APPENDIX C

Elliptic Functions

We list here the basic properties of elliptic functions that are needed in
this book. For further details see [7,37, 136a].

Elliptic functions depend on a complex variable z and a real parameter
k (the modulus) which in this book will always satisfy 0< k<1. The
complementary modulus is k'=(1—k*)'%,1> k' >0. The elliptic functions
sn(z,k),cn(z,k),dn(z, k), or briefly snz,cnz,dnz, are defined by

z=f”[(1—z1)(1—klﬁﬂ"”dx:j' [(1= ) (k2 + k%)) dr
0 cnz

=1 [(l—rz)(ﬁ-k’z)]_”zdr. (C.1)

dnz

The values of the integrals depend on the integration contours and this is
reflected in the periodicity properties of elliptic functions.
As k—0 we have

sn(z,k)—sinz,  cn(z,k)—cosz, dn(z,k)-l,
and as k—1
sn(z,k)—>tanhz,  cn(z,k)—sechz,  dn(z,k)—sechz.
Periodicity:
sn(z+2K)=—snz, sn(z+2iK")=snz,
cn(z+2K)= —cnz, cn(z+2iK")= —cnz, (C.2)
dn(z+2K)=dnz, dn(z+2iK")= —dnz.
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Here K, K’ are defined by
K(k)=fﬂﬁ(l _K2sin20) 2, K'=K(K). (C.3)
0

Special relations:

sn(—z)=—sn(z), cn(—2z)=cnz, dn(—z)=dnz,
(C4)

sn’z+cn?z=1, k*sn’z+dn’z=1.

Special values:

sn0=0, snK=1, sn(K+iK")=1/k,
cn0=1, cn K =0, cn(K+iK")=—ik' /k, (C.5)
dn0=1, dnK=Fk, dn(K+iK’)=0.

The elliptic functions all have simple poles at z=iK’. As z increases
from 0 to K, snz increases from 0 to 1, cnz decreases from 1 to 0, and dnz
decreases from 1 to k’. As z varies from K to K+ iK', snz increases from 1
to k~', cnz is pure imaginary and varies from 0 to —ik’/k, and dn:z
decreases from &’ to 0. As z varies from K+ iK' to iK', snz increases from
1/k to + o0, cnz is pure imaginary and varies from —ik’/k to —ico, and
dnz is pure imaginary and varies from 0 to —ico.

Derivatives:
L d 10 b i, =i g
7 snz=cnzdnz, 7 cnz=—snzdnz, = dnz k“snzcnz.
(C.6)
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