=*[211)7] dy dE(t)

for all integers # and complex numbers u. Using the delta function

property of the vectors e, where b = u — pe~/2['/%, we obtain

0= [ﬂf f(% = ’;“;: ) exp [—fn}» 2 z—’;ff—:r] dy. (4.183)

* 0
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This equation forces us to conclude that

1o~ ) = () = ©

for all y, u; hence, f = 0. This contradiction proves that the vectors
k" form an orthonormal basis for # ® Z.

Theorem 4.11 (p) ® (A, ) =~ i @ (A + n, 1).

fl—=——10

The basis vectors h{" are easily computed from the generating func-

tion (4.180):
BBy, £) = (RNt + (pe=i7)/20L12)* exp[—p?[81 + iny — (tpe™)[2112]

2 w0 14

p :
= exp (— 47 L e e

'y (k! gy 12(p 211 12) e+ 20~k
~al (k — a)l (g — & + a)!

(—1)eta—, (4.184)

where the last summation is taken over all integer values of a such that
the summand is defined.

The Clebsch-Gordan coefficients for the decomposition given by
Theorem 4.11 are obtained directly from (4.184). Recall that the vectors
Jwg(y, £) = et (g2, ¢, +w = 0, 1, 2,..., form an orthonormal basis
for # @ #. The Clebsch-Gordan coefficients E(w, ¢; n, k; p%/l) are
given by

E(w, g; n, ks p*|l) = ([, o+ B

0 if w+k=£n-+ag,

(P2f4f}{u:—n+2u-}f2( e l)w—ﬂ-l-ﬂ-
~al(qg+n—w—a)l (w—n+ a)l

exp (— L) [(n + g —w)t gy

if w-tk=n-aq. (4.185)

Here ¢, k are nonnegative integers and n, w are integers, From (4.180)
there follow the generating function

\"[” Hy Y, ) == exp[—PEESE -t my ut - [:upg—!:'-’ — IPEE?)fzglfﬂ
£ u.ﬁfig'!-w-lp

-y ¥ (AT gi7E B 47, 5 ) (4.186)

w=—aco g, k=0




150 4. CONFLUENT HYPERGEOMETRIC FUNCTIONS

and the symmetry relations
E(w, g; n, k; p*[l) = E(w +m —n, ¢; m, k; p*|l) = E(w — n, ; 0, k; p%/), (4.187)
B(®, g; 0, k; p¥l) = (—1)*4E(—w, k; 0, g; p2/l). |

Comparison of (4.186) with the generating function (4.124) for associated
Laguerre polynomials yields

2
(/R exp (— ) (/2122 LU0 (p[2B12) = E(q — k. g3 0, k; p3/]). (4.188)

In terms of matrix elements with respect to the two sets of basis
vectors { f, .} and {A{"}, the decomposition given by Theorem 4.11
becomes

oo

U:aﬁ}s{gj U;‘.‘:LH(E) = z E(w, g; n,n + g — w; p?/l)

N=—s0

- E(s, ks n,n + k — s; p?fl) Ulttn.D) (g). (4.189)

n+g—w.n+k—g

Here, w and s are integers while ¢ and & are nonnegative integers. The
matrix elements U,(g) are expressed in terms of Bessel functions by

Eq. (3.57). Making use of (4.188) we can reduce (4.189) to the identity
exp(p*)(r)*=" J,,_,(2pr) L{¥-2(r?)

15— whk| s AL s,
= X T E iR L) L) e, (4.190)

where the sum is taken over all integers » such that # > s — k and
n=zw—gq lf g=w=s =k =0 this formula simplifies to the well-
known relation
&Y T Psr) — & mL{m 2
exp(p?) Jo(2pr) = ¥, "L LOG).
The decomposition of the representation (p) ® (A, —I) of S, is very

similar to that presented above and leads to no new relations for special
functions. We quote only

Theorem 412 (p) ® (A, —I) =~ i @ (A + n, —I).

T

4-21 A Contraction of %(0, 1)
In Chapter 2 it was shown that the Lie algebra %(0, 0) =~ 7, @ (&)

was a contraction of %(0, 1). Here, we shall use this fact to obtain relations
between associated Laguerre polynomials and Bessel functions.
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The infinitesimal operators J., k = 1, 2, 3, Q corresponding to the
representation (A, /) of S, on & are given by

=€ dh . teBer 3

and obey the commutation relations

[]3:][1=JE= [Jﬂ:]ﬂ]z__:rll []1,]2]:'15'35 []er]:u:
k=1,2,3. (4.191)

We relabel the orthonormal basis vectors j,(t) = t*/(k])1/2 of F as
follows: f, = jyuns 2= —A, —A+ 1, —A -+ 2,.... In terms of this

basis the matrix elements of the operator J, are given by
3 Ve = K Yoyl = —ind ., (4.192)
where the inner product is taken in %, Similarly
01w = $Jas Jiford = — #llA +-n - 1P,
— 3tllA + )2y

(]glljn,n‘ == <fn ’ Jﬂf;a.’> = %[t{:h TR I)]L|IE 5ﬂ+1.ﬂ'

(4.193)
T JEL[I(‘}‘ T ;3)]11"2 aﬂ.-l.ﬂ* !

{Qa'z)n.ﬂ.’ = <f'.r1 ) Qfﬂ’> =1l Eﬂ.,ﬂ' 3

nn = —A —A+1, —A+2...

Moreover it follows from Chapter 3, Eq. (3.64), that the operators K, ,
k=1, 2, 3, given by
d

—ip SIn o, K, = — 5

|

Ky = —ip cos a, K,

are 1nfinitesimal operators induced by the representation (p) of E; on
the Hilbert space 5#°, and obey the commutation relations

[Ka, Ky] =Ky, [Kg, Kg] = =K, [K}, K] =0. (4.194)
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Clearly, K, , K, , K, generate a Lie algebra isomorphic to &5 . In terms
of the orthonormal basis 4,(a) = e, +n = 0, 1, 2,..., for £ the matrix
elements of these operators are

{Kg)n.ﬂ' = <hn ’ I{:}hﬂ'>* — I 5?1,\&' 3
(Kun = Chy y Ky o™ = ‘%I‘P(aﬂﬂ.n’ 2 Sn—l.ﬂ-')! (4.195)

(K;]ﬂ.ﬂ-’ — <}1n 3 I{Ehn>* == %P{8ﬂ+l.ﬂj — an-l.n’)m
n, n o= {]: :I:ll j:zr-'- .

|

|

Here, the inner product <., .)>* corresponds to the Hilbert space .
Choosing a parameter € > 0 we define a new set of generators for the
Lie algebra & . The new operators are

G, = ¢];, Gy, = €], G; = Js, G, = Q. {4-196)

The structure constants for the commutation relations of the G operators
are functions of e. In fact,

[Ga ’ Gl] = GE 1 [Ga » Gz] == —‘Gl » [G1 ’ Gz] - ‘%EGU d [Gk ’ Gn] 20:
k=123

As € — () the structure constants approach limits which are the structure
constants for a new 4-dimensional Lie algebra. In the limit we have

[G3, G4] = G, [Gs, Go] = —G4, [Gy, Ge] =0, (G, Go] =0,
k= 1,2,3.

This Lie algebra is isomorphic to & @ {G,}, where the commutation
relations for a basis of &, are given by (4.194)and {G,} is the 1-dimensional
real Lie algebra generated by G, . Thus, & @ {G,} is a contraction of
<, (see Section 2-5).

We show how an irreducible representation of the contracted algebra
&, @ {G,} can be obtained from a sequence of representations of .
Consider the representation (A, p?) of S, (A an integer, p > 0). The
matrix elements of the G operators for this representation can easily be
computed from (4.193) and (4.196). We take the limit of these matrix
elements as € — 0 and A — - 00 in such a manner that €A — 1. For G;

the result 1s
" E_:g 2 -
Hm(Gy " Jnnt = !;LT (s €l Sa?

=0
Py = |
Pt %IP(E'?:—LH’ =z 3n+1.n']

— (KD (4.197)
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(n and 7’ are held fixed). Similarly, we find

lim(GS " Yan = 30(—8nsin’ + Snsrn’) = (Knon’

£=3{)

Bm(GE ™), = — i e = (Kn.a (4.198)

=31}

im(GS ), .o =0, mn' =0,-+1, +2,...

e}

Thus, we have derived an irreducible representation of the contracted
algebra &, @ {G,} as a limit of irreducible representations of &, . The
effect of this limiting procedure on the matrix elements of the representa-
tion (A, p?) of the group S, is easily computed from the above considera-
tions. For example, from (4.123) we know that the matrix elements of
the unitary operator e ¥ = Ubs(g), y >0 (g has coordinates
{re'®, a 8} = {—31y, 0, 0}), are given by

(= (- VR () g (). o

Similarly from (3.57) we see that for the representation (p) of E; the
matrix elements of e ¥¥1 are given by

E_yxl}n,n’ = iﬂ“ﬂ‘Iﬂ—ﬂ'(P}'}-
Thus, (4.197) implies

1[—1151 (eV1)pn = (e7"%1)0, 0 (4.200)
L |
or,
_ PRRyE T (n - ) 2 o
L (‘T g )[(n’ +e—2)1] (32py)"

L) = ] (p),

which simplifies to the relation
lim m—"y"L(y%(m) = ] (2y). (4.201)

Hi— ol

This proof of the limit (4.201) is merely formal; we have not verified
the validity of (4.200). However, now that this limit relation has been
motivated it is easy to prove it directly from the power series expansions
for Laguerre and Bessel functions.

The preceding discussion was concerned with the relationship between
matrix elements of unitary representations of S, and E; . The restriction
to unitary representations is not essential, however, and similar arguments
can be used to relate matrix elements of irreducible representations of
G(0,1) and matrix elements of irreducible representations of Tj.
We omit this.



