CHAPTER 2

Representations and
Realizations of

Lie Algebras

In Chapter 2 we establish a fundamental relationship between Lie
groups and certain special functions: Special functions appear as basis
vectors and matrix elements corresponding to local multiplier representa-
tions of Lie groups. The correspondence is sketched in Section 2-2, then
illustrated by the familiar example of angular momentum operators and
spherical harmonics.

The 4-dimensional Lie algebras %(a, b) are introduced in Section
2-5. Later, it will be shown that the representation theory of ¥(a, b)
corresponds to a study of special functions of hypergeometric type. As
preliminary material toward the demonstration of this fact we classify
the abstract irreducible representations of %(a, b) in Section 2-6, and
construct realizations of %(a, b) by means of generalized Lie derivatives
in one and two complex variables in Sections 2-7 and 2-8.

2-1 Representations of Lie Algebras

In this section the concept of a representation of a Lie algebra on an
abstract vector space will be introduced. It is assumed that the reader is
familiar with the basic definitions and results of the theory of vector
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spaces (Halmos [1], Dunford and Schwartz [1]). However, since most
elementary textbooks on linear algebra are concerned primarily with
finite-dimensional vector spaces it may be useful to review some of the
fundamental definitions in a wide enough context to apply to infinite-
dimensional spaces. Infinite-dimensional abstract vector spaces will
appear frequently in this book.

Let ¥ be a vector space over the field F. (Here, F will always be either
the real numbers R, or the complex numbers, Z.) We denote the additive
identity of ¥ by 8 and the additive identity of F by 0. A subset S of V' is
said to be linearly independent over F if for every finite subset
Dy , Uy ..., U, Of distinct elements of .S and every sequence (a, , a3 ,-., 4p)
of elements of F the equality 37 ; a;v; = 0 implies @; = a; = = =
a, = 0. A nonvoid linearly independent subset B is called a basis of V/
if it is maximal, i.e., if B is not a proper subset of some linearly independ-
ent set in V. It can be shown using Zorn’s lemma that every vector
space with at least two elements contains a basis (Dunford and Schwartz
[1], Chapter 1). Furthermore, if B is a basis for V' then any ve V
can be written uniquely as a finite linear combination of elements
of B:

v = ayv, + a0 + -+ a,v,, Q1 3000y Ay EF, 04 ..., v, € B.

The cardinality of a basis depends only on V' and is called the dimension
of V. If B contains m elements, V' is m-dimensional. If B contains an
infinite number of elements, V is infinite-dimensional. (Similarly, if
% is a Lie algebra over F a basis of ¢ is a subset & which is a basis of &
considered as a vector space. The dimension of ¥ is the cardinality of
a basis.)

A linear operator on V is a mapping T: V' — V such that

T(a,0, + axv,) = a;T(vy) + axT(2p) €V, a,,a,€F, v,,0,€Vl.

The product 7,7, of two linear operators T and T, on V is the linear
operator defined by (T, T,)(v) = Ty(Ty(v)) forve V. Thesum T, + T,
is the linear operator defined by (T + T,)(v) = Ty(v) + Ty(v). If
acF and T is a linear operator we define the scalar multiple a7 of T
by (aT)(v) = aT(v) for all v € V. The set of all linear operators on V'
with the operations of product, sum, and scalar multiple forms an algebra.
Moreover, if we define the commutator [T, T,] of the linear operators
T,, T, by [T, T,] = T,T, — T,T,, the operators on V together with
the commutator [.,.] form a Lie algebra Z(V).
Let 4 be a Lie algebra over F.
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Definition A representation of ¢ on V is a homomorphism
p: @ — Z(V). That is, p satisfies the conditions

(1) pla) e Z(V) forall a€e %,

(2) p(le B = [p(), p(B)];
(3) plac + bB) = ap(x) + bp(B), @ bEF,
o, Be F.

A subspace W of V is said to be invariant under p if p(a)w € W for
all « € @, w € W. A representation p of Z on V is irreducible if there 1s
no proper subspace W of ¥ which is invariant under p.

Two vector spaces V, V' over F are isomorphic if there exists a
mapping i of ' onto V'’ such that

(1) p(av, + agvs) = a;p(vy) + aap(2s)
forall a;,a,eF, wvy,v,€V.

(2) If w(v) = 0 then v = 0.
(3) For every o’ € V"’ there exists a v € V such that p(v) = 2.

Let p, p' be representations of 4 on V, V', respectively. p and p’ are
said to be isomorphic if there exists an isomorphism p of ¥ and V"
such that p(p()v) = p'(x)u(v) forallae &, ve V.

2-2 Realizations of Representations

Let G be a local Lie group with Lie algebra L(G) and suppose p is a
representation of L(G) on the abstract vector space V. In analogy with
the theory of local transformation groups presented in Chapter 1, it
would seem natural to construct a mapping § of G into Z(V’) as follows:

o 41 :
.ﬁ(exp I*:"::)'i-i' — plolalgy — Z ! p}:g) »

=0

(2.1)

where a € L(G), ve V, and ¢ € ¢. Unfortunately, the right-hand side of

(2.1) may not be defined as an element of V since it involves an infinite

linear combination of vectors. Thus, expression (2.1) may be meaningless

and the analogy between Lie algebras and local Lie groups breaks down.
However, suppose p satisfies

CONDITION (A) V can be realized as a vector space whose elements
are functions analytic in a neighborhood of some point z° € £™ and such
that the operators p(a), o € L(G) are differential operators analytic at z°.
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To be more precise, let (7, be the set of all functions analytic in some
neighborhood of z° (the germs of functions at z°, see Gunning and Rossi
[1], Chapter 2). ¢, can be given the structure of a complex vector space
in the usual manner. Assume the existence of an isomorphism p of the
abstract vector space V onto a subspace ¥~ of (Z,,. Then, the operators
p#(a) on ¥ induced by the operators p(a), « € L(G) on V (p(o)u(v) =
plp(x)v], v € V) obviously define a representation of L(G). Second,
assume there exists a representation of L(G) by generalized Lie deriva-
tives D, on (Z, such that D, = p#(«) on ¥ for all « € L(G). If these two
hypotheses are satisfied the vector space V' can be considered as a sub-
space of (7, and the operators p(«) can be identified with the generalized
Lie derivatives D, . Under these circumstances Theorem 1.10 (or a slight
modification of it; see Section 8-1) states that the representation p of
L(G) induces a multiplier representation 7* of G on (Z,, . In particular,
Eq. (2.1) is now well defined since the right-hand side of the equation
is an infinite sum of analytic functions which converges to an element
of (I, for | t | sufficiently small. (Here, the topology on (,. is the usual
one of uniform convergence on compact sets of £"™.) According to Theo-
rem 1.10, p(exp ta)v = T*(exp ta)v for all «€L(G), ve¥’, and |¢|
sufficiently small.

As noted above, ¥ is invariant under the operators D, but not necessar-
ily invariant under the operators T*(g), g € G. To remedy this we extend
¥~ C (I, to a larger subspace ¥~ which is invariant under 7% Namely,
we define ¥ to be the intersection of all subspaces %~ of (¥,, which obey
the conditions: ¥ D ¥ and TYglwe# for all ge G, we W such
that T*(g)w is defined. Clearly, ¥ is the smallest subspace of (Z,. which
contains ¥~ and which is invariant under 7%. The elements of ¥~ are
just the finite sums of elements of the form T*(g)v, where g€ G, v € ¥,

Consequently, if condition (4) is satisfied a representation p of L(G)
will induce a multiplier representation T* of G which leaves ¥~ invariant.
In general, 7* depends critically on the dimension m of ™ and on the
choice of #". To preserve the one-to-one correspondence between local
Lie groups and Lie algebras, we need to find conditions which guarantee
that the action of T* on ¥ is in some way uniquely determined by p.

If v, ,..., U ,... is-a basis for V, the functions w(v,), w(¥g)se-es p(@g)s---
form a basis for ¥". We say that the {u(v,)} form an analytic basis for
¥ if every element u of ¥ can be expressed uniquely as a countable linear
combination of the basis functions p(v;), uniformly convergent in some
neighborhood of z°. Furthermore, it 1s required that the coeflicients in
this expansion be bounded linear functionals of the argument « (in the
topology of uniform convergence on compact sets), i.e., if # =3 ¢;(#)u(2y)
then ¢ (#) — 0 as u — 0.
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From Eq. (2.1) we obtain

oo tIDE &0 fl
Tr(exp ta) pl(ve) = Y, —g7 #(ox) = Y, 77 #lp(®)'vs),
7 Tl =0
RELE =2, (2.2)

for | ¢ | sufficiently small. If {i(v;)} is an analytic basis the right-hand
side of (2.2) converges to an element of ¥~ which is a (possibly infinite)
linear combination of the functions u(7). In terms of this basis the
matrix elements T (exp ta) are uniquely defined by

Tr(exp to) w(vy) = Y Tlexp to) p(o,), k2., (2.3)
1=1

In fact, Egs. (2.2) show that the matrix elements are uniquely determined
by p for g in a sufficiently small neighborhood of e€ G and are inde-
pendent of the choice of €™ and 7.

Thus, restricting ourselves to vector spaces ¥~ of analytic functions

which satisfy
CONDITION (B) (%), p(¥a)s--+s 14(Tg)s--» is an analytic basis for v,

we find that the matrix elements of the operators T*(g) depend only on
p and the chosen basis of V; not on ¥".

Let G, p, V, {v;}, p, ¥~ be given such that conditions (4) and (B) are
satisfied. Clearly, (2,), #(v,),..., is an analytic basis for ¥". Using this
analytic basis and (2.3) we can easily derive the following addition
theorem for the matrix elements:

a0

T(8:82) = z T'i(g1) T(g2), Lk=1,12,.., (2.4)

i=1

defined for g, , g, in a suitably small neighborhood of e. The relation

Toe) (o)) = ¥ Tule) p(@)y 266, (2.3

=]

can be regarded as a generating function for the matrix elements
T,.(g) and the basis functions p(v;). Finally, the equations

D (o) = plp(e) o), xel(G), k=1,2,., (2.5)

can be interpreted as differential recursion relations for the func-
tions pu(v;.).
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The connection between these results and special function theory is
now apparent. The matrix elements 7',(g) are functions on the local
group G and, if we make the proper choices for G and a basis of ¥, they
will turn out to be familiar special functions. Moreover, the analytic
functions u(v,) will often be expressible as special functions. In this
case Egs. (2.4), (2.3), and (2.5) constitute addition theorems, generating
functions, and recursion relations for the special functions 7', (g)and u(z,).

I claim that a significant portion of special function theory is contained
in these three sets of equations. Much of the remainder of this book will
be devoted to the documentation of this claim by means of explicit
computations. (Recall Section 1-4 where it was shown that the Jacobi
polynomials appear as matrix elements of local multiplier representa-
tions of SL(2).)

To systematically study the special functions related to a given Lie
algebra L(G) we could proceed as follows:

(I) Classify “all” representations p of L(G).

This 1s primarily an algebraic problem. In order to obtain practical
results it will ordinarily be necessary to study only those representations
which possess certain convenient properties. In particular, we shall
classify only the irreducible representations of L(G).

(2) Classify “all” realizations of L(G) by generalized Lie derivatives.
This is a problem in classical Lie theory which will be studied in
Chapter 8. The basic difficulty here is how to decide when two realiza-
tions of L(G) by generalized Lie derivatives are “‘essentially’” the same.

(3) For each representation p of L(G) and each realization of L(G)
by generalized Lie derivatives D_, find a realization ¥~ of ¥ such that
conditions (A) and (B) are satisfied.

(4) Choose a “suitable’ basis in I and compute the matrix elements
T'y(g) and basis functions p(v;). For the low-dimensional Lie algebras
considered in this book it will ordinarily be clear which basis in 7 should
be chosen.

‘The above description of a relation between Lie algebras and special
functions is general and heuristic. To show that this procedure leads to
practical methods for uncovering the group structure of special functions
we will henceforth be very specific. In particular, we will examine in
detail the special functions associated with the Lie algebras L(SL(2)),
L(G(0, 1)), and L(7';). The special functions will turn out to be hyper-
geometric functions, confluent hypergeometric functions, and Bessel
functions. These familiar functions will occur both as matrix elements
and as basis vectors for irreducible representations of the above Lie
algebras.
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2-3 Representations of L(0;)

Perhaps the best known example of the relation between Lie groups
and special functions presented in Section 2-2 is the connection between
the rotation group and spherical harmonics. Although this example 1s
treated in most books on quantum mechanics, it may be instructive to
examine it again to see how it fits into the general framework of the last
section. It is a remarkable fact that essentially the same methods which
are used to derive the fundamental properties of spherical harmonics
from the representation theory of the rotation group, suffice to derive
the fundamental properties of hypergeometric, confluent hypergeometric
and Bessel functions.

The rotation group O, in 3-dimensional space is the group of real
3 % 3 matrices 4 such that AA! = I and det 4 = 1 (Hamermesh
[1]). Here A! is the transpose of A and I is the 3 X 3 identity matrix.
O, is a real 3-parameter Lie group. The real Lie algebra L(O;) has a
basis #,, %5, /5 with commutation relations

[afisd@'?]za'@,a: [jﬂrjl]:agﬂr [fzvjﬂ]‘__-fl* {26)

Let p be a finite-dimensional irreducible representation of L(O;) on
the complex vector space IV and define the operators J; , J,, Jyon V by
o( %) = Ji, k= 1,2, 3. These operators generate a Lie algebra which
is 2 homomorphic image of L(O,). However, for many purposes it is
more convenient to use the operators J*, J—, J%:

B=i,, J=-J+il,, TF=L+ilh @GE=V-I). 27
The commutation relations become
[I50H=73% I == Us¥1=2P (2.8)

where now [4, B] = AB — BA. Note that (2.8) is formally identical
to Eq. (1.19) for the commutation relations of the generators of the
complex Lie algebra si(2).

To determine all finite-dimensional irreducible representations of
L(0,) it is sufficient to classify (up to isomorphism) all nonzero complex
vector spaces I and operators J*, J-, J® on V satistying (2.8), such that
no proper subspace of V is invariant under J¥, J=, J°.

Let I be one such vector space and let &, € V' be a nonzero eigenvector
of J* with eigenvalue g:

JPhy = ghq -
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The relation [J3, J*] h, = J*h,implies J3(J*h,) = (¢ + 1) J™h, . Hence,
either J*h, = 0 or J*h, is an eigenvector of J* with eigenvalue ¢ + I.
Similarly it is easy to show that either J=h, = 0 or J~4, 1s an eigenvector
of J? with eigenvalue ¢ — 1. By repeating the above argument we find

P(I)hy = (g + BTV, T = (g — R,

for all positive integers k. Since I is finite-dimensional there must
exist an integer » = 0 satisfying (J*)"h, #% 0 and (J*)™A, = 0. Set
(JY)h, = f, where [ = g + r, so that J3%;, = If; . By a similar argument
there is an integer s = 0 such that (J7)%f; # 0 and (J7)**'f; = 0. We
will show that the vectors f,,, k = I, [ — 1,..., l — 5, defined by f; ; =
(J-)f,, 7 = 0,..., 5, form a basis for V. One way to demonstrate this is
by means of the operator C, ; = J*]J~ + J*J® — J? (the Casimir opera-
tor). As can easily be verified from the commutation relations (2.8),
C, o commutes with J*, J-, and J*:

[Cros JT] = [Crro, 7] = [Cro, Il =0 (2.9)
Moreover,
Ciofo=1TH+ PEA— TN
= (FT* +2B)f + (B — D fy = F1F+ 10+ D fi

so C,of1 = Il +1)f;, because J*f; = 0. Since C,, commutes with
J— we have

Ciofici = CooIVAi= T Y Cofi =0+ V)T Vi = UL+ 1) fryg
for j = 1,2,..., 5. Thus, Cy ofe = il + 1) ffor k=14 1—1,.,1—s.

On the other hand we can evaluate C, ; f;_, directly:
C].ﬂfi-—s = (]+]_ Fic JEJE — ]H)fE—s —— (E _ 5)(3 —a e ]-}fi—-s 3

since Jf;_, = 0. Comparison of these two results yields [/ + 1) =
(I — s)(I — s — 1) or s = 2L Since s is a nonnegative integer, [ is either
an integer or half an integer. Another direct computation proves

€ ofeg =TIV A + Pl — PP
= Jfija + U= —7— D
for j=1,2,.,5— 1. From C;,f,;=14l+1)f; we obtan
Jth =@ —RB({l+k+ 1) fryy for k=1—-1, 1 —2,.., —I These

results show that the (2/ + 1)-dimensional subspace of V' generated by
the vectors f,., k = I, I — 1,..., —1, is invariant under J*, J-, and J&
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Moreover, this subspace must coincide with V itself because I is irreduc-
ible under p. We know how the operators J*, J-, J® act on the basis
vectors f;. of V, so p 1s completely determined:

Bfy = kfx, Vfe = fia s I = —&) I+ &+ 1) fraas
(2.10)
Coofc=ll4+1)f,, k=1L1—-1,..,-l

(On the right-hand sides of Egs. (2.10) we make the convention: f;, = 0
if k is not in the spectrum of J3.) Conversely, for any nonnegative integer
21 it 1s easy to verify that the operators J*, J=, J® on V defined by (2.10)
satisfy the commutation relations (2.8) and thus determine an irreducible
representation D(2/) of Oy .

The irreducible representation D(2/) is uniquely determined by and
uniquely determines the spectrum of the operator J® in this representa-
tion, i.e., the eigenvalues {+/, [ — 1,..., —[}. However, the basis vectors
{f.} are not uniquely determined by D(2]). In particular, if {y,}, k = ...,
— 1/, 18 a set of nonzero complex constants the vectors f,. = v, f;. will also
form a basis of V' consisting of eigenvectors of J°. A most convenient
basis for V' is obtained by choosing the constants y;, such that y, /v, =
[+ R+ DI —R)]YE R=I1—1, | —2,..., —I. For the new basis
vectors { f;}, relations (2.10) become

Yry="Hry, JTre=l0+rR){I—=R+ DI,

2.11

=0 — B+ R OPAL,,  Cofim M4 DSy

Relations (2.11) are especially convenient for the study of unitary
representations of O, (see Section 5-16).

From the above discussion we can conclude that the only finite-
dimensional irreducible representations of L(0O;) are the representations
D(21), 21 a nonnegative integer. The representation space corresponding
to D(2[) has dimension 2/ 4 1 and contains a basis f;, f;_;,..., f_; such
that the action of J*, J=, J® on the basis is given by (2.11).

2-4 The Angular Momentum Operators

In the study of the quantum theory of angular momentum the differen-
tial operators

d d d d

—_— Xy — Xy —— — K R r—
]1 3ax2 Ea‘rﬂ'r JE 18.7{33 Eaxll

d d

L= — Xy —
3 2 1
x4 dx,

(2.12)
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occur, where x;,x,,x; are real cartesian coordinates (Landau and
Lifshitz [1], Chapter 4). These operators satisfy the commutation rela-
tions (2.6) and thus generate a Lie algebra isomorphic to L(O;). In
terms of the spherical coordinates 7, 6, ¢ defined by

¥, =rcosbcosep, X, =rcosfsing, a3 =rsindb,
r =0, 0<0<m, 0 <o <2,
the operators J*, J-, J® take the form
: ¢ : d i
= — o=t i e At — 3 — g
] e 'F( T + 1 cot E'q:)’ ] ; B " (2.13)

To relate the above results to special function theory we look for a
realization of the representation D(2/) such that the basis space ¥ is a
space of analytic functions of the real variables 0, ¢ and the operators
J*, ], J? are given by (2.13). Thus, we try to find the functions Y73(6, ¢)
such that

PYE=kYE,  JYE=[(I+ k(I — k4 DAY,

2.14
]"FY{‘ L, [(f ) }e)(f + k4 I)]IJFEY.;:—H] CLDY;? = I(I + I}Y;k, ( )

k=il —1ua,—k

From J? = —1 d/d¢ there follows the relation
. O¥F ;
=ik aq: (ﬂﬁ ‘F] == k}fﬂﬁi 9;'):

so Y} can be written in the form Y%(6, ¢) = P¥(f)e'*s. The problem of
finding functions Y7 satisfying (2.12) thus reduces to the problem of
determining the functions P}. Furthermore, the requirement J+¥Y! = 0
leads to the differential equation

dP; b
ﬁ'—fﬂﬂtﬂP;—ﬂ

with solution
Pi(8) = ¢, sin' 8 = ¢,(1 — cos® §)"/2

where ¢, is an arbitrary nonzero constant. The functions P§ can now be
defined recursively from P} by the condition

. P
a8

— (k + 1) cot 8 P¥ — [(I + k + 1)(I — k)]V/2PE .
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By induction, we obtain the explicit expression

d'l-—k
d(cos B)**

PX(8) = ¢, [ L] )_]”2 (1 — cos? §)*/2 (1 — cos? )Y,

2D (I — k)
R 6 A, | (2.15)

The requirement J-Y;* = 0 leads to the condition

dP_E o2 2 g\—(141)/2 ar 20\ = ()
S e lcot 8 P (21)’ (1 — cos? B) 2(cos O (1 — cos? 9)

This condition is satisfied only if / is an integer; if / is not an integer the
constructions fails.

In case [ is an integer the functions f; = Y7, k=1 —1,..., —|,
form a basis for the representation D(2l) of L(O;). To see this, note that
we have mimicked the abstract construction of the representation D(2/)
given in Section 2-3. Thus, we have found a function f; = Y} such
that J*f; = 0 and have determined the functions f; defined by

! I ‘T‘|'k! g =\l-kV1
e [(zz()!{f —)k)l] PR, R=LT = Gy —k

Since J-Y7' = Jf", = 0, the argument in the previous section proves
that the basis functions satisfy Eqgs. (2.11). That 1s,
d ;
— = Pt — kot 0 P} = [( + R)(I — k + D)2 P
d .
5 Pt — kot 8 Pk = [(1— k)(I + k + 1)2 P (2.16)
1 d dP; k2 B
sin 6 df (smﬂ do ) i3 [J{I—i_l}_ s-'ir‘iﬂ!?:lpEE ==
-

where the last equation is obtained by writing C, , fi = I/ + 1) fi in
terms of the differential operators (2.13). The arbitrary constant ¢; in
Eq. (2.15) is usually fixed by the requirement

2w aw
[ 71 ¥, o2 sin 6.d6 dp = 1.
0 0

Evaluating this integral we find

i’ (21 + 1)y
b= =1) [ An(l)2 ]

where the phase factor (—1)is introduced to conform to convention.,
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The functions Y¥(8, ) = Pj(0)e?** are known as spherical harmonics
and Egs. (2.16) give fundamental recursion relations and a differential
equation for these functions (Erdélyi et al. [1], Vol. II). Thus, if /is a
nonnegative integer the spherical harmonics Y} form a basis for the
representation D(2[). Although we have failed to find a realization of
those representations for which / is not an integer, in Seetion 5-14 we
will find such realizations by choosing homomorphisms of L(Oj) by
generalized Lie derivatives different from (2.12).

The representations of L(O,) realized here can be extended to local
multiplier representations of Oy . The matrix elements can be computed
and the results yield generating functions and addition theorems for the
spherical harmonics. These results are well known (Gel'fand et al. [1])
and will be included in Section 5-16.

The methods used to relate spherical harmonics to representations of
L(O,) are applicable to a wide variety of special functions. In the next
section a family of Lie algebras %(a, b) will be introduced and the irre-
ducible representations of these Lie algebras will be classified, subject to
suitable restrictions. We will find realizations of the irreducible repre-
sentations in terms of generalized Lie derivatives acting on spaces of
analytic functions. For each such realization there will exist a natural
basis of special functions. The special functions so obtained are the
hypergeometric, confluent hypergeometric, and Bessel functions. This
relation between Lie algebras and special functions provides insight into
special function theory.

2-5 The Lie Algebras %(q, b)

For any pair of complex numbers (a, b) define the 4-dimensional
complex Lie algebra %(a, b) with basis #+, #-, #7 & by
L+ F] =228 —bd, [P0 =F0" [FAS]1=—-F
[f* €1=LF €] = 7. €] =0,
where [.,.] is the commutator bracket and ¢ is the additive identity
element. (It is easy to verify that relations (2.17) do in fact define a Lie
algebra.) For special choices of the parameters a, b, ¥(a, b) essentially

coincides with one of the Lie algebras introduced in Section 1-2. In
particular we have the following isomorphisms:

9(1,0) = sl2) D (€),  %(0,1) =L[G(O, )],  %(0,0) = L(T3) D(¢)

(2.17)

where (&) is the 1-dimensional Lie algebra generated by &. Recall that
a subset &’ of a Lie algebra % is a subalgebra of ¢ if ¥’ is itself a Lie
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algebra under the scalar multiplication, addition, and commutator
bracket of @. If & is a Lie algebra and ¥, , %, are subalgebras of &, then
@ is the direct sum of %, and 9,, ¥ = 9, @ ¥, if considered as a
vector space ¥ is the direct sum of its subspaces ¢, , ¢, , and further,
[0y, 0] =0 forall, €9, %, €9,.

Lemma 2.1

%(1,0) if az#0,
Y(a,b) =~ (¥9(0,1) if a=0, bF#0,
%0,0) if a=b=0.

PROOF If a0, set F'+=glgt g~ =alf, F7%=
g% — (ba?[2) &, &' = &. In terms of the primed basis elements the
commutation relations for %(a, b) given by (2.17) become identical with
those for %(1,0). If a = 0, b # 0, set &' = b&. In terms of the basis
g+, #-, F3 &', the isomorphism between ¥(a, d) and %(0, 1) 1s
evident.

This lemma shows that there are only three distinct Lie algebras of
the form %(a, b), up to isomorphism. However, it is often useful to
consider the entire family {%(a, b), a, b € €'} of such Lie algebras because
Egs. (2.17) determine relationships between the nonisomorphic algebras
%(1,0), (0, 1), and %(0, 0). To spell out these relationships we intro-
duce the notion of contraction of Lie algebras.

Let % be an n-dimensional complex Lie algebra with basis {oy},
i = 1,..., n. The structure constants C}; of ¢ relative to this basis are
given by

TE
Fﬂ s s
[D:i ) l:i'.'-j] — Z Ci_‘?-c.:'.!ﬂ ) Ejj — 1,-!:-!, H.

k=1

If P — (P)) is a nonsingular # X n complex matrix we can define a new
basis {a;} for 4 by a; = Y1, Piay, ¢ = L,..., ». In terms of the new basis
the structure constants become

T
Cr= Y PIPICL(PYE, gk =L

T
L, =1

We now introduce a one-parameter family P(t) of nonsingular matrices
defined for all values of ¢ > 0 in such a way that the matrix elements
P!(%) are continuous in z. Suppose this family of matrices has the property
that the limits

i

i =t ¥ POPNOCLPHO,  ij k= Lon
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exist. It is easy to show that the {C%} are the structure constants of an

n-dimensional Lie algebra (Saletan [1], Sharp [1]). If lim, , P(f) = P°
where P° is a nonsingular matrix then the constants C% are structure
constants for ¥ relative to the basis

T
% = ¥ (Pl
=1

However, if lim,,, P(t)is a singular matrix or if the limit does not exist,
the constants C{ may be structure constants for an #n-dimensional Lie
algebra %" which is not isomorphic to . In such a case we say that ' is
a contraction of ¥ (Wigner and Inonu [1], Saletan [1], Sharp [1]).

According to Lemma 2.1 we can always find a basis for the Lie algebra
%(1, 0) in the form (2.17) where @ = 0 and b is arbitrary. If ¢ — 0 in
(2.17) we get in the limit either (0, 1) or (0, 0) depending on whether
or not b = 0. This shows that %(0, 1) and %(0, 0) are contractions of
%(1, 0). Similarly, (0, 0) is a contraction of %(0, 1). This relationship
between the Lie algebras %(a, b) will turn out to be of fundamental
importance in special function theory.

2-6 Representations of %(q, b)

Let p be a representation of %(aq, b) on the complex vector space V'
and set

It = P(a@’-lr)v I-= P{f_]n 2= P(ﬁa)t k= P(é"@}'

These linear operators obey the commutation relations

U 05l =221 —0E, [P, =] _"[13)]==J
(2.18)
[J5, E]l =[], E] =[]} E] =0,

where now [A4, B] = AB — BA for linear operators A and B on V.
Define the spectrum .S of J? to be the set of eigenvalues of J. The
multiplicity of the eigenvalue A € S is the dimension of the eigenspace V4,

VA ={vel: JPv = Avl.

In analogy with the example presented in Section 2-3 we will analyze
the irreducible representations of %(a, b) and for each such representa-
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tion find a basis for V consisting of eigenvectors of J3. To be precise, we
will classify all representations p of ¥(a, b) satisfying the conditions:

(1) p1sirreducible

(ii) Each eigenvalue of |J® has multiplicity equal to one.
There is a countable basis for V' consisting of eigen-
vectors of J3.

(2.19)

These conditions are satisfied by the representations of L(O,) classified
in Section 2-3. Moreover, they enable us to construct representations
of %(a, b) by mimicking the construction of representations of L(O,).
The basic justification for the requirements (2.19) is that they quickly
lead to connections between %(a, b) and certain special functions. This
claim will be thoroughly documented in the chapters to follow. Also, _#?
and & generate a Cartan subalgebra of %(a, b) (Jacobson [1]), so in
analogy with the theory of finite-dimensional representations of semi-
simple Lie algebras it is natural to try to find basis vectors for I which
are simultaneous eigenvectors of the operators corresponding to the
elements of this Cartan subalgebra. (We will show that if p satisfies (2.19)
then E = p(&) is a multiple of the identity operator and every non-zero
vector in V is an eigenvector of E.)

Condition (ii) can be written in forms which are apparently much
weaker, though actually equivalent. In particular we could replace (ii) by

(i)’ J? has an eigenvalue of finite multiplcity.

It is not difficult to show that conditions (i) and (1)’ imply (i1). The
necessary ingredients for the proof will be developed in the process
of classifying the representations satisfying (i) and (u), but the
details will be left to the reader. We use condition (ii) for the sake of
convenience.

To classify the representations of %(a, b) for arbitrary a,be € it is
enough to consider the three cases: %(1, 0), (0, 1), (0, 0). However,
for the time being it will be convenient to treat these three cases simul-
taneously by studying %(a, b) without being specific as to the values of
a and b. We will consider, therefore, a representation p of %(a, b) on the
complex vector space V' such that (2.19) is satisfied. Our objective will
be the enumeration of all possibilities for p. T'o carry out this enumeration
the following remarks will be helpful:

(A) Define the operator C, , on V by

Cop = J*I~ + @] — a®J® — bJ°E. (2.20)
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It 1s easy to check that C,, commutes with every operator p(a),
« € 9(a, b). Thus,

[Cﬂ.b 3 ]+] == [Ca.b 1 J_] — [Cu,b 1 Jﬂ] — [Cﬂ_b 3 E] — O.

We will show that C, , = Al where I is the identity operator and A is a
constant depending on p.

(B) If S is the spectrum of J% condition (ii) guarantees that S is
countable and that there exists a basis for V' consisting of vectors £, ,
Jfon = mf,, , defined for every m € S. Suppose ¢ € S. Then the equation

% J*1/, = I'f, leads to the result J3(J*f,) = (¢ + 1) J*f, ; so either

I'feg = €441 fysn Where £, ., is a nonzero constant and ¢ -+ 1€ .S, or
J*f, = 0. Similarly, the equation [J? J-]f, = —]f, implies either
J7f, = my f,—1 where , is a nonzero constantand ¢ — 1 € S, or Jf,=0.
The equation [E, J*] f, = 0 implies Ef, = p_f, for some constant g
and [C, ; , J*] f; = 0 implies C, , f, = A, f, for some constant A, .

(C) Since p is irreducible the results of (B) show that the spectrum
S must be connected, i.e., if g € S then S is of the form

S = {¢ -+ n: n an integer such that n;, < n < n,}

where 7, and n, are integers. We do not exclude the possibilities 7, =
— orny, = +co. Inaddition, if m, m + 1 € .S then &,,.,, 9,,., # 0,
since otherwise the irreducibility of p would be violated.

(D) Suppose m, m + 1 € S. Then the equation [E, J*] f,, = 0 leads

t0 &nia(Bmsr — #) = 0, which implies Hm = Mmay - THus, p, = p =
constant for all m € S and E = uJf is a multiple of the identity operator

on V. A similar argument proves A, = A for all m € .S so that C,po = AL
The equation C, , f,, = Af,, leads to the relations

Evillm + @*m® — a*m — bmp = A for all me S,

obtained from the definition (2.20) of C, , . (If m — 1 ¢ S then %,, = 0.)

These relations can be rewritten in the form
€l = A — a®m(m — 1) + bum. (2.21)
Moreover, since [J*, -] = 2a?]® — bE the operator C, , is also given by
Cop = I7I* + @ + 0*]® — bJE — bE
From this expression we obtain the relations

EmarThmer = A — @®m(m + 1) + bu(m + 1) (2.22)
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defined for all m € S, where &,,.; = 0if m + 1 ¢ S. Thus, Eq. (2.21) 1s
valid for all m such that me Sorm — 1€ 8.

(E) 1If {y,,, me S} is a set of nonzero constants, we can introduce 2
new basis {f.} for ¥ by means of the definition f,, = v, f, all m€S.
In terms of the new basis:

W =fnalpay  Ta="Talna
Pfw=mfr, Ef, =uf5, (2.23)

Ca,bf:n:'}‘fi;,l HEES:
where

' Ym—1 ' Vm
£ = £ - o = ;
T ?m T T .ym 1 TFTH

(We assume §,,, =0if m+4+1¢Sandy, =01tm—1¢ S.) Again
the constants £, , 7., must satisfy the condition

£xn =A—a*mim—1) -+ bum.

m' I

It follows from these considerations that for all m € Ssuchthatm — 1 €5
we can choose the nonzero constants =, arbitrarily and define the con-
stants £, by (2.21). (If m — 1 ¢ S then 7,, = 0 and §,, 1s not defined.)
We can always find a basis {f,, } of V such that 5, , §, satisfy (2.23)
(without the primes).

(F) The representation p of %(a, b) is uniquely determined by the
constants A, u and the spectrum S of J3. The nonzero constants &,,,
n,, are not unique and may be chosen arbitrarily, subject only to condi-
tions (2.21).

This is as far as we can go without making any assumptions as to the
values of 2 and b. At this point we use the fact that we need consider only

the Lie algebras (1, 0), 4(0, 1), and %(0, 0).

Theorem 2.1 Every representation of ¥(0, 0) which satisfies (2.19)
and for which J*J~ == 0 on V is isomorphic to a representation Q¥(w, m,)
defined for p, w, m,e @ such that w # 0 and 0 < Rem, <.
S = {m, + n: n an integer}. For each representation O#(w, m,) there 1s
a basis for V consisting of vectors f,, , m € S, such that

P = Mf s Efm = W »
J+fm = "-”fm—.i—1 3 ]_fm = wfm-—l 1 {.224)
Co.ofm = (]Jr]_)fm —& wﬂfm'

The representations Q#(w, m,) and Q¥ —w, m,) are isomorphic.
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PROOF Set a = b = 0 in Eq. (2.22). If p is a representation of
%(0, 0) satisfying (2.19) and such that J*J- 20 on V, we have & 7, =
A %= 0 for all m such that me S or m — 1 € .§. Thus, there exists no
element m; in § for which J¥f,, = 0 for a nonzero f, € V™ and no
element m, such that J=f,, = 0 for a nonzero f,, € V™. If m, € S then
S must be of the form {m, + n: n an integer}. Without loss of generality
we can assume m, 1s the element of .S with smallest positive real part,
i.e, 0 <Rem, < 1. Since §.7m,, = A # 0 we can also assume that
€n = M = w for all m e S. Then A = w? and w is determined only up
to sign. This proves that every representation p satisfying the hypotheses
of the theorem can be cast into the form (2.24). Conversely, it is easy
to show that the representations Q#(w, m,) satisfy the hypotheses of the
theorem. Q.E.D.

The irreducible representations of %(0, 0) for which J*]J— = 0 are
easily seen to be 1-dimensional. They are of little interest for our pur-
poses so we will not bother to classify them.

Theorem 2.2 Every representation of (0, 1) satisfying (2.19) and
for which E = 0 is isomorphic to a representation in the following list:

(i) The representations R(w, m,,p) defined for all w, m,, pe
such that p 0, 0 < Rem, <1, and @ 4+ m, 1s not an integer.
S = {m, + n: n an integer}.

(i) The representations 1, , defined for all w, u € € such that p £ 0.
S = {—w + n: n a nonnegative integer}.

For each of the cases (1) and (11) there 1s a basis of I/ consisting of vec-
tors f,, defined for each m € § such that

]Efm - mfm ) Efm I Ffm 1
j+fm = f“‘fm+1 ) ]_fm — (m + m}fm—l ] (2-25)
Coafm = (J7T- — EP) frn = poofy

(On the right-hand side of these equations we assume f,, = 0if m ¢ S.)

(iif) The representations |, , defined for all w, pe & such that
p#0. S ={—w — 1 — n:n a nonnegative integer}. For each of the
representations there 1s a basis of I consisting of vectors f,, defined for
each m € § such that

]Efm = mfm: Efm = '_I"Lfms
j+fm — —(m -+ @ _I" 1]fm+1 » ]_fm = Hfm—l ’ (2'26)
Confmn = U7 —EP) fn = —pofn .
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PROOF Let p be a representation of (0, 1) satisfying the hypotheses
of the theorem and let S be the spectrum of p. Then Eq. (2.21) becomes
£.m, = w(w -+ m) for all m such that me S orm — 1 € .5. (We have set
a=0,b=1,and A = pw in (2.21).) Let m, € § and suppose w -+ m,
is not an integer. Then, S = {m, + n: n an integer}. Without loss of
generality m, can be taken to be the element of § with smallest positive
real part, 0 << Re m, << 1. According to the remarks in (F) there exists
a basis for V' such that £, = u, 1,, = @ + m for all m e S. Thus, p is
isomorphic to the representation R(w, m, , p) listed in (1).

If there is an element m, in § such that w 4 m, is a nonnegative inte-
ger, the equation ¢,7,, = p(w -+ m) implies —w € .S and there exists a
nonzero vector f_,€ V such that J?3f_, = —wf_, and Jf_, = 0. In
this case § = {—w - n: n a nonnegative integer}. There exists a basis
of V such that ¢,, = u, n,, = w -+ mfor all m € S. Thus p is isomorphic
to the representation T, , listed in (11). We say that this representation
is bounded below.

If there is an element m, in S such that w -} m, 1s a negative integer
we find —w — 1 esSand —w ¢ S. Thus, S = {—w — 1 — n: 7 a non-
negative integer}. There exists a basis of V such that &, = w 4+ m,
1, = p for all m € S. In this case p is isomorphic to the representation
lw.. listed in (iii). This representation i1s bounded above.

Conversely, it is easy to verify that the representations (i)—(iii) actually
satisfy conditions (2.19). Q.E.D.

The irreducible representations of %(0, 1) for which E = 0 can be
considered as representations of J,; hence they are just the representa-
tions Q% w, m,) classified in Theorem 2.1.

Theorem 2.3 Every representation p of ¥(1, 0) satisfying condi-
tions (2.19) 1s isomorphic to a representation in the following list:

(i) The representations D#(u, m,) defined for all complex u, u, m,
such that m, |+ u, m, —u are not integers and 0 << Rem, << 1.
S = {m, + n: n an integer}. D¥(u, m,) and D¥(—u — 1, m,) are 1somor-
phic.

(i) The representations 1%, u, u € €, where 2« is not a nonnegative
integer. S = {—wu - n: n a nonnegative integer}.

(iii) The representations |4, u, # € €, where 2u is not a nonnegative
integer. S = {u — n: n a nonnegative integer}.

(iv) The representations D#(2u) where 2u 1s a nonnegative integer.

S={uu—1,.,—u-+1, —ul
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For each of these representations there is a basis of I consisting of
vectors f,, , defined for each m € § such that

]—Efm T mfm ) ]+fm = {m = I‘r:)ﬁrnﬂ, 1
]hfm = —-(?ﬂ P H)fm—l ’ Efm = JL’*fm ! (22?)
Cofmn =01+ PP P fu=ulu+1)fn.

(We make the convention on the right-hand side of Eqs. (2.27) that
fm=01fmegs.)

PROOF Let p be a representation of %(1, 0) satisfying the hypotheses
of the theorem. From (2.21) we obtain the equations §,7,, =
u(u + 1) —mm — 1) = —(m + u)(m — u — 1) valid for all m such
thatme Sorm — | € S. Here, we have set A = u(u -+ 1). Suppose there
is an element m, in S such that neither m, -+ % nor m, — u 1s an integer.
In this case the product &,7,, can never be zero for any element m or
m — 1 in S. Thus, S = {m, + n: n an integer}. Without loss of gener-
ality we can assume that m, 1s the element in .S with smallest nonnegative
real part: 0 << Re m, << 1. According to remark (E) there exists a basis

of Vsuchthat ¢, = m —u — 1,7, = —m — u. Thus, p 1s 1somorphic
to the representation D#(u, m,) listed in (1), D¥(u, m,) == D*{(—u — 1, m,)
since both # = u, and ¥ = —u, — 1 lead to the same value of A.

If the spectrum of p takes the form S = {m, 4 #, n a nonnegative
integer}, the formula &%, = A —m(m — 1), me S, implies A =

my(m; — 1).Settingm, = —uweobtainA = u(u + 1)and S = {—u + =:
n a nonnegative integer}. As before we can find a basis of V' such that
(&, =m—u—1,n, = —m — u. Here, p 1s 1somorphic to the repre-

sentation 12 . The 1% is bounded below.

If the spectrum of p takes the form S = {m, — n: n a nonnegative
integer}, the equations &,m,, = A — m(m — 1) forme Sorm — 1 €5,
imply A = (m, -+ I)m,, ie., &, ., =0. Setting m, = u we have
A= u(u+ 1) and S = {u — n: n a nonnegative integer}. Choosing
(& =m—u— 1, n, = —m — u we see that p 1s 1somorphic to [}
(bounded above).

If S contains finite elements m,, m, such that § = {m;, m; + 1,...,
my + R,...,m;} the equations &, = A —m(m -+ 1) 1mply A=
mg(mg — 1) = (my + 1)my (since &, ., = m,, = 0). Set m; = u and
m, — u — n where n is a nonnegative integer. Thus, w(u | 1) =
(«. — n)(u — n — 1). The only possible solution of this equation 1is
n = 2u. We conclude that S = {—u, —u + 1,..., +u} and p is isomor-
phic to the representation D#(2u).

Since the possibilities for .S have been exhausted, the theorem lists

all representations p satisfying (2.19). Q.E.D.
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2-T Realizations of %(aq, b) in Two Variables

In accordance with our general program we will try to find realizations
of the irreducible representations p of %(a, b) listed in Section 2-6, such
that V' becomes a vector space of analytic functions and the operators

p(a), a € %(a, b), form a Lie algebra of analytic differential operators
acting on V. As a first step we will determine some possible candidates

p()-

Suppose, first, that the p(«) are differential operators acting on a space
of analytic functions of two complex variables, ¥ and y. For the moment
we will not be concerned with the precise domains of the functions in

this space.
Define the differential operators J*, J=, J3, E by

pFY=J), pF)=1, pF)=T1, plé)=E

Since p is a representation of %(a, b) these operators must satisty the
usual commutation relations

J+, J71 =24 —bE, [J} )] =41J% [J5E] =[]%E] =0. (2.28)

The number of possible solutions of Egs. (2.28) is tremendous. To obtain
useful results it is convenient to make more restrictive assumptions as
to the form of the operators p(«). Thus, we assume that these operators
take the form

]3

a5

7]

— +1 Ej_ E 1 —
=5 e (En k0 ti) E=p @29)

where p 1s a complex constant and k%, j are functions of x to be deter-
mined. The operators (2.29) are natural generalizations of the angular
momentum operators (2.13) related to O; . However, we will not give a
detailed justification for this choice of differential operators now. In
Chapter 8 a theory of generalized Lie derivatives will be developed which
will enable us to classify all solutions of (2.28) by differential operators
in two variables. It will follow from the classification that nothing of
importance for special function theory 1s lost through the restrictions
(2.29).

The operators (2.29) automatically satisfy all of the commutation
relations (2.28) except [J*, J7] = 2a%]® — bE. An easy computation
shows that this last relation will be satisfied provided k and j are solutions
of the differential equations

by

Rk dj :
g_-.,_(t) i k(m}ﬂ — —a, .5?;:' (;g,) + R(x) j(x) = — 75 (2.30)
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Thus, to find all operators of the form (2.29) it is sufficient to find all
solutions of Egs. (2.30).

©(1,0) Ifa = 1,5 = 0, Egs. (2.30) have the solutions Zype 4

R q
1) = sin(x -+ p)

k(x) = cot(x + 1),
or type B
k(x) =1,  j(x) = ge™

where p, g are complex constants and 7 = 4/—1. The type designation
is based on the classification of factorization types due to Infeld and
Hull [1].

©(0,1) If a = 0, b = 1, the solutions are type C"

1 . 4
)= J(x)=—”{x4 P}+xip
or type D’
kx) =0, ji=—5 +q

where p and ¢ are complex constants.

©(0,0) If a = b = 0, the solutions are type C”

1 X
)= 1=
or type D"
k(x) =0, j(x)=g¢

where p and ¢ are complex constants.

Suppose we are able to realize an irreducible representation p of
%(a, b) classified in Section 2-6 in such a way that the operators p(«) are
differential operators of one of the types listed above and the basis space
I is a space of analytic functions of x and y. The basis functions fonl2, ¥),
m € S, satisfy the equations

Jmmﬁ=%mmm=wwwm

Thus, f,(x, ¥) = g.(x)e™? for all me S, where g,(x) is an analytic
function of x. Since p is irreducible, we have

Con T =N m e S, (2.31)
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where the constant A is uniquely determined by p. However, in terms of
our realization C, , is a second order partial differential operator and the
relations (2.31) are a system of second order partial differential equations
for the basis functions f,,(x, ). Since £, (%, ¥) = g(x)e™ the dependence
on y can be factored out and the relations simplify to a system of second
order ordinary differential equations for the functions g, (x). The g,(x)
will turn out to be special functions and the action of p will yield recur-
sion relations, generating functions and addition theorems for these
functions.

To determine the possible functions g,,(x) which can arise in this way
we recall

Cap = It~ + a2°J* — a2J* — BJE

and evaluate (2.31) for each of the operator types. The following differ-
ential equations are obtained for g,,(x).

%(1,0) For type A operators Eq. (2.31) becomes

1 d . d
~ sin(x + p) [dx S =2) ag’“(:‘:}]

i [m2 + g% — 2gm cos(x + p)
sin®(x + p)

| &m(®) = Agm(e):

According to Theorem 2.3, A = u(u -+ 1). One solution of this equation is
Zn(x) = w021 +w)y *Fim —u, —q —u;m — q + 1; —w)

where w = tan2[(x + p)/2]. If m — g is not a positive integer there is a
linearly independent solution of the form

gm(x) = W= E(l + w) ™ F(g —u, —m —u; ¢ —m + 15 —w).

These results show the connection between fype A operator realizations
of %(1, 0) and the hypergeometric functions.
For type B operators we obtain

o d _
—ein 2 [ g ()] o [P - 2mgenie] g (x) = u(u + 1) gn(x)

where u(u + 1) = A. If 2u is not an integer this equation has the linearly
independent solutions

Zu(%) = (2gz)"Tle® Fi(u — m + 15 2u + 2; 24z)
and
Zn(x) = (292) 7% e  Fy(—u — m; —2u; 29z)
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where & = —ie~**, This shows the relation between Zype B operator
representations of %(1, 0) and the confluent hypergeometric functions.

©(0, 1) For type C' operators Eq. (2.31) becomes

1d [ d (m—qP  pmtgt1), p?
R AR M CELAET S R R 2 P

— pewf m(‘x:}i A = pw.
If m — g is not an integer this equation has the linearly independent

solutions

A2 P

g*m{x] = (T)E €Xp (_ _3_) FiU(E—n+ %3 28 4 1; x%/4)

and
eu®) = (5) " exp (— ) P~ — 1+ §3 2 + 1 4)

where ¢ = (m — g)/2andn = (p/2)(m + ¢ + 2w + 1). These solutions
are “functions of the paraboloid of revolution,” and are closely related
to the confluent hypergeometric functions.

Type D' operators yield the equation

d> 2.2
— 53 Zm(%) + ( 1”‘4 _‘%’ — mp) gmlx) = pog,(x), A= pw.

This is the parabolic cylinder equation which has as linearly independent
solutions the parabolic cylinder functions D, (v/px), Dyppu —V/pX).

©(0,0) The functions g,(x) corresponding to type C" operators
satisty

1 d d .
— = [ )] + Sren(®) = olgn(x), A=

This is Bessel’s equation and its solutions are cylindrical functions. In
particular, the Bessel functions [, (wx) and J_, (wx) satisfy this equation.
For type D" operators we obtain

dﬂ
= Eg_gm(x) =z {”Egm(x)r A = o’

The solutions e*i® are special functions of a very simple kind.

This brief survey shows the deep relationship between functions of
hypergeometric type and the Lie algebras %(a, b). In the next three
chapters this relationship will be examined in detail.
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2-8 Realizations of %(a, b) in One Variable

In the last section we found differential operators J+, J-, J3, E in two
complex variables, satisfying the commutation relations:

03,1 =1+ [5 71 =—J [J+ J] = 2a2]* — bE, _—
[, E] = [J+,E] = [J-, E] = 0. '

An analogous problem, which will be solved now, is to find realizations

of (2.32) in terms of linear differential operators in one complex variable

z. In particular we look for all nonzero differential operators of the form
d

EZA_I"-E'E] E'__Lnu"

(2.33)

f= i) i) e T = k() + )

such that the commutation relations (2.32) are satisfied. Here, A and p
are complex constants and j,,j,, R, , R, are functions of z to be deter-
mined. J® has been chosen so that its eigenfunctions f,, will be of the
form 2™~ 1.e., powers of 2. Although this choice of J? appears special it
will be shown in Chapter 8 that every realization of %(a, b) by differential
operators in one complex variable is equivalent to a realization of the
form (2.33).

The operators (2.33) satisfy the commutation relations (2.32) if
and only if

. | ¢
MR) =62, Jo(z) = 2%, ky(2) = 'f‘ , ky(%) = ¢4
where the constants ¢, ,..., ¢, satisfy the equations
CiCqy = —a", Coly + €164, = —2a%A 4 bp. (2.34)

[t 1s enough to solve these equations for the three cases #(1, 0), (0, 1),
%(0, 0).

%(1,0) Conditions (2.34) become c¢,c;, = —1, coc5 + ¢4 = —2A.
By a change of variable 2z if necessary, we can assume ¢, = —c¢, = 1.
This leaves only the condition ¢; — ¢; = —2A. Thus, the general
solution is

d
3=—A+Ed—z, EZJU,
(2.35)
F=@dartal, F=2_4
3 dz’ d=

where ¢, is a constant.
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9(0,1) Conditions (2.34) become cyuc;, = 0, cye5 + ¢364 = p. We
assume p # 0. If ¢; = 0 then ¢, # 0 and ¢,¢, = p. By a change of the
variable z if necessary, we can assume ¢; = p, ¢, = 1. Thus, we obtain
the solution

3=?1—i—3i, E=n
2 ; (2.36)
+ = -=—3 _—
] H2y .I E'—I_tfﬂ" EBEE"'

If, however, ¢, = 0 then ¢, # 0 and ¢,c; = p. We can assume ¢ = p,
¢; = 1 to obtain the solution

IHZA—FHi, E = pu,
(2.37)
]+=.*::;;.'*—|—:'.=rEi - =& 6EL
: dz’ 3’ e

%(0,0) Conditions (2.34) are c,c;, = 0, cy¢5 + €164 = 0. In order
that J* 3£ 0, J- 5 0 we must have ¢, = ¢, = 0. By a change of the
variable 2 if necessary, we can assume ¢; = ¢; % 0 and obtain the
solution

d
]B=A+r3£, E=.I'J'-, ]+:‘:13: J_=f:'=TI'1 ElEﬁ. (2-38)

In the next three chapters the differential operators (2.35)-(2.38) will

be used to construct realizations of the abstract representations of
% (a, b) classified in Section 2-6.



