CHAPTER 7

The Factorization Method

As presented in this book the procedure for associating special
functions with a Lie algebra ¢ divides naturally into three parts: (1)
Determine an abstract irreducible representation p of %. (2) Find a
realization of p acting on a space (¥ of analytic functions. (3) Compute the
multiplier representation of the local Lie group G induced by p on .
The practical importance of this procedure is demonstrated by numerous
examples in Chapters 3-6.

In the next two chapters, however, we shall discontinue the multipli-
cation of examples and concentrate instead on an analysis of the
procedure itself,

The functions of hypergeometric type (hypergeometric, confluent
hypergeometric, and Bessel functions) are solutions of linear second order
ordinary differential equations and satisfy differential recurrence relations.
In fact, corresponding to each of the operator types 4, B, C’, C", D', E, F
we have been able to derive a set of recurrence relations forthese functions.
Conversely, in this chapter, it will be shown that under rather general
conditions the only “reasonable” families of functions satisfying second
order linear differential equations and differential recurrence relations
are the functions of hypergeometric type listed above. Furthermore, all
of the recurrence relations obeyed by such functions can be obtained as
combinations of recurrence relations derived earlier in this book. (There
are families of functions other than functions of hypergeometric type,
which satisfy second order equations and differential recursion relations,
but they are too complicated to be of much practical importance.)

In other words special functions associated with the Lie algebras
Y(a, b) and J; completely exhaust the supply of functions with the
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simple properties listed above. The material of Chapters 3-6 describes
a one-to-one relationship between the representation theory of these Lie
algebras and recurrence formulas of functions of hypergeometric type.
In this sense Chapters 3-6 form a complete unit.

The technique for proving the above results is the factorization
method, originated by Schroedinger and due 1n its definitive form to
Infeld and Hull [1]. This technique was developed to solve eigenvalue
problems appearing in quantum theory but is also a very powerful tool
for studying recurrence formulas obeyed by special functions. The
version presented here is a slight modification of Infeld and Hull [1]. For
more details, especially concerning applications to physics, the reader
should consult this reference.

7-1 Recurrence Relations

Let X,, = —d?/dx®* 4+ D,(x)d/dx + E,(x) be a sequence of
second order ordinary differential operators defined for me § =
{m,,m, + 1, m, + 2,...}, where m, is an arbitrary complex number; and
analytic for x in a neighborhood N of x? € . We shall be interested in
solving the eigenvalue problems

X, Y.(m, x) = AY,(m, x) (7.1)

for all m € S and x € N. (In the following the dependence of the function
Y,(m) on x will be supressed.)
If there exist linear differential operators

d d
Ty R S gk ey —
I = AL(x) o5 - B (x), I AL (x) =7 + Ba(x)

defined for all m € S, x € N, such that

L_ L']'Tl--{-l _i_ ﬂm-l—l — Xfm H L;L;a —|_ By = Xm (?'2)

m+1

where thea,, are constants, we say the operators X, admit a factorization.
In this case the eigenvalue equation (7.1) is equivalent to the two
equations

Ll Yalm) = A — @) Yi(m),  LoLo, Y (m) = (A — a,,) Y (m) (7.3)

for all m € §. The significance of the existence of a factorization for the
solution of the eigenvalue problem 1s given by:
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Lemma 7.1 Let Y,()) be a solution of (7.1) for m — . Then
Ly, Y,(]) is a solution of (7.1) for m — [ + 1. Similarly L7Y(]) is a
solution for m = [ — 1.

PROOF
XL V(1) = [LiaLig + aya) L, Vi)
= Li[Lon L Ya)] + aaLin Y
= AL

The second assertion is proved in exactly the same way. Q.E.D.

Thus the operators L+ satisfy the properties: (1) the “raising operators”
L7, map a solution of (7.1) for m = I into a solution for m — ] + 1;
(2) the “lowering operators” L7 map a solution for m — [ into a solution
for m = [ — 1; and (3) if we first raise and then lower (or vice versa) we
obtain our original function multiplied by a fixed constant. (The possibil-
ity that Li,,¥,(I) = 0 or L7 Y,(]) = 0 is not excluded.) Conversely, it
is not difficult to show that, by suitable renormalization, any set of
linear differential operators L , m e S, satistying properties (1), (2), and
(3) can be assumed to satisfy (7.2) for some choice of constants a,, .

It the operators X,, admit a factorization, the raising and lowering
operators can be used to derive recurrence relations for the functions
Y,(m). For example, if Y,(/) is a solution of (7.1) for m = [, a ladder of
solutions Y,(/ + n) can be defined recursively by

ittt 1) = A—apun)  Lina il n), 5#=0,1,2.....
Then Eqgs. (7.2) imply
Yill +2) = A — @) L Vil + 0 41), 2=0,1,2,....

These expressions are differential recurrence relations for the functions
Yyl +mn), n > 0. Similarly we can derive recurrence relations for
functions Y,(I — n) with n > 0:

Yill =1 —1) = (A — @ Y 2L, Y5 (L — n),
Yﬂ.(f = H’) = {)" - Hi—n}_lm‘{‘?_—n 'VIU k= 1}: = 0: 1:- 2: »

From this point of view the existence of differential recurrence relations
satisfying properties (1), (2), and (3) listed above is equivalent to the
existence of a factorization. Moreover, all of the differential recurrence
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relations derived for special functions in Chapters 3-6 can be obtained
as factorizations of operators X,, by raising and lowering operators L .
In fact, all of the known recurrence relations for functions of hyper-
geometric type listed in the Bateman Project (Erdélyi et al. [1]) can be
derived either as factorizations or as combinations of recurrence relations
obtained from factorizations. It is thus a problem of considerable
importance in special function theory to classify all possible factorizations.

At first glance this classification problem appears very difficult—we
must find all second order operators X,, , first order operators L, , L, ,
and constants q,, for all m € S such that Egs. (7.2) hold identically.
However, the problem can be drastically simplified by transforming
the operators X,, into the standard form

: a*
X*m = — E = Vm{:I), me S, (T.“i)

To obtain these operators choose a family of analytic functions {g,,(¥)}
such that ¢, (x) 7 0 for all m € §, x € N, and define the mappings

onlt Vi(m,x)—> Yi(m, %) = (pu(x)Vi(m, %), meS.
The domain of ;' is the space .#(A, m) of all solutions of the equation
XmYA[m, x} = HY‘;,(TH, 3‘:}.

Denote the range of ¢;;' by .#'(A, m). Then the elements of .#’(A, m) are
eigenfunctions of the second order differential operator

Xn = 0n (%) Xnon(®),  [om (*) = (en(*)) ]
In fact,

X:H-Y.-:(m’ x) = ‘F'*.r;l('r) XonPm(%) q;;l[:x) Yy(m, x) = '?};al(x) XY y(m, x)
= App (%) Y,(m, x) = AY {(m, x).

Similarly the first order operators
Ly MAm)— A m+ 1), Ly HMAm)—HAm—1)
are transformed into the operators
Luea: M QAm)y—M'Am - 1),  Ly: MDA m)—>M(A,m — 1)

where

L:;;:l = (P?;il{x} L$+lq}m{x]ﬁ Jl;'-r"’.r:r’ = ‘P#El;l(m) L*E‘Pm(‘r)'
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As a consequence of these definitions the transformed operators L’

form a factorization of the operators X, :

— o+ ¢ - = S F—i — ’ 1
Lm+1Lm+1 —|_ A1 = LmLm _L Ay = Xm 1 me ‘5'

It we choose ¢, (x) = exp 1 j: D, (1) dt for all m € S, the transformed
operators X, take the form (7.4) in some neighborhood of x° € ¢. In
fact, X,, = —d?/dx® + E,(x) + } D2(x) — 1 dD,(x)/dx. [This is a
standard computation (see Petrovsky [1], Chapter 2).] Thus, without loss
of generality it can be assumed that the differential operators are

d? : d
X = — 25 + Val®)y L = A(#) 7 + Ba(), (7.5)
where
L;+1L:r-:+1 T Gy = L;;L;z Qo= X (7.6)

for all m € S. Necessary and sufficient conditions for the validity of (7.6)
are

(1) 434, = —1,

(2) Apdy + AB; + B4y =0,
(3) AxA; + ABi + B;A =0,
(4) BrnuBni + AnaBilia + w = BEB;, + ALB, + a, = V(%)

(7.7)

for all m € S, where now the prime denotes differentiation with respect to
x. Difterentiation of (1) yields 4}'A4,, = —4;; A4, . Comparing this
expression with conditions (2) and (3) we obtain the requirements

Ay =47 =0, A-B: L B-A: —0. (7.8)

Thus, A7, and A,, are constants such that A4~ — —1. Since (7.6)
imposes restrictions only on products of the operators Ly, , L , there is
no loss of generality involved if the operator L;, is assumed to be
normalized so that A;, = -1 for all m € S. From this assumption there
follow the conditions

Ag=—AL =1, Bilx) =8, = B.(z)
and

BE::H{NJ + Bra(®) + @y = V(%) B‘El{x} — Balx) +ay = V(%) (7.9)
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The last two equations imply the equality

0
d:!r:+1 T = — Gy (7.10)

2 2
Bm+] EE -Bm _I_

where the constants a,, are independent of x. Formula (7.10) is obviously
a necessary condition for the existence of a factorization. However, it is
also sufficient since functions B,,(x) and constants a,, satisfying (7.10)
can be used to unambiguously define the functions V,,(x) by (7.9), hence,
to define operators X, which can be factored. Thus to find all possible
factorization types it is sufficient to find all possible solutions of (7.10).

7-2 The Factorization Types

As a first trial solution of (7.10) choose B, (x) = f(m) where f is an

arbitrary function of m. Then (7.10) is satisfied for @,, = — f(mn)? and
(7.1) becomes the equation of simple harmonic motion
dﬂ

This factorization is of such a trivial nature that we will not examine it
in any detail.

The trial solution B, (x) = j(x) 4+ mk(x) yields more useful results.
Substituting this solution into (7.10) and equating powers of m on both
sides of the resulting expression we obtain the conditions

AR =—a, k= —by2, a,=am® -+ bum, (7.12)

where a, b, p are constants. (Since (7.10) depends only on the difference
Gy — @41, Uf the constants g, satisfy (7.10), so do the constants a,, + c.
However, it is easy to show that without loss of generality we can set
¢ = 0. Indeed, ¢ can be absorbed in the constant ), Eq. (7.1).)

For a # 0 the possible solutions of (7.12) are:

. L Tl OB 4 gy
Type (4) k(x) = acota(x +p), j(x) = 7 Ot a(x + p) + o
Type (B) k(x) =ia, j(x) = f—;" T,

where p and ¢ are constants. If @ = 0, b £ 0, the possible solutions are:

1 oy _ _ bulx +p)

Type (D) k(x) =0, j(x)=— S T4

q

Type (C)  A(x) = i

_|_
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Finally, if @ = b = 0O the solutions are:

" 1 .
Type (C) A(x) =5 i®) =57

Type (D7) k(x) =0, j(x) = ¢

Clearly, these factorizations correspond exactly to the type A-D”"
operators classified in Chapter 2. Indeed Eqs. (7.12) and (2.30) are
identical. The type A and B factorizations can be normalized so that
a=1, b=0 by replacing a(x 4+ p) with x4+ p and m with
m' = m — bu/2a® In this case the expressions for k(x), j(x) correspond-
ing to type A and B factorizations coincide with those for the type A4
and B operators. Similarly the expressions for k(x), j(x) corresponding
to type C' and D’ factorizations coincide with those for type C’ and D’
operators when ¢ = 0, b = 1. If @ = b = 0 the expressions for k(x),
j(x) corresponding to type C” and D" factorizations and type C" and D"
operators coincide.

Each of the factorization types listed above determines a family of
second order ordinary differential equations

[_ ffJ;' L Vm(x)] Y,(m, x) = AY,(m, x), me S, (7.13)

V() = (G + (m + 1) B2+ + (m + 1)K 4 a®(m + 1)2 + bu(m + 1)
= (] + mk)® — )" — mk’ + a*m* + bum,

which admit a factorization by the linear differential operators

L;=—:x+j+mk, L;:j—x+j+mk* (7.14)
The differential equations and recurrence relations for special functions
given by these factorizations are almost exactly the same as those
obtained from realizations of irreducible representations of the Lie
algebras %(a, b) by the corresponding operator types. The difference is
merely one of normalization.

For example if a = 1, b = 0, the type A factorizations are associated
with the differential equations

d? 1
[~ &+ s ) Patm + 1) cos(e + ) + m® 4 + )]

- Yy(m, x) = AY,(m, x). (7.15)
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Set m' =m 4 3, ' = A — }, ¢ = —¢, and map the space .#(A, m)
into the new space of solutions Yj(m, x) = ¢, (x) Y,(m, x) where
Pm (%) = (sin(x -+ p))'/2 (see Section 7-1). We find that the new
solutions satisfy the transformed equations

1 dT. d ...
~ sin(x + p) dv [sm(x +2) dx Yie(m, x)]

[ m'® + ¢'® — 2¢'m’cos(x + p)
T SinZ(x - p)

] Y(m, x) = XY (m, x)

which are identical with the equations for eigenfunctions of fype A4
operators derived i1n Section 2-7. Also, the recursion relations obtained
from factorization by the operators L; , L, transform into recursion
relations for Zype A eigenfunctions obtained from the operators J*, J-.
Similar remarks hold for the other factorization types.

For more details concerning the derivation of identities for special
functions from the factorization types A-D" the reader should consult
Infeld and Hull [1]. Clearly, the theory of these factorization types is
completely equivalent to the representation theory of the Lie algebras
%(a, b). Hence, the principal results of Infeld and Hull related to such
factorizations are already contained in Chapters 3-5. (Infeld and Hull
combine the type C’ and type C" factorizations to form type C factoriza-
tions. Similarly, they combine types D’ and D" to form type D factoriza-
tions. However, from the Lie algebraic viewpoint adopted in this book,
each of the type C and type D factorizations should be broken up into
subclasses; one subclass corresponding to faithful representations of
%(0, 1) and the other to faithful representations of %(0, 0). The type D"
factorizations are a special case of the trivial factorizations corresponding
to Eq. (7.11).)

To find additional solutions of (7.10) one might introduce the trial
function

Bo(s) =) S ha)nd,  Ru@)0, mes

=1

where n = 2. However, the only possible solution in this case is the
trivial B, (x) = f(m) considered earlier (see Infeld and Hull [1], p. 28).
One trial function which does lead to new results is

h

B) L)Lk, meS.

mni

Bu(i) =
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In fact, substituting this expression into (7.10) and equating powers
of m on both sides of the resulting formula we can obtain the following
new solutions:

Type (E) h(x) =¢, jx) =0, k(x) = acota(x + p),
a,, = a*m® — ¢*m?;
Type(F) h(x)=¢q. j(x) =0, k@x)=1/(x+p), a,=—¢m,

where a, p, g are constants.
The differential equations admitting type E factorizations take the
form (e = 1, p = 0)

- m(m -+ 1)

[ dx? sin? x

+ 2q cot x} Y, (m, x) = AY,(m, x).

The solutions of this equation are closely related to the type 4 eigen-

functions. Indeed, transforming the equation to a new normal form by
means of the substitutions

i(z + ”’2’) ~Intan 5, W = sin"2 x ¥,(m),

2 ¥
we obtain
d* 2igcos = + A + B S5
— g ) W) = —(n 1 W),
In terms of the constants 7,/ given by A = — — % g = irl this

expression becomes

2 2 1
[_ iiﬂ 4 2rl cos z + Tsmi S )( ] W{:H:I = __[:m |- %}E W(H} {:?Iﬁ)
which can be identified with the type 4 equation (7.15). Thus, the
eigenfunctions corresponding to type A and type E factorizations can be
identified. ('They are hypergeometric functions.) However, the type 4
recurrence relations raise and lower the /-value of these eigenfunctions
whereas the type E recurrence relations raise and lower the m-value.
This is the same kind of behavior exhibited in Section 6-2. There the
type E operators were used to find realizations of irreducible represen-
tations of ;. The basis vectors for these realizations were hyper-
geometric functions and the representation theory yielded two kinds of
differential recurrence relations. The first class of recurrence relations
was assoclated with the representation theory of s/(2) and we have seen
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that it 1s equivalent to the type A factorization. However, the second
class of differential recurrence relations, (6.14), was not directly associated
with a Lie algebra representation, but rather with a representation of the
universal enveloping algebra of 7 . By means of an appropriate change
of variable it is not difficult to show that this latter class of recurrence
formulas is equivalent to the formulas obtained from the type E factori-
zations.

Similarly the recurrence relations obtained from type F factorizations
are equivalent to Egs. (6.19) derived from a representation of the
universal enveloping algebra of 7 by #ype F' differential operators. Here
again the type B and type F factorizations yield different recurrence
formulas for the same eigenfunctions. (In this case the confluent
hypergeometric functions.)

The eight factorization types A—F derived above constitute the
complete list of factorization types given by Infeld and Hull. Indeed, it is
a straightforward exercise to show that the key equation (7.10) has no
solutions of the form

By(x) = ), kyfx)m!,
e

where n, n’ are finite nonnegative integers, other than the factorization
types already listed. We have seen that each of the factorization types
A-F corresponds to one of the differential operator zypes A-F studied
in Chapters 3-6. Thus there is a complete equivalence between the
factorization method as formulated by Infeld and Hull and the study of
realizations of irreducible representations of the Lie algebras %(a, ) and
¢ by differential operators in two complex variables. For this reason
we will not delve deeper into the theory of the factorization method.

It should not be supposed, however, that the factorization types of
Infeld and Hull constitute all possible factorizations. In fact, if f(x) is an
arbitrary analytic function and {a,}, me S = {m,,m, + 1, m, 4 2,...},
is a set of arbitrary complex constants, there is a solution B,,(x) of (7.10)
such that B,, (x) = f(x). Such a solution (not unique) can be constructed
recursively from (7.10). Thus there are an infinite number of factorizations
in addition to those we have listed. However, for none of the new
factorizations can the function B, (x) be expressed in the form (7.17), i.e.,
in terms of a finite number of powers of m. In view of this these new
factorizations have not proved to be of much practical importance.
Furthermore such factorizations seem to have no reasonable Lie algebraic
interpretation.



