CHAPTER 3

Lie Theory and

Bessel Functions

The machinery constructed in Chapters 1 and 2 will here be applied
to the study of Bessel functions. As was demonstrated in Section 2-7
these functions are related to the representation theory of %(0, 0). The
Bessel functions appear in two distinct ways: as matrix elements of
local irreducible representations of G(0, 0) and as basis functions for
irreducible representations of %(0, 0). The first relationship will yield
addition theorems, and the second will yield generating functions and
recursion relations for Bessel functions.

Since %(0, 0) =~ F, @ (&), the nontrivial part of the representation
theory of %4(0, 0) is concerned with the subalgebra 7, . For a theory of
Bessel functions, it is sufficient to study the representation theory of
and the local Lie group T’ . Thus, we restrict ourselves to Z; throughout
this chapter.

The Euclidean group in the plane Ej is a real 3-parameter global Lie
group whose Lie algebra is a real form of J; . The faithful irreducible
unitary representations of E, are well known as is the fact that with re-
spect to a suitable basis, the matrix elements of these representations are
proportional to Bessel functions of integral order (Vilenkin [1], Wigner
[2]). In Section 3-4 we will study the relationship between local repre-
sentations of T'; and unitary representations of Ej .

The computations involved in this chapter are rather simple and will
serve as an introduction to the much more complicated theory of hyper-
geometric and confluent hypergeometric functions.
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3-1 The Representations Q(w, m,)

Each irreducible representation of %(0, 0) classified in Theorem 2.1
1s designated by the symbol O#(w, m,) where p, w, m, are complex
constants such that w % 0 and 0 << Re m, << 1. The spectrum § of this
representation is the set {m, + n: # an integer} and the representation
space V has a basis { f,,: m € S}, such that

]Ffm = mfm ’ Efm = JL"‘fm ) ]+fm == me+11
J S = @fm s Co.ofm = (J¥]) fo = &%

The operators J*, J—, J3, E satisfy the commutation relations
13,15 =+J% [J5T1=0, [JE]=][J]3E]=0.

We will try to find a realization of the algebraic representation Q#(w, m,)
in terms of linear differential operators acting on a vector space of func-
tions of one complex variable. In particular we will realize O#(w, m,) in
such a way that the differential operators take the form (2.38). This can
be accomplished as follows: Let ¥] be the complex vector space consist-
ing of all finite linear combinations of the functions %,(2) = 2*, n = 0,
+1, 42,... . In Eqgs. (2.38) set A = m, , ¢; = w, l.e.,

(3.1

d A tw
Fe=mort o 1Bl Fisam g e (3:2)

Define the basis vectors f,, of ¥7 by f,.(2) = k,(2) where m = m_, -+ n
and n runs over the integers. Then,

1B, = (mﬂ 4z %) 2t = (m, + 8)s" = mf

I a = (w2)2" = w2 = of, .,

(3.3)
I = (0/2)2" = 02" = of,,,
Efm = Wm
for all m € S. These equations coincide with (3.1) and yield a realization

of O#(w, m,).

Now that we have realized the abstract representation Q#(w, m,) in
terms of differential operators acting on analytic functions, we can apply
the Lie theory of transformation groups to obtain a multiplier representa-
tion of the local Lie group whose Lie algebra is %(0, 0). However, before
beginning this computation it will be convenient to simplify the problem
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slightly. Since (0, 0) =~ 7, @ (€) and p(&) = E is a multiple of the
identity operator for every irreducible representation p, the nontrivial
part of the representation theory of %(0, 0) is given by the action of p
on 75 . We will lose nothing of importance for special function theory
if we study only those representations Q#(w, m,) for which E = p = 0.
Moreover, the representations Q% w, m,) induce an irreducible represen-
tation Q(w, m,) of the 3-dimensional subalgebra ;. The action of
O(w, m,) is obtained explicitly from Egs. (3.1)-(3.3) by suppressing the
operator E.

It was shown in Section 1-2 that 7, 1s the Lie algebra of the local Lie
group T';, a multiplicative matrix group with elements

¢ Ll

2
A Y ol |

gliglatg e b,c,7el. (3.4)
U] S AR S |

We will extend the representation Q(w, m,) of 75, defined on ¥, to a
multiplier representation of T3 . Let (7, be the vector space of all func-
tions of z analytic in some neighborhood of the point 2 = 1. Clearly
¥1 C 0, . According to Theorem 1.10 the differential operators

S—mtal, Jr—ws =2 (3.5)

generate a Lie algebra which is the algebra of generalized Lie derivatives
of a multiplier representation 4 of T’ acting on (7, . We will verify this
fact and compute the multiplier v. The action of the group element
expt #%onll,, Te, is obtained by solving the differential equations

dz d
— =% ¥, exp 7 f%) = m(2°, exp 7 F)

with initial conditions 2(0) = 2°, v(2?, e) = 1. (See Section 1-2 for the
definition of exp 7_#3.) The solution of these equations 1s

2(r) = 2%,  ¥(2° exp r ) = emo.
Thus, if f € 0/, is analytic in a neighborhood of 2° then
[A(exp 7.#%) f1(2°) = [exp 7J°] f(2°) = e™o7f(=%")
for | = | sufficiently small. Similar computations yield

[Alexp 6, %) f](2°) = exp(bws?) f(2°),
[Alexp ¢ #7)[](2) = exp(cw/z°) f(2°).
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If g € T, 1s given by (3.4) we find
g = (exp b #7)(exp ¢ #~)(exp 7.7°).

Hence, for | 7|, | b, | ¢ | sufficiently small the operator A(g) acting on
f € U/, takes the form

[Ae)1(z) = [A(exp b#+){A(exp ¢ £-) Alexp 7,2%) f1](z)
— exp(bwz)[A(exp ¢ £ -}A(exp 7,2 F11(#)

= exp w (bz + =) [A(exp 7.#%) f1(2)
— exp (mbz 4 ‘”;" 4 m,;r) flemz), (3.6)

defired for z in a sufficiently small neighborhood of 2 = 1. The
multiplier v 1s given by »(z, g) = exp(wbz + wc/z + m,r). Conversely,
(3.6) defines a multiplier representation of T'; whose generalized Lie
derivatives are the differential operators (3.5).

The elements of ¥ are analytic for all values of z £ 0, so if fe ¥}
and z £ 0 the expression

[A(e) £1(z) = exp (wbz + == + mg7) f(e'2)

defines an element of (7, for all g e T, not just for g in a sufficiently
small neighborhood of the identity. We define the vector subspace ¥,
of U/, (the completion of ¥/ , see Section 2-2) as the space of all finite
linear combinations of functions of the form A(g)f for all ge T,
f € ¥ . By definition, ¥, is invariant under 4:

A(g)fe 7, forall fev,, geT,.
Furthermore, if fe ¥, , g,, g.€ T, then

Alsige) f = Alg)[Alg) f]- 3.7)

By restricting from (7; to ¥ the space on which the local multiplier
representation 4 acts, we have been able to extend A over the whole
group T’y . Thus, the representation Q(w, m,) of 7, has been “exponent-
1ated” to yield a global representation of 7' .

The basis functions f,(2) = h,(2) = 2%, n = 0, 4-1,..., m = m, + n,
for #7 form an analytic basis for ¥, (see Section 2-2). This is true because
every element f in %] is analytic at all points 2 % 0 in €; hence, f has
a unique Laurent expansion

fa)= T ah  aef

fi=—2a0
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which converges for all 2 % 0. Thus, we can define the matrix elements
A () of the operators A(g) on ¥, by

A= T Aulehi@ geTs, k=041, 42... (G8)

l=—un

Using (3.6) we obtain

exp (mb:ar 2 e —]— (R + m,_,,}r) (= Z A ()2t (3.9)

[em—iy

which can be regarded as a generating function for the matrix elements.
From A(g,2.)h. = A(g,)[A(g.)h;] there follows the identity

g = Y. Aulggl = M) [ Y Anleo)h]

[=—m j=—m

= Y Aplg) Algdh; = 3, Anlgs) Y Au(g)h

j=—oo j=—u0 l=—e

Y Aulg) Ailg)h .

|!=—|3C| j'=—|j:|

Comparing coefficients of %,(2) = 2! we obtain the addition theorem

oo

Ay(g18:) = Z Ayi(g1) Alg2), lLk=0, 41, 12, (3.10)

Je=—c0

valid for all g,,g,€ T5. To find an explicit expression for the matrix

elements A,.(g) it is sufficient to compute the coefficient of 2! on the
left-hand side of (3.9). Thus,

~14
exp (-:uh"-a"' - ? + (& + m,})—r) FE=s Z (M&g) Y (r‘”ﬂz y elk+m )T ok

j=0

(wb)s{cm}m -

= stetmir 3 2 b Sy ey

[=—c0

50

2hNs
Aﬂ:(g] — plk+m, }T(t:-w)k-—i Z s?(s{m bﬂ} i}! } I, B — {], il: :I'_"Z:*H: {3*11]
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where the sum extends over all nonnegative integral values of s such that
the summand is defined. Specifically,

E{ﬂla-l—k}f(i:m}k—z

«f‘lm(ﬁ = (k = I]T EIFI("EE —4 4+ 13 WE‘&E) if k=,

et ()1 (3:12)

Ay(g) = =B JFil—k+1,0%c) if [=k,

where the function  F; is defined by its power series expansion (A. 21).
These two cases can be combined into the single expression

el ( £y )=tk KU /2 (Bey) =Rt (=t} /2

Aug) = =7 oFu(l b — 1] + 1; wibe)  (3.12)

valid for all integral values of [, 4.
If bc # 0 the matrix elements are closely related to Bessel functions.
To see this we introduce new group parameters 7, v in place of b, ¢ by

b

[

1/2

§F = 2| b,_.: |1,.’E gtlarg b+arg c—;—-.rr:l,fﬂ, ) = Ei{arg b—8Tg c—w) /2 (3_13)

where —w < arg b, arg ¢ < m, or briefly, r = (¢bc)'/? and v = (b/fic)'/*.
With these definitions it follows that b = rv/2, ¢ = —rv~'/2, and this
coordinate change is one-to-one if b¢ 7= 0. In terms of the coordinates 7,
v the matrix elements (3.11) can be expressed as

A(g) = etmet B (—g)=F [ (—awr), k=0,41, 42,.. (3.14)

[see (A. 20)]. The functions [, are Bessel functions of integral order. In
particular, for r = 0, v = —1, @ = —1, £ = 0, substitution of (3.14)
into (3.9) yields the well-known generating function

exp [ e — =] = 3 L) (3.15)

l=—00
for Bessel functions.
We can obtain addition theorems for the functions (F; by substituting
(3.12) into (3.10). After some simplification one finds

(by + by)"
n!

o 1(n 4 15 (by + by)(ey +.61))

- i bi}'{—]ilh"? E;""J‘"‘lji}]‘lz bfq‘ifl—;l'+kﬂ—.?|.}.l"‘3 ﬁé.f—n-s-m—:f]h'ﬂ

Pzl ljl}|mn—j|!
WF 7+ b)) oyl —g | + 15 bycy) (3.16)
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where 7 is a nonnegative integer and b, , b,, ¢;, ¢, € . Some special
cases of this formula are of interest. If b, = 1, b, = ¢, = 0, ¢, = «x,

(3.16) reduces to

o

nl ad

T

which is the power series expansion for ,I; .(We have used the fact that
ﬂFl{k;ﬂ) — 1) 1f "E'l = EIE =), i = X Ca=— Y, then

o ¥ oFi(n +7 4 1; %)
n+1l;x+9y) =nl E . - .

If b, = x, by = 0, ¢; = —¢c, = 1 there follows

= nl xi(—1)

b=y

jusl) {j %_ ﬂ}!j' "

Fin + 5+ 1; x).

For by = ¢; = %, by = ¢3 = y we obtain

Flla—jl

x | ¥ o
EEI Fin + s +30) = ¥
: J=—c0

ol 1|7+ 1 2%) o F5(I 2 — 7 | + 1;9%).

The addition theorem (3.10) can also be used to derive identities
relating Bessel functions of integral order. However, it will be more
convenient to derive these results in Section 3-3 as special cases of iden-
tities relating Bessel functions of arbitrary order.

3-2 Recursion Relations for the Matrix Elements

The matrix elements A,(g), g€ T,, computed in (3.11) are entire
analytic functions of the group parameters 7, b, c. Hence they can be
considered as analytic functions on the group manifold. Denoting by
C/(T5) the space of all functions on 7'; which are analytic in some neigh-
borhood of the identity element, we see that 4,, € (/(T) for all integers
l, R, where the A4, are matrix elements corresponding to the representa-
tion O(w, m,). There 1s a natural action P of T; on 0/(T,) as a local
transformation group. P is defined by

[P(g')f1(&) = f(gg) (3.17)
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for all fedl(T,) and all g’, g in a sufficiently small neighborhood of
e € T'5 (the neighborhood depends on f). From (3.17) it is evident that

P(g18:) f = P(g:)[P(g2) 1],

if g, , g5, and g, g, are in the domain of f. Thus, P defines T as an effec-
tive local transformation group on the 3-parameter group manifold of T .
The action of P on the matrix elements A4, is easily determined:

[P() 4ue) = Aner) = T Aule) Ao 3.18)

forallg,g’'eT;y,j, k=0, 41, +2,.... Comparing this expression with
(3.8) we see that for fixed j the functions {4, , &k = 0, 4-1, 42,...}, form
a basis for the representation Q(w, m,) of T,. The Lie derivatives
J*+, J-, J3 defined by

(g) = 5 [P(exp 554 F1(8)]
1(g) = - [Plexp e #) F1(8)| (3.19)
Ff(g) = - [P(exp .99 1(g)

=i

for all f € (/(T;), must, therefore, satisfy the commutation relations
L =k, 1% =0
and act on the basis vectors Aj;, as follows:

124;(g) = (m, + R) A;x(2),
J*t4;i(g) = wA; g4a(8), J=Au(g) = wA4; k-1(8), (3.20)
Coodnlg) = 1] Aulg) = 0®45(g), 1, k=0, 41, +2,....

These expressions give recursion relations and differential equations for
the matrix elements A;; . To evaluate them it is necessary to compute
the Lie derivatives defined by (3.19). The elements of (/(T;) can be
considered as analytic functions of the group coordinates b, ¢, 7, so the
Lie derivatives are linear differential operators in these three complex
variables. However, if we wish to relate our results to Bessel functions
it 1s more convenient to use the group coordinates r, z, 7, (3.13). As we
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have seen, in terms of the r, v coordinate system the matrix elements
are given by (3.14):

Am{g} == E{mﬂ+kh( _ﬂ}tmk j!—ir.( — mf}.

This coordinate system is not defined over the whole group but only for
those group elements such that bc 5 0. If g has coordinates (r, v, 7) and

T R
N 0 e~ 0 ¢
E=1o 0 & w)
0 0 0 1

a simple computation shows that the coordinates of gg’ are given by

(r[l 5 e c'v n 2e7h" 4 b'c’ ]”3, ” [ 1 + 2ed'[rv ]”E,T P -,-“)1

r v " 1 — 2e"c'ofr

for | &' |, | ¢’ | sufhciently small. From this result and the definition (3.19)
of the Lie derivatives there follows

L e

Substituting (3.14) and (3.21) into (3.20) we obtain, after factoring out
the dependence on v and T,

[+ 2] 1) = Jua [ L+ 2] 10) = Juul),

[- & =22+ 2] = 1o

where # 1s an integer.

(3.22)

3-3 Realizations of Q(w, m,) in Two Variables

In the previous sections realizations of the representation Q(w, m,) of
73 have been determined on spaces of functions of one and three complex
variables, respectively. We will now find realizations of this representation
on spaces of functions of two complex variables, x and y. In particular,
we look for functions f,,(x, y) = Z,(x) €™, such that

]:?fm = H'Ifm, ]+fm == mfm+1 ? J_fm = mfm—l ¥

(3.23)
Coofm = V) fm = s w 7= 0,
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for all me S = {m, -+ k: k an integer}, where the differential operators
J=, J? are given by

¢ 0 1 ¢
3 4+ o Y | I ——— s
] -*a_y1 ] = £ (IE' ) (324}

x  xoy
These operators are the type C” operators classified in Section 2-7.
(The constants p, g occurring in the expression for the type C” operators
can be set equal to 0 without any loss of generality.)
The content of (3.23) is, thus, a series of equations relating the func-
tions Z,,(x):

[d;i == %—] Z(%) = wZ,, (%), [_-si: Bt ] Zp(%) = wZpy_4(X)

. (3.25)

£ 1d ., m :
2 xdx xE]Zm(x) — Ui, T WES

The complex constant w in these equations is clearly nonessential; we
could remove it by making the change of variable #* = wx. Hence, we
will assume w = —1. (For this choice of w, Egs. (3.25) agree with the
conventional recursion relations for cylindrical functions, (A.23).)
Nonzero solutions of these equations are well known. If m, = 0 so that
the elements of S are integers, we see from (3.22) that Z,(x) = [,.(«)
is a solution for all m € S. Furthermore, for arbitrary complex values of
m, we can obtain the solutions Z,(x) = J.(x), J_.(x), H(x), Hy(x),
N,.(x), for all m € S (Magnus et al. [1]). Thus, the Bessel functions of
first and second kind, the Hankel functions of first and second kind, and
the Neuman functions each satisfy the recursion relations (3.25) for
w = — 1. Each of these functions 1s analytic for all values of x except
%= b:

If, conversely, functions Z, (x) defined for each m € .S satisfy (3.25)
for w = —1, then the vectors f, (x, y) = Z,,(x) e form a basis for a
realization of the representation O(—1, m,) of Z,. This Lie algebra
representation induces a local representation of 7'5. In fact if (7 is the
space of all functions analytic in some neighborhood of the point
(x2, v°) = (1, 0), the Lie derivatives

define a local multiplier representation T of 75 on (Z. From Theorem 1.10,

[T(exp b 7%) f1(x, &) = f(x(b), &*®),  bel, fel,
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where

EII"{M

g(ﬁ) — euid), j%(b) = = SE x(0) = x, (0) = y.

The solution of these equations is

T(exp b2 fllx, 1) — f [m(l 2t )ua: : (i " E?_f_)—lﬂ}

X X

where for convenience we use the new variable #+ = e¥. Similar com-
putations yield

[Texp e f)71s, 1) = 1 [x(1 — 22)7, ¢ (1 — 22)7]

et xt
[T(exp 7.2%) f1(x, t) = f(x, te").
If

T e R
— e Ny o

0
0

then g = (exp b #%)(exp ¢ _#)(exp 7_#3). So, for fell and g in a
suthciently small neighborhood of the identity we have

[T(£)f1(x, t) = [T(exp b7+) T(exp ¢ #~) T(exp 7,7%) f1(x, 1).

An explicit computation gives

{21\
2bt \1/2 2c:\V* ot
(TSN t) =f |1 +—) (1 —=) e — (3.26)
. xl —

defined for | 2bt/x | < 1, | 2¢/xt| < 1. According to Section 2-2, our
realization of the representation O(—1, m,) of .7, on the space generated
by the functions f,,(x, y) = Z,(x) &, m € S, can be extended to a local
representation of T; where the group action is given by (3.26).

In particular, the functions f,(x, ¥) form an analytic basis for this
space, as can easily be seen from (2.2) and the y-dependence ¢™ of the
basis vectors. Thus, the matrix elements of this local representation
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with respect to the basis f,, are uniquely determined by O(—1, m,) and
without computation we immediately obtain the relations

T@) fsl58) = T A i)y k=0, 41, 42,.., (32])

; %¢ \ 1/27]m

2bt \1/2 2¢ \Y B

Zu[s(1+55) (-5 ] | 2%t

)=

= ‘r -
= Y Avn-m(8) Zm,rilx) tme (3.28)
l=—o0

where the matrix elements 4,(g) are given by (3.12) (w = —1). The

region of convergence of these relations is determined by examining the
singularities of the functions on the left-hand side of (3.28). Since
Z,, ,me (, is analytic in x for all nonzero values of x, it follows that the
infinite series (3.28) converges absolutely for | 2b¢/x | << 1; | 2¢/xt | < 1.
Explicitly,

TR
cirr oy 2py 2
T
X

) __1)In]
=2 [|:r.f.)|!

cl—n+|n|} /2 hint|n|) /2 0F1(| 2 | - 11 E‘-‘E) qu_n{x}rﬂj

< 1,

2c
‘:!ITIF < L (3.29)

Several of the fundamental i1dentities for cylindrical functions are special
cases of this formula. If c = 0, £ = 1, Eq. (3.29) becomes

i [x(l—}— 26 )1ﬂ](1 +%)—mﬂ:§,(:£_)i Z, (), |% < 1. (3.30)

X

It b =0, £ = 1, one obtains

2¢

—

X

Zy [(1 + %)”2] (1 + %)"”2 3 ii—f Zs < 1. 331)

In the case where Z,, = J,,, (3.30) and (3.31) are known as the formulas
of Lommel.



3-4. WEISNER'S METHOD FOR BESSEL FUNCTIONS 63

If b¢ = 0 we can introduce the coordinates 7, v defined by (3.13), such
that b = rv/2, ¢ = —r/2v. In this case

Ay(g) = eI (—o)F Ji_i(r)
and Eq. (3.29) simplifies to

m |2

1 +— .
i+ 2 ) ] — | = Z RO Zent)
A L
X
% <= 1; IJ-E S (3.32)

For Z,, = ], thisis a generalization of Graf’s addition theorem (Erdélyi
et al. [1], Vol. 11, p. 44).

3-4 Weisner’s Method for Bessel Functions

Expressions (3.27) are valid only for group elements g in a sufficiently
small neighborhood of the identity element of T;. However, we can
also use the type C” operators (3.24) to derive identities for cylindrical
functions associated with group elements bounded away from the
identity. The following remarks are pertinent. If f(x, #) 1s a solution
of the equation C; ( f = o?f, 1.e.,

(~ Eﬁ;ﬁ 19 ;_: ;2 ) fx, ) = W, ), (3.33)

x Ox

then the function T(g) f given formally by

v {1=% )
[T(e) /1w t) =1 | [& +25)(x — )] e L
X

satisfies the equation C, o(T(g)f) = «*T(g)f) whenever T(g) f can be
defined. This follows from the fact that C; ; commutes with the differ-

ential operators J*, J=, J3. Furthermore, if f is a solution of the equation
(%, )1 + %] + x5]3%) f(x, ) = Af(x, 1) (3.34)
for constants x, , ¥, , X3 , A, then T(g) f is a solution of the equation

[T(g)(xJ* + 2]~ + 2,J°) T(g)[T(g) f] = A[T(g)f]
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where

T(2)(x, ]t + x.]~ 4+ 25]3) T(g™) = (we” — b))t + (%96 + ex3) ]~ + x5]°.
(3.35)

This is a consequence of Eq. (1.43).
As an example of the application of these remarks consider the function

flx, £) = J(x)t", me €. Here Cy, f = f, J3f = mf, so the function

et \ ™2
1/2 Pe= %
(16100 = Ju (e +20(s =) Jemr | —— ) @30
T

satisfies the equations

CoolT(e)f1=T(g)f, (=bJ" +eJ- + P)T(g)f] = m[T(g)f]. (3.37)

Ifr=b=0,c = —1, we can write (3.36) in the form

h(x, t) = (xﬂ 15 ?Tx)_mm Jn [(xﬂ + ;Tx)m] (2 + wt)m

Since x~™ ], (x) is an entire function of x, £ has a Laurent expansion
about ¢ = 0:

h(x, ) = f h(x)tn, | xt] < 2.

==

Substituting this expansion in the first equation (3.37) we see that
h,(x) is a solution of Bessel’s equation

d*® lnd ne
(~ 28 —5@ =) b = b

for each integer n. The function A(x, t) is bounded for x = 0, so we must
have &, (x) = ¢, J.(%), ¢, € € [see (A.22)]. Thus,

= ¥

W t) = Y calul®) .

=00

From the second equation (3.37), (—]— + J3) k(x, t) = mh(x, ), it
follows that ¢,.; = (m — n)c, . The constant ¢, can be determined
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directly by setting x = 0 in A(x, t). The result is ¢, = 1/I'(m + 1),
whence ¢, = 1/I'(m — n -+ 1). Thus, we obtain the identity

(ME 2 E)—m:’i‘- S [( Zx 1/ 2] (2 + at)y™ = i i Jn(x) t*

t = Pm—n1)"

| x| < 2. (3.38)

Equation (3.38) is obviously not a special case of (3.29). For other exam-
ples of generating functions derived by this method see Weisner [3].

The above results were all obtained by using Zype C” operators. The
type D" operators lead to no new results for special functions so we will
not consider them here.

3-5 The Real Euclidean Group E;

The Euclidean group in the plane, E;, can be defined as the real
3-parameter group of matrices

cos! —smf x
) (3.39)

g(0,x,,x,) = |sinf cosl «x,
0 0 1

where x, , x, are real and 6 is a real variable determined up to a multiple
of 27. As is well known, E; acts as a transformation group in the plane.
If y = (y,, ¥,) is a point in the plane R? the action of E, is given by

Yy =gy = ((y1 — %) cos @ + (y, — ;) sin 0,
— (¥, — xy) sin @ + (y, — x,) cos ).

This action corresponds to a translation (y;, ¥s) = (V1 — %1, ¥ — %),
followed by a rotation through the angle 6 in a clockwise direction about
the point (0, 0). It is easily verified in terms of the group parameters
that the group multiplication is given by

.f;’(f’s X1 mg] 3(5’1 5‘:1 : x;)
=g0+0',x cos@ —x,51n0 | x

x,sin@ -+ x,

,cos @ + x,). (3.40)

1-"1

The 1dentity element of E; is the identity matrix g(0, 0, 0) and the
inverse of g(0, x; , x,) 1s

g~ Y0, xy , x,) = g(—0, —x; cos @ — x, sin 8, x, sin § — x, cos 8),
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since
g(0, %y , x5) g(—0, —x; cos § — x, sin 6, x, sin § — x, cos 6) = g(0, 0, 0).
As a basis for the real Lie algebra &, of E, we choose the elements
0 0 1 0 00 0—-1 0
A=10 0 0), F=|001), L=|(1 0 0] (341
0 00 0 0 0 G 0.0

with commutation relations

(A1, £l =0, [A Al=F [L Fl=—4.
The complex matrices fF+=—f¢,+if,, F = ¢ +if,,

b= gl = ‘\/rf, satisfy the commutation relations
(A= [P l=s =0 [FPF=

which are identical with the relations (1.41) for a basis of Z; . Thus, the
complex Lie algebra generated by the basis elements (3.41) is 7, . We
say that 7, i1s the complexification of &, and & is a real form of Z;
(See Helgason [1], p. 152). Due to this relationship between Z; and &, ,
the abstract irreducible representation Q(w, m,) of 7 induces an irreduc-
ible representation of & .

There is another matrix realization of E; which we will find useful.
Namely, we define matrices

e® 0 (% —ix,)/2
g{E: X1y ‘rﬂ} = [0/ & ("xﬂ =t 1:1.’-'1)/2 ’
0 0 1

X1,%€R, 0<0< 27, mod2n. (3.42)

These matrices form a realization of Ej; isomorphic to the realization by
the matrices (3.39). In fact,

g{ﬂ, X5 9 xa) g, xi 3 I;]

r ¥ ¥ . ¥ L &
= g(6 -J-H,xlcﬂsﬁ—xﬂsmﬂ—::Jr:i,xlsmﬂ—I—xzcﬂsH—t—xz}

in agreement with (3.40).
It will sometimes be convenient to use, instead of the coordinates #, ,
Xy , the polar coordinates » > 0 and ¢ defined by

-:-":1 _i'_ I.IE —_— I"'-Efq'-",,




3-6. UNITARY REPRESENTATIONS OF LIE GROUPS 67

where we assume that re*? = ( implies » = ¢ = 0. In terms of these
new coordinates the matrices (3.42) take the form

do 0 —(i[2) rew
[0, 7, 9] = (0 et (i]2) rrw).
0 0 1

If ¢’ has coordinates [¢, 7/, ¢'] and g" has coordinates [8", ", ¢"] then an
easy computation shows g'g” has coordinates [f, », ¢] where

6 =8 + @, Y'Y = rew | yetle ), (3.43)

In particular, the coordinates of g’ are [—6', 7, ¢' — 0" + =].

3-6 Unitary Representations of Lie Groups

We shall be interested in the connection between the local multiplier
representations of T'; and (global) unitary representations of E; on a
Hilbert space. Hence, we make a brief digression to discuss unitary
representations. The basic concepts of the theory of unitary representa-
tions of (global) Lie groups are presented in several standard references
(Naimark [1, 2]; Helgason [1]). Here, a few of the fundamental definitions
and results in this theory will be listed which are useful for the study
of special functions. It is assumed that the reader i1s familiar with the
basic concepts of Hilbert space theory.

Let 3¢ be a complex Hilbert space with the inner product of two
vectors f, f' in 5# denoted by {f, f'> and the norm of f by |f| =
(f, PV We assume {f,af’» = alf, f5, <af, f’> = af, f> for
every a € , i.e., the inner product is linear in the second argument,
conjugate linear in the first argument. A sequence of vectors {f,},
n =1, 2,..., 18 said to converge to f € 3, ( f,, — f),iflim, .. | f, — | =
0. Let & be a vector subspace of . & is dense in 3 if for every f € 3¢
there is a sequence of vectors f, € &2 such that f, — f. & is closed if
every convergent sequence of vectors in & converges to an element in &.
¥ 1s closed by definition. _

If 2 1s a subspace of #, #, the closure of # i1s defined to be the
intersection of all closed subspaces of € containing . It is easy to see
that 4 1s closed.

A linear operator U on % is unitary if (Uf, Uf> = {f, f') for every
f, f'ed. If U i1s unitary, so 1s U~ where U1 is the unique operator
such that UU-! = I, (I is the identity operator).

Let G be a real (global) Lie group. A unitary representation of G
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on J# consists of a family of unitary operators U(g) on 5, defined for
every g € G, with the properties:

(1) U(gg') = U(g) U(g) forall g,¢ €G,
(2) if g, — g in the topology of G then U(g,)f— U(g)f in 5,
for all f e .

Since the unitary operators have unique inverses, 1t follows easily from
(1) that U(e) = I and U(g1) = U( g)~L. Property (2) states that the
operators U( g) are strongly continuous as functions of g.

A unitary representation of G on 5 is irreducible if there is no
proper closed subspace of # which 1s invariant under all the operators
U( g), i.e., if there 1s no proper closed subspace 3#’ of S such that
U(g)fes forall fes' geG.

Let ¢ be the Lie algebra of G and exp «, « € &, the exponential map
from % to G. If the operators U( g) form a unitary representation of G,
then in analogy with Section 1-3 we might try to construct a representa-
tion of ¢ in terms of linear operators L, on 3# defined by

sl U(exp ta) — I
t—=0 i

]f, fe#, ac¥, (3.44)

L. fi= % U(exp ta) f o
where the limit exists in the sense of the norm of 3#. However, the limit
may not exist for all vectors f so L, may not be well defined as a linear
operator on 2. Denote by %(L,) the set of vectors f for which this limit
exists. Obviously, Z(L,) is a subspace of 3.

Suppose there is a dense subspace & of # with the properties:

(1) 2C2%(L,) forall xe ¥,

(2) 2 is invariant under all the operators U( g),

(3) % is invariant under all the operators L, , (3.45)
(4) For any f e & the vector U( g) f is an analytic function on G.

We say a vector-valued function % of G on 5 is analytic at g, € G if

there exists a coordinate system {y, ,..., ¥,,; on a neighborhood W of g,
such that y,(g,) = *=* = y.(8) = 0 and

g)= ) @i (@™ - V()™  pEW.

Here, the coethcients a,, ..., belongtos# and 3, ,...,, 5ol @y ..cp, | <O
(Helgason [1], p. 440).

If such a subspace & exists we can immediately carry over the standard
methods in Chapter 1 relating Lie groups to Lie algebras. On the dense
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subspace 2 Theorems 1.8-1.11 relating local multiplier representations
to algebras of Lie derivatives have exact analogs. Thus, for f € & we have

(1) Lowspf = aL.f +bLsf, abel, o,fe,

(2) Lipf = Las Lol f = Lolpf — Lok, (3.46)
o (tL)"

1!

(3) Ulexp ta) f = I

=0

() 2 U(exp ta) f = L(U(exp ) f).

These results follow from the fact that U(g) f is analytic in g (Naimark
[2], Chapter 3). Convergence in (3) is in the sense of the norm.

Equations (3.46) show that on & the infinitesimal operators L,
completely determine the unitary operators U(g) for g in a neighborhood
of the identity. However, since & is dense in & and U(g) 1s a bounded
operator it follows from a standard argument that U(g) is uniquely
determined on 3# for all g in the connected component of the identity
element in G (Naimark [2], p. 100).

It can be shown that such a subspace & described above actually exists
for every unitary representation of a Lie group G (see Helgason [1], p. 441,
and references given there). Thus it is always possible to use Lie algebraic
methods to derive information about (possibly infinite-dimensional)
unitary representations of Lie groups. We will not need this result but
quote it here to show that the methods used in the rest of this chapter
are not as special as they might appear.

Lemma 3.1 If the operators U(g) form a unitary representation
of G, then

Ly By = —{f, L2y (3-47)
forallf,heZ and all a € %.

PROOF Since the operators U(g) are unitary and form a representa-
tion of G we have

(U(exp ta) f, hy = {f, U(exp — ta)h)

for all real z. Differentiating both sides of this equation with respect to ¢
and evaluating at ¢ = 0 we obtain the lemma.

LLemma 3.1 gives necessary conditions that operators L, must satisfy
to be obtained as the infinitesimal operators of a unitary representation

of GG.
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3-7 Induced Representations of &;

The above results can now be applied to find unitary irreducible
representations of Ej .

Let U be an irreducible unitary representation of E; on the Hilbert
space S and let & be a dense subspace of H# satisfying the properties
(3.45). First of all, from (3.39) and (3.41) we find

g(8, x; , x) = (exp x; F;)(exp x,.9,)(exp 0,%5). (3.48)

Thus Ej is uniquely determined by _¢,, %,, #;. Equations (3.46) then
show that the operators U(g) for all g € E; are uniquely determined by
the infinitesimal operators L, .

Second, if @' C & 1s invariant under all the infinitesimal operators L,
of an irreducible unitary representation of E,, then &’ is dense in Z.
For, if %' is invariant under the L_, it is clear from (3.46) that @’
(the closure of 2') is invariant under U( g) forall g € E, , Since the unitary
representation is irreducible we have 2’ = #. Thus, 2’ is dense in
both & and 5. We can conclude that £ contains no proper closed sub-
spaces invariant under the L, .

Define the infinitesimal operators J;, on & by

t=0

Tf =S Ueptf)f| . k=123, (3.49)

for all fe 2. These operators satisfy the commutation relations

Ji, b1 =0, s, Il =1Jes s, ]l =—h

and determine a representation of &; on 2. Therefore, the operators
J£ = FJ; + 1];, ]J? = 1]; satisfy the relations

[I531=9, . Bl =3 [B.E==F

Clearly, J#, J® induce a representation p of the complex Lie algebra 7,
on . We will investigate which of the irreducible representations
O(w, m,) of J, can be obtained in this way on some dense subspace &'
of &, i.e., the conditions under which p restricted to &’ 1s 1somorphic

to Q(m, mﬂ).

According to Lemma 3.1,

Jefil) = =< WD, k=123,
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for all f, he @. Thus,
Pfiby = —i )3 f, b = +Hi f, by = {f, P> (3.50)
<]+fs hy =<{(—Js+tJ)f, ) = <f:- (Jz T ﬂﬂkt? ~ <f1 I-h>. (3.51)

Recall that the representation Q(w, m,) of 7, was determined by
the relations

}Efm — mfmr ]ifm = wfm:l:j,

where w # 0, m = m, -+ k, and k runs over the integers. Now we assume
that the vectors f,, are in & and use (3.50) and (3.51) to find restrictions
on w and m, . From (3.50),

?ﬁ{fm :fﬂ> = <]3fm :fn> = <fm ) F:fn> = n(fm :fﬂ>

Thus (m — n) {f,,, f,» = 0 for all m, n in the spectrum of J2. If m # n
this relation proves (f,,f,> = 0. However, if m = n we have

(m —m)|f,,|?=0. Since f,, # 0, the eigenvalue m must be real.
Further, from (3.46) we find

U(exp 8 .%;) frn = exp(—10)3) f,, = e "8,

Since exp(2n #,) is the identity element of E, , we must have e 2"im — ]
for all 7 in the spectrum of J2. Thus, m must be an integer and m, = 0.

From (3.51)
'ﬁ(:fm-r-l :fm+1> — <]+fm rfm+1> = <fm ) J_fm+1> = m<fm rfm>'

for all integers m. Hence, w/@ = | f,,.1 |%/| fin |2 = 0. This relation can
be satisfied only if w is real and | f,,., | = | f,. |- Consequently, all the
vectors f,, have the same length and without loss of generality we can
assume | f,, | = 1 for all integers m. This analysis proves that any
irreducible representation of 7, induced by a unitary representation of
E; must be of the form (J(w, 0) where w i1s a nonzero real number.

Furthermore, the vectors f,, , m an integer, form an orthonormal basis
for & (hence, for ¢):
1 if m=n,

(fmsJo? = Omn = 0 if m £ n.

3-8 The Unitary Representations (p) of E;

Conversely, we will show by explicit computation that, in fact, all of
the representations Q(w, 0), w real, induce unitary irreducible representa-
tions of E;. (Since O(w, 0) =~ O(—w, 0), without loss of generality we
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can assume w << 0.) The unitary representations of E; can be obtained
formally through an examination of the multiplier representation (3.6)
of Ty . If m, = 0, (3.6) depends on the parameter 7 only in the form e”
(if m, == O this 1s not true):

[A(e) f1(2) = exp (wbs + =) flez),  felh. (3.6)

Thus, the operators (3.6)" define a single-valued multiplier representation
of the multiplicative matrix group T3 with elements

e 0 ¢
gr,bc)=1|0 e b)), berel. (3.52)
0 0 1

The matrices (3.52) are obtained from the matrices (3.4) of T'; by elimi-
nating the first row and last column. 7’3 is not simply connected. However,
as local Lie groups, T3 and T, are isomorphic.

Comparing (3.52) and (3. 42) we can consider E; as the real subgroup
of T; consisting of the matrices (3.52) such that Re7 = 0 and b = —¢.

In fact,
1re” 11*&4 i

g0, 7,91 = & (—ib, —

+ig
ptif ire
it zr&""‘*’

0
0
£ o 20y r 0, (3.53)

¥

Using this embedding of E; in T we can define a multiplier representa-
tion of E, directly from (3.6)" by restricting the group elements to Ej :

-rE-H-

[A(g") f](z) = exp [— Y (re—wz + )] fe%2), g[0,r,¢l€Es. (3.54)
Since | e'% | = | = | for all 6, the representation (3.54) can be restricted
to functions defined on the unit circle; 2 = e, 0 << o << 27r. The basis
functions f,,(2) = 2™ restrict to f,,(«) = &' for all integers m.

Now we have the ingredients required to define irreducible unitary
representations of E; . Let 5 be the complex Hilbert space consisting
of all functions f(a), 0 < a < 27, mod 27, such that

E | f(@)2de < o0
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The inner product on 3¢ is
{fi )y = (2m)2 = f(@) h(e) dee,  f, he . (3.55)
]

As is well known, the functions
fm('ﬂi} = Etlmﬂ'.' THE= Dr- :I:l, :I:Z:r"*:
form an orthonormal basis for 37,

<fm :f*.rz> — S-m,ﬂ .

We define a representation (p), p = 0, of E, by unitary operators U(g)
on  such that

[U(£) f1(«) = efer eo86=9) f(a — §) (3.56)
where fe# and g = g[f, 7, 9] € E; . The expression for U(g) follows
immediately from (3.54) by setting 2 = e™ p = —w. The operators

U(g) are unitary since
U f, Ulehy = 5- a0 ho — 0)

e
. ziwf.;. F(@) (o) doc = < f, b,

for all f, he #, g E,. We define the matrix elements of (p) with
respect to the basis f,, by

Unm{g) = <fﬂ : U{gjfm>
!

T 2

2
J exp[+ipr cos(a — @) — imb + i(m — n)a] de
0

— =il (m—n)p—mb] fﬂ—m(Pf)T —00 <N, m < 00, (3_5?)

where the [, are Bessel functions of integral order. To justify the last
equality note that for 2 = ze™ Eq. (3.15) becomes

pir CO8 o Z i{h(?‘) gile
l=—on
Thus the exponential functions under the integral sign in (3.57) can be
expanded in a series of Bessel functions and integrated term by term to
obtain the indicated result. Note the similarity between (3.14) and (3.57).
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By construction, the operators U(g) satisfy the representation property

U(gg') = U(g) Ulg) (3.38)

for all g, g’ € E; . However, we can also verify this directly. In terms of
the coordinates (0, x, , x,) for g, (3.56) becomes

[U(g) f 1) = explip(x; cos & + &, sin a)] f(a« — 8).
Thus, if the group elements g and g’ have coordinates (0, x, , x,),
(6, x; , x5), respectively, we find
U(&)[U(g) £1(@) = explip(, cos « + %, sin a)][U(g") F1(x — 6)
= exp{ip[(x, cos « + x, sin &) + (x; cos(a — )
+ ) sin(e — O} fl« — 0 — 0)
= exp{ip[(x] cos 8 — x, sin § 4 &) cos «
+ (x; sin @ 4 x;, cos 0 + x,) sin o} f(a — 8 — §')
— [U(ge)f1(@) forall fest,

since the coordinates of gg’ are

(0 + 0', x; cos @ — x; sin @ + «x, , &) sin 6 + «x, cos § + x,).

This proves that (p) is indeed a unitary representation of E;. The
methods introduced in Section 3-7 could also be used to show that (p)
is irreducible. However, we will give a direct proof of this fact.

Lemma 3.2 The representation (p), p = 0, is irreducible.

PROOF We assume (p) is reducible and obtain a contradiction. Thus,
suppose there exists a proper closed subspace # of 3# such that
U(g)fe & for all ge E;, fe&. Let P be the self-adjoint projection

operator on %. That 1s, P 1s the operator on 3¢ uniquely defined by the
conditions (a) Pf = fforall fe .%; and (b) P2 = 0 for all 2 € %L where

Lt ={heHH:<h,f> =0 forall feF).

From elementary considerations in functional analysis it follows that
(i) <Ph', h"> = <{h',Ph") for all k', K" e, 1.e., P is self-adjoint;
(i1) P? = P; and (1) U(g)P = PU(g) for all g € E; (see Naimark [1],
Chapters 4, 6). Furthermore P = 0, I, since % 1s a proper subspace of 5.

Let g be the element of E, with coordinates (8, 0, 0). Then U(gg) f,, =
e—imof where f,, 1s a basis vector for 2. From (i1) we obtain U(g,)Pf,, =
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e—'méPf . for all integers m. Since the vectors f,, form a basis for 3# we
must have Pf,, = «,, f,,, o, a constant. The property P? = P implies
af, = o, , hence o,, = 0 or o, = 1 for each integer m. By hypothesis
there exist nonnegative integers m’, m" such that Pf,,» = 0, Pf,,» = f,.” .
Thus,  Upine() = < fou , U@PSu> = {four» PU() fur> = B,
U(g) fn»> = 0 for all ge E,. However, from (3.57) we see that no
matrix element U,,(g) of (p) is identically zero. This contradiction

proves the lemma.

3-9 The Matrix Elements of (p)

We can obtain information about Bessel functions of integral order
from expression (3.57) for the matrix elements of (p). Since the operators

U(g) are unitary and form a representation of F,, the matrix elements
satisfy

Unm(£71) = Upa(2),
or

Jalr) = (=1)" Ju(®). (3.59)

Moreover, U,,(e) = &, ,, where e is the identity element of E,. In
terms of Bessel functions this implies

J(0)=0 if n<£0, Jo(0) = 1. (3.60)

Using the Schwarz inequality, we have

| Umn{g)l e Kfﬂ:u(g)fm>i = lf-ni = |U{g)fm| — Ifﬂl : 1fmi =]

s0 | Ju(r)] < L.
Since U(g'g") = U(g’) U(g") for all g’, g" € E; the matrix elements
satisfy the addition theorem

Uﬂm{grgﬂ) = Z Uﬂk(g;) Ukm{gn)' (361)
k=—on
Substituting expressions (3.57) for the matrix elements and simplifying
we obtain

o

E_..;;mgpjm{r) o z gtk "+im—k)g'] fm—k(rr) ]A:I:T”} {362)

fosm—on

where re'* = r'e’®’ + r"¢'?”, This is Graf’s addition theorem, a special

case of (3.32).
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Ifr =7 = x,¢ =0,and ¢" = 7, thenr =0, ¢ = 0, and

o

z Jran(®) Ju(x) = 850

w00
where we have used (3.59) and (3.60).
If ¢/ = ¢” = 0 thenp = 0, r = " + 7", and (3.62) becomes

It +1") = 3, Ju=s(r) Ju(r").
k=m=—00
Finally, we can derive a useful integral formula for the product of two
Bessel functions from (3.62) by setting ¢ = 0 and multiplying by
eine" Integrating both sides of the resulting equation with respect to
¢" we obtain

B

.urm—en(fl} fﬂ(f”) — EI;J‘ gling’—me) '}rm(f] dtpﬂ (3.63)

0

where re® = r' - r'el%’.

3-10 The Infinitesimal Operators of (p)

The infinitesimal operators of the representation (p) defined by (3.49)
are easily computed to be

o=ipcosa, Jp—ipsine,  Js= — . (3.64)

These operators are all defined on any dense subspace & of S satisfying
properties (3.46) and they leave & invariant. Forming the operators
T+, J-, ]? in the usual manner, we have

_ : 0
J+ = wEm’ .T___ 'me_m:l ]-3 = e W = —p.
oy
The action of these operators on the analytic basis vectors f, (x) = e
is given by

]+fm — Wimi1 s ]_fﬂl — wfm—l 1 ]Efm = My

in agreement with Eqs. (3.1) for the representation O(w, 0) of 7; . Thus,
each representation Q(w,0), w << 0, induces an irreducible unitary
representation (—w) of £j .
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As in Section 3-2 we could derive recursion relations and differential
equations for the matrix elements of (p). However, we shall omit this as
the results are merely special cases of the corresponding results in Section
3-2. Similarly the addition theorem (3.62) is a special case of the addition
theorem (3.16).

From the general theory of Lie groups it can be shown that up to
unitary equivalence all of the irreducible unitary representations of E,
are of the form (p), p = 0, except for the trivial 1-dimensional representa-
tions y,, , # an integer, defined by

Xnl8(0, 2y , x5)] = arse

(see Bingen [1], Vilenkin [1, 3]). Thus, the Lie algebraic methods pre-
sented in this chapter suffice to find all the irreducible unitary representa-
tions of E, . The reason for this is essentially topological: The 1-param-
eter subgroup C = {exp 0%} of E; is compact. Because C 1s compact,
the Peter—Weyl theorem guarantees that any unitary representation U
of E, when restricted to C can be decomposed into a direct sum of
|-dimensional irreducible representations of C. Since the 1-dimensional
representations of C are of the form p,(exp 0,%;) = €% n an integer,
it is always possible to find a basis for the representation space of U
consisting of eigenvectors of the operator J, = —iJ3. If U is irreducible
it is not difficult to show that each eigenvalue has multiplicity one. Thus,
the hypotheses (2.19) of Section 2-6 are satisfied and our methods
succeed in determining all unitary irreducible representations of Ej; .

Another real Lie group whose Lie algebra is a real form of 7 is T5.
The elements g of T3 are those matrices of 7'; which are real:

U B RE 1A
Q" F==07 ¢

g = 0 0 - b I b,E,TER.
§ SR IR § i

In contrast to E, , the group T has no compact 1-parameter subgroups.
In this case the Peter—Weyl theorem will not help and, as the reader can
verify for himself from Lemma 2.1, none of the representations Q(w, m,)
of 7, induce unitary representations of TX. The importance of Ty in
special function theory is related to the study of integral transforms and
is beyond the scope of this book (see Vilenkin [3]).



