CHAPTER 6

Special Functions
Related to the

Euclidean Group in 3-Space

In this chapter ¢ype A and B operators forming a realization of si(2)
will be extended to type E and F operators, respectively, forming a
realization of the 6-dimensional Lie algebra .7;. The type E and F
operators yield recursion relations for hypergeometric and confluent
hypergeometric functions which are of a different nature than the
recursion relations derived so far. In particular it is much more difficult
to compute the matrix elements of multiplier representations induced by
these operators. For this reason the results presented here are incomplete,
and much remains to be done to obtain all of the special function
identities implied by the representation theory of J .

The Lie algebra of Eg , the Euclidean group in 3-space, is a real form
of 7 . In Sections 6-4 and 6-5 this relationship will be used to compute
matrix elements of the unitary irreducible representations of Eg. The
matrix elements turn out to be spinor-valued solutions of the wave
equation (V2 - «?) ¥(r) = 0 and are of wide applicability in theoretical
physics. These results were first computed by Vilenkin et al. [1]. See
also Miller [2].
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6-1 Representations of .7

J 1s the 6-dimensional complex Lie algebra with generators
P, P, P, _F+, F-, #3 and commutation relations

(72 A5l = 245 [ A3 2% = [2°, 7] = 49+,
[Gf’+,ga+] = [j—jg,ﬁ—] - I:jﬂaﬁa] =0,

A5 A1 =204 [ FP] =[P F] =29,
(73, P] = [P+, P-] — 0.

(6.1)

It 1s straightforward to verify that the Jacobi equality is satisfied, so the
relations (6.1) actually define a Lie algebra. Clearly, the elements
£t F7, F?° generate a subalgebra of 7 isomorphic to s/(2). Indeed we
will identify this subalgebra with s/(2). The elements 2+ -, 23
generate a 3-dimensional abelian subalgebra of .7, which is also an ideal.

Denote by Ty the complex 6-parameter Lie group consisting of all
elements {w, g},

w = (, B, 7) € 2, g:c 3)531,(2), ad —be — 1,

with group multiplication

{w, gliw', g’} = {w 4 gw’, gg'} (6.2)

where the plus sign (+) denotes vector addition in % and
gw = (@®a — b*B + aby, —c*a + d*B — cdy, 2aca — 2bdB + (bc + ad)y).

In particular the identity element of T is {0, e} where 0 = (0, 0, 0) and
e is the identity element of SL(2); and the inverse of an element {w, g} is
given by

{W, g}nl — {_g—lw’ gul}'

The associative law can be verified directly. The set of all elements of
the form {0, g}, g € SL(2), forms a subgroup of T which can be identified
with SL(2). Similarly the set of all elements of the form {w, e}, we 3,
forms a subgroup of 7; which can be identified with 3.

It 1s straightforward to show that 7 is the Lie algebra of T . Indeed the
generatorscanbechosenso #+, ¢, ¢#3generatethesubgroupSL(2)of T,
while {w, e} = exp(«?* 4 BP~ + yP?) for w = («, B, y) € #3. Consid-
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ered as Lie derivatives on the group manifold of T, the generators are
given by the expressions

y+:ﬂ2£—ﬁ%+2a¢‘%,
g (l HE)E%_%(IZM;}»’ 6.3
.@Bzﬂba_fi;_{_.(lLbf];{—}(l{—z.ﬁﬂ]ﬂi, j+=—ﬂ§5, (6.3)
gl MABE g MR BB

(see Section 3-2). (It follows from the general results of Chapter 1 that
as a local Lie group, T, is uniquely determined by the commutation
relations (6.1). However, the global structure of the group is not uniquely
determined and the global group (6.2) has been chosen for convenience).

Consider a complex vector space I and a representation p of J; by
linear operators on V. Set

p() =P, (@) =0, pF)=1  pF)=F

Then the linear operators P=, P3, J#, J? satisfy commutation relations on
V' entirely analogous to (6.1), where now [A4, B] = AB — BA for
operators A and B on V. We can define two operators on V' which are of
special importance for the representation theory of 7, . They are

P:P—=—PP~-—P3P5, P-J=—4P]- +PJ") —P3J3. (64)
It 1s easy to verify the relations
[P:P,p()] =0, [P*],p()] =0

for all « € 74 . Thus if p 1s an 1rreducible representation of 7 we would
expect P - P and P - J to be multiples of the identity operator on V.

By restricting an irreducible representation p of .7 to the subalgebra
sl(2) we can obtain a representation p/si(2) (p restricted to si(2)) of si(2).
Suppose p/sl{(2) can be decomposed into a direct sum of irreducible
representations of s/(2) as classified in Chapter 5. In this case the opera-
tors P+, P—, P? may “mix up” the representations of s/(2) and map basis
vectors corresponding to one subspace of IV, invariant under s/(2), into
other subspaces. By finding a functional realization of such a represen-
tation p it may then be possible to derive differential recursion relations
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relating special functions associated with different irreducible
representations of s/(2). It is this possibility which is a principle motiva-
tion for the consideration of 7. As will be shown, by choosing appro-
priate 1irreducible representations of .7; one can obtain recursion
relations for hypergeometric and confluent hypergeometric functions
which are distinct from those derived in Chapters 4 and 5.

To be specific we will classify all representations p of 7, on the
vector space J with the properties:

(1) V = 2. @ V., where the summation ranges over a countable
number of values of u, each value of # occurring at most once. p/si(2)
acts irreducibly on each subspace ¥V, and coincides there with one of the
irreducible representations D(w, m,), 1, , |, , D(2u) classified in Theorem

2.3.
(11) p/sl(2) has one of the possible forms:

(1) plsl(2) = ) @ D(u,m,),

ued

(2) plsl2)= ), ®1u>

us)

3) plsl2)z= ), ®la,

weQ

4) plsl2) = ) @ D(2u),

ued

where in each case the summation extends over the same values of
u e as in (i).
(1) p 1s irreducible.

(iv) P-P=£0 on V.

The results of this classification are as follows: The basis vectors of
each subspace V, of V are denoted by [ where J3f% = mf{* and the
{ fin'} for a fixed u form a canonical basis for an irreducible representation
of 5/(2) as listed in Theorem 2.3.Q = {u: V,CV, V, # 0}. Let w and ¢
be arbitrary complex constants such that w = 0.

Theorem 6.1 Every representation p of 7, satisfying conditions
(1)(1v) is isomorphic to a representation in the following list:

(a) Ty, ¢)1<j<4. Thespectrum Q = {—q + n: n an integer
= 0}. The T(w, q)/sl(2) takes the form (j) given by condition (ii). For
J = 1, 2 1s not a nonnegative integer. If j = 2 or 3, 2¢ is not an integer.
If j = 4 then —2¢ is a nonnegative integer.
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(b) li{w,q),1 <j<3. 2¢ is not a nonnegative integer. The

spectrum O = {g — n — 1: n an integer = 0}. The |;(w, q)/sl(2) takes
the form () given by condition (i1).

(¢) Rj(w,q,u,),l <j<3. Here q and u, are complex numbers
such that 0 < Re#, <<1 and none of #, 4 ¢, or 2u, is an integer.
O = {u, + n: n an integer}. The Ryw, q, u,)/sl(2) takes the form (j)
given by condition (11).

(d) Ryw,0,0). j=1,9=u,=0, O = {n:naninteger}.

Cnrrespnnding to each of these representations there is a basis for

, # €0, of the form { f;;"} such that

Vin=mfh: I PRt=(m—a) fliy T =—(m4-ufa (6.5)

m—1"

a . er—g+1) L. mog L
P = Gar D F ™ T wu Iy

o + q)(u +m)u —m) ., ,
2 u(Zu + 1) T

_Lf[u] m(ﬂ — 4 17 I) f{u.-pl} - (u 1 m)mq ()
Qu + D(u + )™~ yu + 1) /ma

ot g —mu—m—1) .
(2u + 1)u ML

Pl — — w@ —g+1) rp (@ mog .,
(2u 4+ D(u + 1) ™2 u(ew +1) " »3

L, ol +g)(u +m)u +m— l}fru
| (2u + 1)u

P-Pf — —wif) P Jf — _ggfm

_1:

The representations listed above are not all distinct. In fact we have
the isomorphisms 1,(w, q¢) =~ |;(w, —g — 1) for 2¢g not an integer, and
Ry(w, ¢, u,) =~ Ry(w, q, —u, — 1).

The details of the proof of this theorem will not be given since they
are somewhat tedious. The method of proof closely follows that of
Naimark [2], Chapter 3. For our purposes it is enough to know that the
listed representations in Theorem 6.1 actually are irreducible represen-
tations of 7 and this fact is easy to verify from the explicit expressions

(6.5).
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For each of the representations listed above we define operators
X(u, +) and X(u, —) such that

_ P-T+ L P3Ys _ppy %Y s
X(t, +) = PJ* + P 4 (u + P — 2L — agl,

(6.6)
X(u, —) = —P-J+ — P3P 4 uP® — 2L J3 4 gl

where I is the identity operator on V. If fI is a basis vector for V, then
Egs. (6.5) imply

| ot —q +1)
Xt == gaq dm o

(6.7)

X(u, —)f® = w(u +m)(u —m)(z + ?)fm.,l, ‘

i

The range of values of » and m for which these expressions make sense
depends on the particular representation of %; with which we are
concerned. It 1s clear from (6.7) that X(u, +) and X(#, —) can be
considered as u-raising and u-lowering operators, respectively, in the
same way that J*and J— are m-raising and -lowering operators. However,
there is a profound difference between these two sets of operators. In
particular the X(u, -+) are functions of % and are not members of the Lie
algebra generated by the elements p(«), @ €. 7 . This is in distinction to
J=. Consequently, it is reasonable to expect that recursion relations for
special functions obtained from (6.7) should be of a different nature
from the recursion relations derived in Chapter 5.

For the classification of irreducible representations of .7 as given by
Theorem 6.1 we have assumed P -P == 0 on V. It is possible to find
additional irreducible representations of .7, which satisfy conditions
(1)—(111), but instead of (1v), satisfy

(iv) P-P=0, P:J==0 on V.
Again, only the results of the classification will be given.

Theorem 6.2 Every representation p of .7, satisfying conditions
(1)—(1v)’ is isomorphic to a representation of the form Rj({, u,), 1 < j < 3,
where { and u, are complex constants such that { £ 0,0 << Reu, < |
and 2u, is not an integer. The spectrum O = {u, | n: n an integer}.
Ri(L, u,)/sl(2) takes the form (j) given by condition (ii). Corresponding
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to each representation R;((, u,) there is a basis { f};}, u € O, for V" such
that

Ef{m — mf{u} ]4fi:;” == {m - H]fi:::,]_r I_fi::} = _(m e u}f:;.?ll 3

3flu) — z-: -+ g {2
P = e e e

C(u + m)(u — m}f{u—ll
' (2u + 1)u Ty =

—4 wiy _ Sw—m) ..,

P = (2u + 1)(u + 1) ™+ TH TR S ) T
(6.8)
- {(u +m)(u —m — l)f{u—ll
(2u + 1u m+l 7
Z; (u+l) __ g(u = 3 m} (u)

Pfl-u]' =

(2u + 1)(u + 1) ™1 u(u + 1)7 ™1

{{u - m}{ﬂ et — 1} u—1
L e |

P-Pf) =0, P-JfW = _{fw,

With the exception of the isomorphism R;({, u,) o~ Ry({, —u, — 1), all
of the above irreducible representations are distinct. (Equations (6.8)
can be obtained formally from (6.5) by setting ¢ = —{/w and passing
to the limit as w — 0.)

For each of the representations Rj((, u,) listed above we define
operators X'(u#, +) and X'(#, —) on V such that

¢

R, =BT PR e P
(6.9)
X/(, =) = —P-J* — PSS 4 uP® — 28 421
As a consequence of relations (6.8), these operators satisfy
X(u, F)f = i 1f{u+u
(6.10)

X(a, —)fy = LEEM) sy,

where the range of values of u and m for which the expressions make
sense depends on the representation R;({, u,). The X'(u, 4) can be
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considered as raising and lowering operators for the index w. However,
these operators differ greatly from the m-raising and -lowering operators
J*, J- since they are functions of # and are not elements of the Lie
algebra generated by the p(a), x €.7.

We could continue the classification scheme of representations of 7
given above and determine all representations satisfying conditions

(i), (ii), (iii) and
(iv) PP=0, P-J=0 on V.

However, it turns out that for such representations we must have
P+ = P~ = P? = 0. Thus these representations reduce to irreducible
representations of s/(2) which have already been classified in Chapter 5.

6-2 Type E Operators

We designate as type E the differential operators

2 d q

3 — T P | 2 __ 1)/2
P=tg Tr=tt (-1 ﬂiwﬂlwﬁﬁ$@L4WJ

P? = waz, Pt = Lawt+(2* — 1)1/3, (6.11)
PP = —u? P*J] = —uwg, w,ge €, w # 0.

Clearly these generalized Lie derivatives satisfy the commutation
relations (6.1) and thus generate a Lie algebra isomorphic to ;. (In
order to properly define the square roots occuring in (6.11) we assume 2
takes the values in the complex plane cut along the real axis from — oo
to +1. If 2 > 1 we require (22 — 1)}/2 > 0. The operators (6.11) are
defined for all ¢t e ¢ except t = (.) Here J%, J® are just the type 4
operators (5.106). As will be shown, type E operators can be used to
construct realizations of the representations of 7 listed in Theorem
6.1. However, they cannot be used to construct realizations of the
representations given by Theorem 6.2, since if P+ P = »® = ( then
Pt =P ="P¥=10:

To construct the representations listed in Theorem 6.1 we must find
analytic functions f{¥(z, ) = Z\¥(z) t™ such that

A L]
[~ — 1y +

Z0(2) = (m — w)Z, (2),

6.12
2 e @ (mz -
[[H—Ufﬂ—( WAﬂWﬂ —(m + 4)Z™ (2),
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and
Wi . w—g+1) mq g
Zn®) = G T T T2 @ F ey 2 @)
2 (u + g)(u + m)(u — m) Z;{;;_ﬂ(g)}

(2u + 1)u

1e7lul (¥ —q + 1) (1) (u —m)q )
(zz . I} "er {E) = (211 i 1}{3! . I)Zm+1 [H] i u(u % 1} Zm"‘l"l{z]

(6.13)

(et —m)e —m 1) oy

(2u + 1u B

—(a — 128) = — i 2 D) — S 2.

)t mtm—1)
{Eu _I_ ]}H Zm—] { }.‘r

T

valid for all # €O (and for all m in the spectrum of the representation
of sl(2) corresponding to ) on the left-hand sides of these equations.
Moreover, relations (6.7) imply

[ — 15 + (e + ) — T] 200e) = LD gy,
[_(32 —1) ;p; oy — %} Z:::}(g) = (u + m)(u ; m)(u ¥ g)zﬂ:—ﬂ{ﬁ).
(6.14)

Clearly, all of the above equations are independent of the nonzero
parameter w.

To find solutions {Z}}'(2)} for these equations it is enough to solve
(6.12) and (6.14). Indeed the first of Egs. (6.13) can be obtained by
adding the two expressions (6.14). The second and third equations are
simple consequences of the first and the relations [P3, J*] = P+
With this simplification it 1s not difficult to find solutions. The functions

Z3N2) = D(u +m + 1) B2™(=2) (6.15)

defined for all # € O and all m in the spectrum of the irreducible represen-
tation of s/(2) corresponding to u satisfy the above equations unless
j = 2. (The fact that these functions satisfy Eqgs. (6.12) follows directly
from Chapter 5. Equations (6.14) can be verified through direct
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substitution of the infinite series expansions (A.9) for B;%"(z). However
for certain representations these functions are identically zero.) The
special case j = 2 1s left to the reader.

To be more precise we must specify the possible values of «, m, and ¢
which can appear on the left-hand sides of (6.12)—(6.14), corresponding
to each irreducible representation of .7; . The results are

(b)

Tiw, q) 1 <j<4 w#0
j = 1: 2¢ not a nonnegative integer;
U= —q, —q-+1, —q+ 2,...;
m=m,, m -+ 1,m, + 2,...;
where m, 1s a complex number such that ¢ 4 m, are not
integers and 0 << Rem, < 1.
j = 2: 2q¢ not an integer;
u=—¢q —q+1,—q+4+ 2,..;
m= —u, —u+ 1, —u -+ 2,....
j = 3: 2¢ not an integer;
= —q, —q-+ 1, —qg+ 2,...;
m=u,u— 1, u—2,...
j = 4: —2¢ a nonnegative integer;
v =—¢; —¢+ L
m= —u, —u -+ 1,..., +u.
1i(w, q) 1 €£57<3; w#0; 2¢not
a nonnegative integer;
=1 8% =9— Lig— 2, ¢g— 3
m = m,, m, =T 1, m, —+ 2,,
where m, 1s a complex number such that ¢ - m, are not
integers and 0 << Rem, << 1.
1=25 @ =g— lyg— 2y
m=—u,—u-+ 1, —u- 2,....
§ =% dl =9g— Lige— 25 WM =a:00— 10—
Ry(w, g, u,), =3 & F0; g
0 < Rewu, <1; u,+ gand 2u, are not integers;
j=1: u=wu,,u, +1,u,+2,.; m=m,+1,m +2,...;
where m, is a complex number such that u, -+ m, are not
integers and 0 << Rem, < 1.
] =2 w=up sw=1, 0 2= 2.5

m= —u, —u-+1, —u-t+2,...

U=, U, +1,u,+2,...; m=u,u—1,u—2,..
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(d) Riy(w, 0, 0), j=1; w#0; g¢=u,—0.

=041, +2,...; m=m,,m,+1,m, 4 2,...;
where m, € € such that 0 << Rem, < I.

The functions (6.15) are, of course, not the only solutions of our set
of recursion relations. The construction of a linearly independent set of
solutions is left to the reader.

In conclusion, we have found realizations by type E operators of most
of the representations listed in Theorem 6.1. The basis vectors for these
realizations are the functions (6.15) obtained from Chapter 5 in
connection with the realization of representations of s/(2) by #ype A
operators. Our results yield new recursion relations for these basis
functions. In particular we have seen that the recursion relations (6.14)
are of an entirely different nature from the recursion relations derived
earlier in this book. Equations (6.14) do not correspond directly to a
representation of J; but rather to a representation of the universal
enveloping algebra of 7 (Jacobson [I], Chapter 5). Thus, it is not
possible to obtain addition theorems and generating functions from
these relations using the simple procedure we have employed up to
now.

In this connection it is interesting to examine T'ruesdell’s procedure for
deriving identities for special functions directly from their recursion
relations (Truesdell [1]). A careful analysis of his method reveals that
it is basically Lie algebraic in nature. Indeed, his method succeeds for
all of the recursion relations derived in Chapters 3-5, but fails for the
recursion relations (6.14). Our more detailed analysis provides an
explanation for this failure.

The problem of extending the representations of .7, given above to
local multiplier representations of 7 is a rather difficult one and we will
not solve it here. The principal difficulties involve the verification
that the functions f{¥(z, ) = Z{¥(2) t™ form an analytic basis for the
representation space and the computation of matrix elements of the
operators exp(xP*+ 4 yP— 4 @wP?). Among the addition theorems which
can be obtained from such an analysis are identities involving spherical
Bessel functions and Gegenbauer polynomials. In Section 6-4 we will
solve a special case of this problem to compute the irreducible unitary
representations of the group E; whose Lie algebra is a real form of 7 .

Finally, any attempt to find realizations of representations of 7, by
generalized Lie derivatives in one complex variable is doomed to failure.
It will be proved in Chapter 8 that no such realization exists.
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6-3 Type F Operators

‘The type F differential operators are

d
-
] tﬁt’

P = 2t P+ = 20tz

PP=0 P-J==f 0£lcl.

(6.16)

These operators satisfy the commutation relations (6.1), and generate
a Lie algebra isomorphic to 7. Here J*, J-, and J3 are the type B
operators (35.85), where we have set f = ¢7, ¢ = 1. Since P - P = 0 the
generalized Lie derivatives (6.16) cannot be used to find realizations of
the representations of 7 listed in Theorem 6.1. However, they are well
suited for the realization of representations classified in Theorem 6.2.

To construct realizations of Rj({, u,) using type F operators we must
find nonzero analytic functions f¥(z, f) = Zy(2) t™ such that

d 7 u
[3 d= T m — ;] Z*::n }{E} — {:m — H}Z-En-*.-l(g).-

(6.17)
[o 25 —m +3] 2%) = @ + w23,
and
L Z31)(2) ot W,
2272y (2) = — 24 + D 1) 3 o 1) Z(z)
(# + m)(u —m) ()
ra Ou - Zh (=),
e B (x —m)
(6.18)
Lt m)u—m—1) =1},
B (e )
2= (u + m)

—2217(5) — Z5i(3)

Qu + D(u +1) u(u 4+ 1)

(u + m)(u 4+ m — 1) 7(u-1)

+ [2“ _|_ l)ﬂ =1 (3):
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valid for all # € O and all 7 in the spectrum of the representation of s/(2)
corresponding to u on the left-hand sides of these equations. From (6.10)
we have the relations

0 .
[J-Z-‘i-{-lﬂ ) | m

(ar)
= -+ 1. pR) =

(6.19)

o = 2% ] Zy o W) el

ds = =z u | u

All of the above equations are independent of the parameter {. To solve
these equations 1t is enough to find solutions for (6.17) and (6.19). This
can be seen by noting that the first of Egs. (6.18) is just the sum of the
two equations (6.19). The second and third of Eqgs. (6.18) can be obtained
from the relations [P3, J#] = +P=,

It 1s now easy to find a solution. According to Section 5-8 on type B
operators, the functions

Z;;!lﬂ(g) — (_H)uﬂf—z,fELﬂl:“]_}l(zL j=1 (6.20)
and the functions
P(m A= l) i —2u—1)

Z(2) = (—=) el I'(m — } Lo (?)

I'(—2u)

Fi(—m — u; —2u; 3) (6.21)

both satisfy Egs. (6.17). Moreover, by using the power series expansion
for the generalized Laguerre functions it is easy to verify that these
functions also satisfy (6.19).

Corresponding to each irreducible representation Rj({, u,) of 7 the
following range of values for # and m can appear on the left-hand sides

of Egs. (6.17)—(6.19):
Ri(L, u,) | sd =3 E0 0= Rewy, = 1;

2u, not an integer.

l: u=wu,,u,+1,u,+2,..; m=m,,m,+1,m, 4 2,...;

i,
|

where m, is a complex number such that m, 4 u, are not
integers and 0 << Rem, < .

j:2: u:Hﬂiuﬂiliu{}izi"'; m—= —u, —u —+ 1, — U |- 2,....
j:3: u=uﬂ?uﬂil,uﬂ_—{—2,.._; TH:H,H—-I,H—Z,....

Thus, using type F operators we have constructed realizations of all
representations of 7 listed in Theorem 6.2. Either (6.20) or (6.21),
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obtained from Section 5-8 in the study of Zype B operators, can be used
as basis vectors for these realizations. Among the new relations derived
for the basis functions are (6.19), which do not have the simple Lie
algebraic interpretation enjoyed by the other recursion relations derived
in this section. As might be expected from our corresponding discussion
of type E operators, Truesdell’s technique for obtaining special function
identities from recursion relations fails when applied to (6.19).

Equations (6.17)—(6.18) can also be solved in terms of generalized
Laguerre functions when 2u 1s an integer, even though this case is not
included in the spectrum Q of any of the representations R}(Z, u,) listed
above, Indeed, except for the singular values ¥ = —1, —1, 0, we can
always find solutions. However, since the equations become meaningless
for the singular values of u, these solutions do not form a basis for a
representation of 7 .

The relatively difficult problem of computing matrix elements of the
local multiplier representation of 7 induced by the irreducible represen-
tation R({, u,) of 7, will be omitted.

6-4 The Euclidean Group E;

Eg is the real 6-parameter Lie group consisting of all pairs (r, 4)
where r = (r,, 75, 73) 1s a real column vector and A is an element of
SU(2). The group multiplication law is

(r, A)r', A') = (r + R(A)r', A4 (6.22)

where the plus sign (-}) means vector addition, A4’ corresponds to
multiplication in SU(2), and R(A) is a real 3 X 3 orthogonal matrix
defined by (5.135). If

then R(A) has the explicit expression

A — b a2 b (@b —a® b

5 5 b 1 ab
T RN & L2 =1 L2 I i
Ry = | A= = el 8 il +e 0% s—aBrar) |. (623

—(ab - ab) i(—ab -+ ab) ad — bb
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Since SU(2) 1s simply connected, so is E;. In fact E; is the simply
connected covering group of the Euclidean group in 3-space: the group
of all pairs (r, R), r a real 3-vector, R € O, , with group multiplication

(r, R)(r', R') = (r + Ry’, RR).

The two-to-one onto homomorphism relating the two groups is
(r, +=4) —(r, R(A)), where R(4) = R(—A) is defined by (5.135).

E, can be considered as a real subgroup of T . Indeed, as the reader
can easily verify, the collection of all elements {w, 4}, where
W = (g(—ry — iry), 3(ry — iry), —ir3), 7y, 75,7, real, and A e SU(2),
forms a subgroup of T isomorphic to E; . The isomorphism is given by
(r, A) <> {w, 4}, £ = (r;, 75, 73).

The real 6-dimensional Lie algebra &; corresponding to Ej is generated
by elements ¢, ,%., k = 1, 2, 3, with commutation relations

[aﬁ'r fk] == ‘E:amjz:- [f;- ) g,ﬁr] = Ejmg‘% 3 [?} , '@a] =0,
Lkl=123, (6.24)

where €, is the completely antisymmetric tensor such that €, = 1.
The _#. form a basis for su(2), a subalgebra of &;. We choose these
generators so that they are related to the finite group elements by

(r, A) = exp(n + r?h + 13%;) exp ¢ Fy exp d 7, exp ¢, 75, (6.25)

where r = (r;,7,,73) and ¢;, 0, @, are the Euler coordinates for

A, (5.139). The formal elements 2+ &8, #+ ¢#3 defined in terms of
the generators (6.24) by

Pt = TZ +i4, PR = 1%, FEt=+L05 +1.4, AP =ity

can easily be shown to satisty the commutation relations (6.1) for the
complex Lie algebra .Z;. Thus, we have explicitly determined & as a
real form of 7 .

According to this result the irreducible representations of 7 , classified
in Section 6-1, induce irreducible representations of &; by restriction. We
shall determine which of these induced representations of &; can be
extended to an irreducible unitary representation of E; on a Hilbert space.

Following the usual procedure we let U be an irreducible unitary
representation of E; on a Hilbert space 5# and define the infinitesimal
operators J,.,P., k=1, 2, 3, by

uf = 5 Ulexp t £)f]
(6.26)

Pf = 2 UlexptZ)f| , k=123,
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for all fe &Y. (& is a dense subspace of 3 satisfying properties (3.45),
(3.46).) On Z these infinitesimal operators satisfy the commutation
relations

[]:F 3 ]:.:] — fﬂcz]; 3 [L.- 3 P;.:] = Efkr.PL 3 [P;r ’ P;;] =0,
j!ki"f: 1:2:3:

where ¢;;,; is the completely antisymmetric tensor such that €, = 4-1.

The operators J*, J3, P=, P? defined by
IZI: = $]2 _I_ I]l y ]3 —- i.jav Pi — $PE _I_ ?'-Pl ’ PE = iPB {6*2?)

satisfy commutation relations analogous to (6.1) and thus determine a
representation p of the complex Lie algebra 7; on . We shall inves-
tigate the conditions under which p (restricted to some dense subspace
%' of &) i1s 1somorphic to one of the irreducible representations of 7
listed in Theorems 6.1 and 6.2.

From the study of the representation theory of SU(2) given in Section
5-16, all of the irreducible unitary representations of SU(2) are finite-
dimensional. Thus, the only irreducible representations of .7; which
could possibly induce unitary representations of E; are those of the form
Ta(w, g), @ 7% 0, —2¢ a nonnegative integer. We shall determine under
what conditions a unitary irreducible representation U of E; can induce
the representation T,(w, ¢) of 7, on Z’. From Lemma 3.1,

<ka: h> = _<f: ]-Lh>: <P.icf: k> == _<f1n Pkk>: k= 1.'- 2! 3,

for all f, h € @, where {.,.) is the inner product on 3. In terms of the
operators (6.27) these conditions become

b =S Py, Py = PRy,
ok =L Th, P B = f,Ph).

The representation T4(w, q) is determined by Eqgs. (6.5) where —2¢ is a
nonnegative integer, # = —¢q, —q -+ 1, —q 4+ 2,..; m = —u,
—u + 1,..., +u. If we assume the basis vectors f,*' are in & and apply the
requirements (6.28), the following restrictions emerge:

(1) o is real,
(2) <fi9,funy =0 unlessu = u and m = ',
(3) | Sfoia P —m) = | f5 P(u +m + 1),

(ut1) (2/] £lu) |2 (u+qg+1)u+m+ 1) —m-+ 1)2u + 1:-‘
(@) |f | fo0 |t = e s

(6.28)
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valid for all u€Q and m = —u, —u -+ 1,..., +u. Defining new basis
vectors {pS'h, u = —q, —g+ l,...;m = —u, —u + 1,..., +u; for @ by

[ (2u + 1)(ux — q)! 1/
() — (__ 1\ut+m {u)
P =4 (e + m)! (4 — m)! (u + q)!] ER L
we obtain | p | = | p? | for all m, m’, u, u' in the spectrum of the

representation. (The phase factor (—1)**™ has been chosen for conven-
ience.) Without loss of generality the vectors p¢* can be assumed to be of
length one. Hence, they form an orthonormal basis for 3. Expressing
relations (6.5) in terms of the basis p;*’ and setting s = —g, we find:

Theorem 6.3 The possible faithful irreducible representations of
ég induced by an irreducible unitary representation U of E, on a Hilbert
space S are determined by the pair (w, s), where w is real and 2s is an
integer. The representation (w, 5) of &, acts on 3# as follows: 3 has an
orthonormal basis {p{'}; u = |s|, | s| +1,.c;m = —u, —u + 1,..., +u.

In terms of this basis the operators (6.27) are defined by

Fou.’ =mpy, T = [ +m+ 1)@ —mPipw

Jp = [+ m)e — m + D]2p00,

W __ (u+m—+1)(uw—m-+1)(u+s+ 1)(u—s+ 2 ot
P3pl) — [ (TR - D 3 ] pLed
Hws o [[u + m)(u — m)(u -+ s)(u — 5}]1;2 )
= u(u + 1) Py — 0 w(2u + 1)(2u — 1) P 3

(1241}
-1

(w+m-+1)u+m-+2)u+5 4+ 1)(uw—s5s—+ 1)]1;-2
(@ + 1)2Q2u + 3)(2u + 1)

— [+ m + ) — m)]i2

Pip — 4 m[

wS§ o
w(u —+ 1) o+l
_(H —_ m)(ﬂ —_—Hl — 1;](” _|_ E)(H _ 5] 1/2 =
| w?(2u + 1)(2u — 1) ] Bt (6.30)

e (e —m -+ 2)(u —m + 1)(u 3 =4 I —s =t .
By ==a (u  1)2Qu + 32 + 1) | a
= [+ m)e —m o+ D p,
_ (—+m)(u +m— 1)(u + s)(u — s)/2 o
=B w*(2u + 1)(2u — 1) ] Pua

3
P-Jpi) = ) BLipy) = wspl,
j=1

3
P-Rpl = 3 PR p0 = —uiplp.

=1
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The representations (w, s) and (—w, —s) are isomorphic; otherwise all
of the representations are distinct. (Note: The fact that the representation
(w, $) is defined for s negative follows from an examination of Egs. (6.30).
Even though the representation (w,s) for s <0 is isomorphic to
(—w, —s) 1t is convenient to consider (w, 5) in its own right.)

Theorem 6.3 lists the possible representations of &; induced by unitary
irreducible representations of E; . We will now prove that each of these
Lie algebra representations (w, s) actually does originate from some
unitary irreducible representation (also called (w, s)) of E, . This will be
done by constructing the unitary representation.

According to expression (6.25) the finite group elements of E; are
uniquely determined by the infinitesimal generators ., £,k = 1,2, 3.
Therefore, the unitary representation (w, s) of E; on a Hilbert space 3#
is uniquely determined by the infinitesimal operators P, , J, , k = 1, 2, 3,
on &Z; hence, by Eqs. (6.30). Indeed if U(r, 4), (r, 4) € E;, is a unitary
operator on S corresponding to (w, 5) then

U(r, 4) = exp(r,P; -+ r,Py + 73Py) exp(e]3) exp(6];) exp(p.]s). (6.31)

The construction of the irreducible unitary representations (w, 5) of
E¢ 1s well known (Wightman [1]), and the results can be presented in an
elegant coordinate free manner. Here, however, the construction will be
carried out in a heavily coordinate-dependent manner to show the
explicit connection between Eg and the recursion relations (6.13) for
special functions.

From the orthogonality relation (5.144) for the matrix elements
Upm(A) on the group manifold SU(2) it folows that for fixed s the

functions

Qu + )(u + )! (u + m)lL/2 .
PNy, o) = (=1 _[ uaiw[ul }EI 5)! 2 EI n{:};ﬂ]] P2im(cos y)eim,

u=\|s|, 8|+ Lu; m=—u —u+l,.., tu;

form an orthonormal set with respect to the measure dr = sin v dy da,
0y o < 2, (mod 27);

™ 2'?!' -
o 00> = [ [ 250y, ap s @) dr =8, 8,
0*9

Furthermore, from (6.11), (6.15), and (6.29), the functions p!*(y, )
satisfy Egs. (6.30) with
]3=__3'£ ]iieiiu(:l:%—l_icmyﬁi_ : ):

oo’ sin

(6.32)

P+ = we®* gin y, P? = w cos v.
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Here z = cos y, t = —ie™, and P}™(cos y) = el~i"/2)s+m) B&M(cog 4 1 10).
From these results it seems reasonable to define a Hilbert space 5 of
functions square integrable with respect to dr such that the functions
) given above form an orthonormal basis for #°. The differ-
ential operators (6.32) can then be used to determine a multiplier
representation of E; on 3 which should turn out to be the desired
unitary representation (w, s). This procedure works but it leads to a
complication. For s an integer the p'*(y, «) are functions of €%, while if
s 1s not an integer the basis vectors are functions of ¢™/2, Because of this
difference in behavior the two cases have to be treated separately.
To avoid these complications we adopt the device of multiplying each

of the functions p{ by e**. Thus, we define new functions

By, @) = e=p(y, o)

= wem [u 4 D) + 5)! (u + m)!712
= (—1) [ 477(;; — 3)! (u — m)!

e Qu (T} gtlimrslx
ST

P:F'rm (EDE ,},‘J ptimts)a

Since m - 5 is always an integer, whether or not s is an integer, this
device allows us to treat both cases at once. It is obvious that the
set {A{¥'} is still orthonormal with respect to the inner product defined

above:

T a2

e by = [ [ By, by, @) dr = 8, 8,0,

0*0

Furthermore, from the results in Section 4-8 concerning transformations
of differential operators under mappings of function spaces, it follows
that the basis functions 4} satisfy Eqs. (6.30) where now the differential
operators are given by

. 0 . £ 2 d cosy — |
B = £ phix 2 =
J " ] ® (:l‘g_}_ ' :Cut'yﬁm_FS( SIN y ))
P+ = we=™sin vy, P? = w cos .
Moreover, the infinitesimal operators P, , J,. become
: d 4] : —
]1 = SIN & 7 -{- COS & Coty — J.—:scnsn:(l _cnsy),
oy Do sin y
¢ . ¢ . —=
]2= -—C{}SD:“--—|—51ﬂtICUt}'——|—HSIHCI:(1 .EC-E}')
oy dox sin (6.33)
o : ; . :
E= —H—m+:s, P, = —iw cos o sin y,

P, = —iw sin « sin y, Py = —iw cos .
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These operators will be used to construct the unitary irreducible
representation (w, s) of E; on #(w, s), where #(w, s) is the Hilbert
space of all functions f(cos y, €%) square integrable with respect to the
measure dr. The inner product is given by

& fops = J: _[?f (cos y, €*) g(cos y, ) sin y dy da, [, g € (w, 5).

From the remarks immediately following Eq. (5.144), concerning the
completeness of the matrix elements UY,(A4) on the group manifold
SU(2), we can conclude that the functions 2™(y, «),u = | s |, | s | +1,...;
m = —u, —u + 1,..., +u; form an orthonormal basis for #(w, s).

It will now be shown that the operators U(r, 4), defined by (6.31)
with infinitesimal generators (6.33), form a unitary irreducible represen-
tation of E; on 3(w,s). The construction of these operators is a
straightforward application of Theorem 1.10:

: : ~ [d(cos y -+ 1) 4 b si et
[Ute, 4)fYcos , %) — exp(—ior - %) [Froo L L) L2807 £

f(cosy', e®'),  fe #(w,s), (6.34)
where

3
£ = Y v X = (%, %, x3) = (cos wsiny, sin asiny, cosy); (6.35)
i=1

cos ¥’ = cosy (1 — 2bb) -} (abe™ + @be—*) sin y,

2 rxz sin y e — b% siny e~ — 2ab cos y] L&
eie— - - : .
a®siny e* — b? siny ™ — 2ab cos y

(6.36)

a=(5% f:) e SU(2).
Here, all bracketed quantities are of absolute value --1.

The action of the operators U(r, A) can be written in a more trans-
parent form by identifying the elements of #(w,s) with functions
square integrable with respect to Lebesgue measure on the unit 2-sphere.
Thus, we make the identification f(cosy, ) = f(X) where the unit
vector X 1s given by (6.35). Integration with respect to the measure dr
can now be interpreted as integration over the surface of the 2-sphere.

In terms of this notation the action of the operators U(r, 4) on #(w, s)
18

[U(r, 4)f1(&) = exp(—iwr - %) [EE: - B Iggi :;S] f(R(AR), (6.37)
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where the orthogonal matrix R(A4) is defined by (6.23). In this form it is
obvious that these operators are defined and unitary for every (r, 4) € E,
(the orthogonal transformation R(A~') preserves the scalar product
while the multiplier has absolute value 1). The group property

U(r, A) U(r', A") = U(r + R(A)r’, AA")

1s true by construction, but can also be verified directly. Thus we have
defined a unitary representation of E; on #(w, s) which induces the Lie
algebra representation (w, 5s) of &; classified in Theorem 6.3.

The group representation can be shown to be irreducible since its
induced Lie algebra representation is irreducible. Furthermore, the
group representations (w, s) and (—w, —s) are unitary equivalent since
their induced Lie algebra representations are isomorphic. We shall not
give direct proofs of these facts since the proofs are somewhat tedious.
See, however, Naimark [2], Chapter 3.

6-5 The Matrix Elements of (w, s)

We turn now to the problem of determining the matrix elements of the
operators U(r, A) with respect to the orthonormal basis {#{’} of 5#(w, s).
For fixed u the functions A(%X), m = —u, —u + 1,..., +u, form a
canonical basis for the irreducible representation D, of SU(2). Thus we
have

[UQO, DHR) = 2 Up (AhH(R)
ke=—1u
where the matrix elements U}, (A4) are given in terms of Jacobi poly-

nomials by (5.143). Clearly the matrix elements of the operator U(0, 4)

are
RV, U0, By, = U (4)3,,,, .

The computation of matrix elements of the operator U(r, I), I the
identity element of SU(2), is somewhat more difficult. Before performing
the computation it is necessary to introduce some supplementary
material from Section 5-16. If 4 € SU(2) has coordinates (g, , 0, @,)
we can write the matrix elements U!, (A4) in the form

Ut 0, 92) = e-vm T2 (B)e-ino

nin

where
(u -+ m)! (u — n)!
(2 -+ n)! (0 — m)!

T (8) = (i) [ ]”E P;™™(cos 6).
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The functions 7}, (6) satisfy the relations

Tym(0) = Trnn(0) = TZ, _(6),

T )Tt r(0) = ¥, Clt, my ', 0 | L 4 ) (6.38)
i

Clu,myu',m' | I, m + m’)T}i_m,ierm,(H),

where the C( - ) are Clebsch-Gordan coefficients for SU(2), (5.53). The
basis elements A (y, a) = Q¥ ,.(v) e/™+9)=and the T functions are related
by the simple formula

1/2
T (8) = etim/2m+ni2u) [2:_""’: 1] 0", (6).

Furthermore, the spherical harmonics Y7'(6, ¢) are given by

Y70, ¢) = (—1)'Qo,m(B)e™.
By definition the matrix elements of U(r, [) are

A, U(r, DAY = [0, 0 | w, s | u, m](r)

A plw
L J. Q;n(},)eﬂﬂ+$h E:Kp(—fmr . i) :rm(},)gﬂm+siu
of I] ﬂ ¥ |
- siny dy dao. (6.39)
Writing r in spherical coordinates
r = (rsin @, cos @, , rsin 6, sin ¢, , 7 cos 6,),

we make use of the well-known formula

@ {
exp(ip- 1) =4 Y Y (01 YO, , 9) V50, ) (6.40)
=0 k=—1
where the j; are spherical Bessel functions, (A.24) (Kursunoglu [1],
Chapter 4). Substituting this identity into (6.39), applying (6.38), and
simplifying, we obtain

(21 + 1)(2v + l)]”2
2u 4 1

"ty wr) Y1, @) C(L,0; 2,5 | u,s)
C(l, m —n; v, n | u, m), (6.41)

[v, 2| w, s | u, m](r) = (4)*/2 i [

=0
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The fact that the U operators form a unitary representation of E; allows
us to derive a number of relations satisfied by the functions (6.41). Thus,
unitarity implies

[v,n | w, s | uym](—r) = [u,m | w, 5| v, n](r). (6.42)

Furthermore, the group property U(ry,[) U(ry,I) = U(ry + vy, 1)
leads to

o, |5 | wmley )= Y 3 [0, ] w,s | b gl

h=|z| a=—h

[2, g | @, 5| u, m](ry). (6.43)

When s = v = n = 0, this identity reduces to the addition theorem for
spherical waves

YO ) = Y Y Y (mpisgiprin [ Tzi)ffhli}"”]m

=0 g=—h =0

’ f h(“—'fl}j l(wﬂ) Yg{ﬂrl 3 fFrl} Y;R*E{Erﬂ ) ‘Prg}
+C(L,0; 5,0 | u,0)C(l,m — q; h, g | u, m) (6.44)
which was first derived by Friedman and Russek [1]. Here, r = r; 4 15 .
The group property U(r, 4) = U(0, 4) U(4'r, I) = U(r, I) U(0, 4)
implies
Z Uri( Ao, n' | o, 5| u, m|(A7r) = Z [0, 7 | w, s | u, m']()U,-..(4).
=% e =1u (6'45}

Fix v and consider the 22 + 1 component quantity

x\e:8 () = ([v,n | w,s | u, m](r)), n= —vu, —9 + l,..., +9, (6.46)

for some u, m. Define the action W of E; on x(r) by (in matrix notation)

[W(a, A)x;nml(r) = UMA)x 5 (RAT)(r + a)). (6.47)
The identity (6.45) shows that y(r) transforms like a spinor field of weight
p; in fact, under the action of SU(2) it transforms like the eigenvector
h™ of the irreducible representation D, . Furthermore, (6.43) shows

ol

[W(a, Dxtesl(r) = 3. 2 [k qlos|u,ml@)xis(r). (6.48)

he|5] g=—h
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Let M(w, s, v) be the complex vector space generated by all finite

linear combinations of the v-spinor functions y{:%: v = [ s, |s| + 1,...;
m = —u, —u + l,..., +u. We can uniquely define an inner product

(s " on M(w, s, v), linear in the second argument, conjugate linear in
the first, by requiring
<x{m 8l {:'..u.I-SJ' >$ _E :3

i ! X‘-!? w'm’ w,u’  mm’

for all admaissible u, u’, m, m’. Completing M(w, s, v) with respect to this
inner product we obtain an abstract Hilbert space #(w, s, v). Denote
again by W the action of E; on #(w, s, v) induced by (6.47). Then, W is
a unitary irreducible representation of E; on 3#(w,s, v), unitary
equivalent to the representation (w, s). In fact the unitary equivalence
maps the basis vector k)’ into the v-spinor y!%%. Clearly, we can
construct a representation of E; unitary equivalent to (w, s) for each
value of o = | s, | s | + I,... .

Fix o again and observe that the action of E; on 5 (w, s, v) induces an
irreducible representation of & isomorphic to (w, 5). A tedious computa-
tion using (6.47) shows that the infinitesimal operators corresponding to

this representation are

Ji—E‘:':“F(_—_I: —I—ICDtH-—a—) 45+, ]""':—ii—:Sa,

rp Op
ML d .cosfl @ 1 ¢
+ —— obi =Pl
. . ?(zsmﬂa?_ T r 6‘ﬂr{:rsinﬁ 5‘@:})’ (9:49)
c sin # ¢
3 el Bl
P —zcnsﬂar 1 30
where r = (7 sin @ cos ¢, 7 sin @ sin ¢, 7 cos 6) and
St[o,n | w,s |u,m] =[(v £ n)(v T 2 + Do, n F 1| w,s|u,m], :
6.50)

S¥o,n | w,s|u,m] =n[v,n|w,s | u,m].

By replacing the eigenvectors p" with the v-spinors y!“:3! and substi-
tuting expressions (6.49) into Egs. (6.30) the reader can easily obtain
a series of recursion relations for the matrix elements [v, 7 | w, s | %, m](r).
Note also that the last of Egs. (6.30) yields the identity

(‘Q‘E T "-”2)[1"& i I w, s | u, m]{r] = 0:- {65])

where V2 is the Laplacian. Thus the functions y!#(r) are spinor-valued
solutions of the wave equation.
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The v-spinor functions defined above are of special importance in
mathematical physics. It is known that a v-spinor ¥(r) satisfying the wave
equation (V2 + w?) ¥(r) = 0 can be expanded as a countable linear
combination of the spinors y\%8(r) where m = —u, —u + 1,..., +u;
u=|s|,|s|+ 1,.; s = —v, —v 4 l,...,, 9. Such an expansion is
useful because of the simple transformation properties of the y functions
under the action of E; . Thus, our results yield recursion relations and
addition theorems for spinor-valued solutions of the wave equation. The
spinors x also have simple completeness and orthogonality properties.
For these see Miller [2].

This concludes our analysis of the representation theory of E,. We
have seen that the matrix elements of the translation subgroup of E, are
the so-called spherical wave solutions of the wave equation. The matrix
elements have been chosen with respect to a basis indexed by the
irreducible representations of SU(2). By computing the matrix elements
with respect to a basis indexed by the irreducible representations of the
subgroup {(r, I)} or {(r, exp «_%;)} (isomorphic to a 2-sheeted covering
group of Ej), we could derive identities relating spherical wave solutions
of plane wave or cylindrical wave solutions of the wave equation. This
computation 1s not difficult but will not be attempted here.

The representations (w, 5) (w real, 25 an integer, (w, 5) >~ (—w, —5))
derived above constitute all faithful irreducible unitary representations of
Eg. The only remaining unitary irreducible representations of E; not
unitary equivalent to a representation (w, s) are those which map the
translation subgroup {(r, 1)} into the identity operator. Thus, on the
subgroup SU(2) they must be unitary equivalent to a representation D,
of SU(2). For proofs of these statements see Wightman [1] and
Mackey [1].




