ISBN-0-201-13503-5

APPENDIX B.

Basic Properties of Special
Functions

As a convenient reference we collect here some fundamental definitions

and relations for those special functions which appear most frequently in
this book. With the exception of the gamma and elliptic functions, all these

functions arise as solutions of differential equations obtained by separating
variables in the partial differential equations of mathematical physics. The
notation used here is the same as that adopted in the Bateman project
[36, 37], and the reader can find many additional properties of these
functions in those references.

1. The Gamma Function

Defining integral:

1“(3)=jje"r""dr, Rez >0.

By analytic continuation I'(z) can be extended to a function analytic in
the whole complex plane, with the exception of simple poles at z= —n,n=

01205600
Functional equations:

I'(z+1)=zI(2), ['(z)I'(1—z)=m/sinnz.
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266 Basic Properties of Special Functions B.2.
Special values:

C(n+1)=n!, n=0,1,2,...; T({)=V7.

The binomial coefficients are defined by
(f:)ﬂ(#-1}"-(u—n+l)/n!=1“(n+1)/r(;.t—n+1)n!, (B.1)

2. The Hypergeometric Function

The hypergeometric series, convergent for 1z| <1, is given by

b | - (a}n(b)n n
IFI({I-‘? |z)_,,§g (c) n! 2 (B2)
where
(a),=1, (@), =a(a+1)---(a+n—1), n=12,..., (BJ3)

is Pochhammer’s symbol. By analytic continuation the [k, can be extended
to define a function analytic and single valued in the complex z plane cut
along the positive real axis from +1 to + oo.

Integral representation:

2F (Héb H= r(b)I;“(({::)— b) fc.l”b_l('*f}”‘*‘f(l +1z) “d,

Rec>Reb>0,| arg(1—z)| < 7.

For fixed z,,F ,(ﬂf' z) /T(c) is an entire function of the parameters

a,b,c. If a or bis a negative integer and ¢ is not a negative integer, then the
hypergeometric series becomes a polynomial in z. Differential equation:

d*u du
f,(l—z)@-+[f-(a+b+l)z}E-—abu={1 (B.4)

This equation has the solution u=3FI(”g'*‘

z). For ¢ not an integer

the equation admits the linearly independent solution u=
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B.2. The Hypergeometric Function 267

I=—c d—c+1.b—c+1
Z EFI( 3. z

). Differential recursence formulas:

3)=E'ff'zF| (a+],b+l E_,),
c+1

{z di; +E]EFI=H3FI (H'l'cl’b'z),

a,b

).

-:—:(1—:.:)“{;i —bz+r:—a- ,Fy=(¢c—a),F, (ﬂ_ﬂlﬂb‘z),

[z—-t—c—li =(c—1) F,(

a,b
"k o

S

[(1—3}——a]zﬂ:a(b—c)ﬂ—lzﬁl( +1,

).

-(I—E)E—(a+b—c)_EF,=(c—a)(f—b}c“'1F](

a—1.,b
c—1

[z(l—z)%—~bz+c—l}1ﬂ=(c—I}EF,(

z),""*~-~

[z(]—z) - (b+a—l)z+c—l]1F, {c—l)zfl(“‘lf’] z).' (B.5)
Symmetry relation:
F (4 ) =R (k)
Transformation formulas:
oF (ﬂéb‘3)=“—3)_ﬂzF1(ﬂ E_'E}|E_1)
=(l—z)f_ﬂ_b1F, (ﬂ_ﬂf—b z).

Special cases. (1) Legendre polynomals:

Pn(x)=zf,("+‘lr‘" '_T*") A=0,1,2 .
(i1) Gegenbauer polynomials:

C (x)= FF(?;;: EF,(ZP::’;” '5*"), n=0,1,2,...;
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(11) Jacobi polynomials:

P,E“*ﬁ’{x)=("+“)2Fl (H+H+)‘3+l,—ﬂ

1—x
, n=012...;
& a+1 )

2

(iv) Legendre functions:

r+1,—2»|1—2
_u,.e’IEFI( l—pu 2 )
T(1—p) ’

Qp# (3)=€"""’2_"_er”21"(1!+#+ l)z"r—y.—l (zg_l)p,ﬂ

Pr()=(221)

z—1

P v/2+p1/2+L,v/24+p/24+1/2| _,
251 y+3/2 :

> T(:+3/2) |5 Y

3. The Confluent Hypergeometric Function.

The function | F ,( g )z) is defined by the series

convergent for all z.
Integral representation:

sy T
Fi(2l)= [(a)T(c—

!
f et ' (1=0)°"“'d1, Rec>Rea>0.
a) Jo

For fixed z, ,Fl( 2 ‘z) /T(c) is an entire function of a and c. Differential
equation:

3ﬁ+(c~—z)@—au=0‘ (B.7)

dzz dz

a

This equation has the solution u=,F ,( ::

|z) and for ¢ not an integer the
H—E+13}

equation admits the independent solution u=z'"¢ F ,( )
=il

ISBN-0-201-13503-5



ISBN-0-201-13503-5

B.3. The Confluent Hypergeometric Function 269

Differential recurrence formulas:

d F, (glz)=% ]Fl(ﬂ+1

dz ! c+1
[z%+ﬂ}lﬂ=ﬂlﬂ(ﬂtl H,

d i a—c a
[Erl LT ‘F'(r:+1|z)’

[:%H—l: ,F,=(c—1)lF,(Ef1|3). (B.8)

Transformation formula:

F(2F)=e e (7 -2)

Special cases. (i) Laguerre polynomials:

(i) Bessel functions:

Jp(x)=f'“(x/2) jr?l(:»+l/2

T(r+1)

(iii) Parabolic cylinder functions:

I'(1/2) P (—p/Z
r(1/2—»/2) "'\ 1/2

Z)
.IE
—2—) ] (B.9)

D, (x) =2’fzexp( _‘:2 )[

+x2-

pI(Z1/2), (1/2-;.-/2
T(—»/2) " 3/2
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4. Parabolic Cylinder Functions

The function u= D,(x), (B.%11), is a solution of the equation

d’u [ Y
2 +( + > "7 )H—U. (B.10)
A linearly independent solution is u= D _,_,(iz) and, for » not an integer,
D(—z).lf v=n=0,1,2,..., then
D, (z)=2"""exp(—z?/4)H, (2 %) (B.11)
where
o 5 2 d" 2
H,(2)=(=1)"exp(z?) 2 exp(—2?) (B.12)
is the Hermite polynomial of order n.
Differential recurrence relations:
EEP@=m@ [~£+5]p@=D. 0. BB

5. Bessel Functions

The Bessel function J,(z) i1s given by (B.%1) or by

L (z/2) — z?
I(2)= s o (p+1[ ; ) atgzl<a o (BIA)
where
of) (c|x)= gﬂ (cﬁnﬂ! ; (B.15)

convergent for all x. Here, z "/, (z) 1s an entire function of z.
Differential equation:

ﬂ+——-|—(l—-‘-"—2-)m=ltl. (B.16)

dz? z dz 2

This equation has solutions u, =J,(z) and u,=J _ (z), linearly indepen-
dent for » not an integer n. However, -J_ _(z)=(—1)"/ (z) and for v=
n,J,(z) 1s the only solution of (B.16) which is bounded near z =0. Differen-
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tial recurrence formulas:

-4, ]JP (2)=1,.,(2) [j‘; +§]J,(z)=J,,-1(z)- (B.17)

The functions in these classes (Sections 2-5) are either hypergeometric
functions , F, or various special and limiting cases of the ,F,. However, the
functions in Sections 6 and 7 are generalizations of the ,F|, the first to
differential equations of higher order and the second to functions of
several variables.

6. Generalized Hypergeometric Functions
The functions ,F, are defined by the series

e iThnenns 2
rF b],bg,...,qu =, F,(a;b;2)

= (al)n---(ﬂp)n P
=2

2wy B

Unless the parameters a;,b; are chosen such that the series terminates or
becomes undefined, it can be shown that the series converges for all z if
p<gq, converges for |z|]<1 if p=g¢g+1, and diverges for all z+0 if
p>q+1.

Differential equation:

d SRR [ ISR £ T ele () W (P Sy ) -
(zdg+a1) (z dz+a")u = (z o + b, l) (z dg+b*i’ 1|u=0.
(B.19)

This equation has the solution u=,F (a;:b;;z) and, except for special
choices of the parameters a;,b;, this is the only solution of (B.19) which is
bounded in a neighborhood of z=0.

Differential recurrence formulas:

d a+l,a,...,a

(3E*”l)ﬁ*‘p{r{ﬂi*fﬁ?*’-’)=”mﬂ R
g
d a;
(EE_HJ'_I)FF‘?(H";%;E)=(61_1)PFQ bI_'l,b:,...,qu ’
d H1”-ﬂp .
EZ*’F‘?(H";@;E)= - F(a+1;b6+1;z). (B.20)

q
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Symmetry relation: The ,F,(a;b;2) is a symmetric function of a,,...,a

2
and of Byy-neyby

7. The Lauricella Functions

The Lauricella functions are generalizations of the ,F, to n variables
zy,...,Z,. They fall into four classes:

F.a;b,,.. ,bﬂ,cl,...,cn;z,,...,zﬂ]

- § — § (H)ml+--*+m,(b1)m|'”(bn)m_., z]mt'”znm" (BZI)
m=0  m,=0 () (€ )m, myleeom,!” '
|20+ == Hz,| <1,
Eal i@ B e B E iy oo e 0]
& = (Hl)m. Vi (an)mn(bi)m, S (bn)mﬂ ziﬂ" . 'Eﬂmn
= 2 Eagit 022)
my=0 =0 (C)m|+~--+m,, By m,:
2| < 1,2, <1,
Feda; D5 55308 TysevasZi)
§ § (a)m|+---+m,,(b)m|+”v+m" Zy ezl (B.23)
m;=0 m, =0 (cl}mf ' *(Cn}mﬁ mi!*“mﬂ! \ :
224 <,
and
3 230 O« ot -
= 20 (ﬂ)m|+ .. +mﬂ(b1)m, . (bn)m Efﬂl E_,:ﬂ"
e W = o .. (B24)
my=0 m, =0 m+- +m, & n*
Izl <)z

The functions in the following sections cannot be obtained as special
cases or limits of functions of hypergeometric type.

8. Mathieu Functions

Mathieu’s differential equation is

fix_zu +(a—2gcos2x)u=0 (B.25)
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where usually the variable x is real and ¢ 1s a given real nonzero
parameter. If we impose the periodic boundary condition u(x)=u(x+27)
on the solutions of (B.25), we can cast this equation into the form of a
regular Sturm-Liouville eigenvalue problem for the eigenvalues a. It
follows from the general theory of such problems that there exist countably
infinitely many such eigenvalues, all real, each of multiplicity one, and
bounded below but increasing to + co. Moreover, due to the symmetry
properties of (B.25) this equation has four types of periodic solutions
(called Mathieu functions of the first kind, or just Mathieu functions):

(i) cep(x.q)= X AL cos2mx,

m=10

o0
(i) cey,pi(x,9)= 2 At cos(2m+1)x,
m=10
oo
(iil) e (xq)= 3 B sin@m+1)x,
m=0
Lir 8
(iv) sey,,o(x,q)= O, B sin2m+2)x, n=0,1,2,.... (B.26)
m=0

The coefficients 4,B depend on ¢ and recurrence relations for these
coefficients can be easily obtained by substituting expressions (B.26) into
(B.25) [7]. The eigenvalues a of ce,,,ce5, 1>5€,41>5€5,4, are denoted
Qs @y 413 D2+ 1 Do + 2> TESPECHIVELY. The eigenvalues are just those values of
a such that the functions (B.26) whose coefficients are determined by the
recurrence relations belong to L,[— #,#]; that is, such that the functions
are square integrable. The coefficients can always be chosen to be real and
the Mathieu functions are normalized so that

f” [u(x)] dx=m. (B.27)
Furthermore, the normalization 1s such that

lim cey(x,q9)=2""2, lim ce,(x,q)=cosnx,  n#0,
o calnud) 40 ) (B.28)

lim se, (x,q)=sinnx.
q—0



