CHAPTER 8

Generalized Lie Derivatives

As stated earlier, the method we have used to associate special
functions with a Lie algebra & consists of the three steps: (1) Deter-
mine an abstract representation p of %. (2) Find a realization of p by
generalized Lie derivatives acting on a space ¢/ of analytic functions.
(3) Compute the multiplier representation of the local Lie group G
induced by p on /. The first of these steps constitutes a problem in the
representation theory of Lie algebras, a subject which has undergone
intensive investigation (Jacobson [1]). The third step can be handled by
the use of Theorem 1.10. Thus, for low-dimensional Lie algebras at
least, steps (1) and (3) can be carried through on the basis of existing
results in the mathematical literature.

By constrast, step (2) is not a well-defined procedure treated in the
literature. For the purposes of special function theory we need to
classify “all” realizations of & by generalized Lie derivatives. That such
a classification is important follows from our study of the Lie algebras
%(a, b) and 7, . We found realizations of these Lie algebras in terms of
generalized Lie derivatives in two complex variables, operator types
A-F. This choice of operators completely determined the possible
special functions which could arise as basis vectors. There is no a prior
guarantee, however, that there are not other realizations of these Lie
algebras by generalized Lie derivatives in two variables which lead to
new classes of special functions. (In fact it will be shown there do exist
realizations of %(0,1) and %(0,0) by generalized Lie derivatives
distinct from the ones we have studied, but that they lead to no new
classes of special functions.)
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To solve such problems we will develop the rudiments of a classifica-
tion theory of generalized Lie derivatives. Significant results in the
classification theory of ordinary Lie derivatives are well known (Lie [1],
Vol. III). In particular, Lie himself found all possible realizations of com-
plex Lie algebras by Lie derivatives in one and two complex variables.
For more than two variables the results are incomplete. Here we shall
extend Lie’s methods slightly so as to apply to generalized Lie derivatives.
Among the results which will be obtained from this analysis are a proof
that the operator types A-F are the only realizations of ¥(a, b) and 7 by
generalized Lie derivatives in two complex variables which lead to
interesting special functions, and a table listing all Lie algebras which
have a realization in terms of generalized Lie derivatives in one complex
variable. In Chapter 9 the table will be used to derive new classes of
special functions which are not of hypergeometric type.

The material of this chapter is more difficult than that of the rest of
the book. In particular, fairly deep results from the theory of local Lie
groups and the cohomology theory of Lie algebras will be employed.
Therefore, those readers approaching the subject for the first time may
pretfer to omit Chapter 8 on a first reading.

8-1 Generalized Derivations

Here, notation and terminology for generalized Lie derivatives and
multiplier representations will largely follow that which was introduced
in Section [-3. However, it will prove convenient to introduce an
alternative definition of the generalized Lie derivative which has the
advantage of being independent of local coordinates. Given a point
x? € ¢, let (X be the space of all functions analytic in some neighborhood
of x% 1.e., the germs of functions at x° (Gunning and Rossi [1], Chapter
2). (Without loss of generality we can assume x° = 0 = (0,..., 0).) & is
a complex vector space, but it is also an associative algebra, since the
product of two functions in (7 is a function in (7.

To expose the algebraic structure of the results in this chapter we
introduce the concept of a realization of ¥ by generalized derivations
operating on an abstract associative algebra 4. When A = (7 this
concept is identical to the notion of a realization of 4 by generalized Lie
derivatives on (7.

Definition Let 4 be an associative algebra over € with a multiplica-
tive identity 1. The mapping D of 4 into A4 is said to be a generalized
derivation (gd) on A if
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(1) D(af + bk) = aD(f) + bD(k),

(2) D(fh) = fD(h) + D(f) h — D(1) fh
for all ¢,be ¢ and f, he 4. If in addition D(1) = 0, where 0 is the
additive identity of 4, then D is an (ordinary) derivation on 4.

If D 1s a gd on 4, it is easy to verify that the operator D = D — D(1)
defined by D( f) = D( f) — D(1)f,f€ 4, is a derivation on A. Thus,
D = D + D(1) and D is uniquely defined by this relation. Conversely,
if D is a derivation on A and % € A, the operator D = D - h, defined by
D( f) = D(f)+ hf,fe A, isa gd on 4. In fact h — D(1). Note: We
are using the same notation for the operator D(1) and the element D(1)
in A. This should cause no confusion.

If Dy, D, are gd’s on A the commutator [D,, D,] = D,D, — D,D,
s a gd on A. Indeed, a straightforward computation gives

[D,, D,] = D\D, — D,D, and [D,, Dy] (1) = Dy(Dy(1)) — Dy(Dy(1)).
For a, b € ' the operator aD, + bD, has an obvious definition as a gd on
A. Thus, the gd’s on 4 form a (possibly infinite-dimensional) Lie
algebra.

In terms of the local coordinates x = (x, &, ,..., #,,) in a neighborhood
of 0 € Z" a gd D on the algebra (7 can be expressed uniquely in the form

D) =3 pi)

T |

ij f(E) + p(x)f(x}, Pis PE o, (81‘]

d

for all f € 0/ (see Cohn [1], p. 17). Here,

= d
ﬁzaﬁhﬁ D(1) = p.
je= J

(The multiplicative identity of (7 is the constant function 1(x) = 1
for all x € £™.) Thus, on the algebra (7, the definition of generalized
derivations is equivalent to the definition of generalized Lie derivatives
given in Section 1-3.

Definition A realization = of a complex Lie algebra & by gd’s on
A 1s a mapping o — 7, where 7, is a gd on A, such that

(1) Tuarrp = ar, -+ brp,

(2) Trp = [7e, 78]

for every a,be ,a, B ¥. The 7 is transitive (4 # ) if #(f) = 0,
for all x e & implies f = al, a e ; or (A =) if [7(})](0) =0, all e &
implies [u(f)](0) = O for all derivations u of (.
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In the case 4 = (Z, this definition is equivalent to the coordinate-
dependent definition of a realization of ¢ given in Section 1-3. Moreover,
the following theorem holds.

Theorem 8.1 Let & be a complex Lie algebra and G the local Lie
group such that & = L(G). There is a one-to-one correspondence
between realizations r of 4 by gd’s on (7 and local multiplier representa-
tions 7* of G on (¥. The relationship between the multiplier »(x, g) and
the gd’s 7, is given by

rnf(x) = & [TMepat)fim)| ,  fea

i=()

7 18 transitive if and only if 7% is transitive.

PROOF (Rough sketch) If 7 is an effective realization of % (or if
T* 1s effective) this theorem is merely a reformulation of Theorems 1.9
and 1.10. Suppose then the set 4" = {a € Z: 7, f = 0 for all fe } is a
nonzero ideal of &. We must show there exists exactly one multiplier
representation 7% of G whose infinitesimal representation is 7.
Uniqueness follows from Theorem 1.9. To prove existence note that =
induces an effective realization 7’ of the quotient algebra %/.4". (The
elements of ¥/.4” can be denoted as o’ for all « € %. [We will sometimes
write o = o + A".] Then o' = B’ if and only if « — B e .A4". Addition
of elements and multiplication by a scalar are defined by aa’ + b’ —
(ax + bB)', a, b€ ¢, o, B € F. The commutator ., .» of /.4 is given by
(o, B> = [o, B]" where [, .] is the commutator of &. These operations
on ¥/ are well defined since A" is an ideal of .) Here, ', = =, for
all e @.

According to Theorem 1.10, +' induces an effective multiplier
representation 7% of the local Lie quotient group G/N where N is a
normal subgroup of G. [Here ¥ = L(G), & = L(N), %NV = L(G|N)
(see Pontrjagin [1], Chapter 9).] Moreover, the canonical projection ¢:
G — G/N is a local analytic homomorphism. Thus the operators T*(g)

on ¢/ defined by
T(g) = T(eg)), £€G,

determine a local multiplier representation 7% of G whose infinitesimal
representation is 7. Q.E.D.

Lemma 8.1 Let 7 be a realization of & by gd’s on the algebra A.
Then,

(1) [%.) 7ol = Frap s
(2) i:::(TH(ID LD %ﬂ(Tu([)) = TL&,B](I)J
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(3) Fuasvp = aFa + b,
(4)  Taussp(l) = ara(l) + br4(1)

for all @, be &, a, B € 4. In particular the #, form a realization # of ¢
by derivations on 4. Conversely, derivations 7, and elements 7,(1) of 4
defined for each a« € % and satisfying relations (1){4) determine a
realization r of % by gd’s on A, where 7, = %, + 7.(1).

PROOF 1If 7 is a realization of ¥ every gd 7, can be decomposed
uniquely in the form r, = %, 4 7,(1). If we carry out this decomposition
on both sides of the identities

(1) Tassep = ara + by,
(2" Tem = [7a: 7l
we see that (1)’ and (2)' are equivalent to conditions (1)-(4). Q.E.D.

8-2 Cohomology Classes of Realizations

Let 7° be a realization of ¢ by derivations on 4, 1.e., 72(1) = 0 for all
« € %. Denote by A(7°) the set of all realizations 7 of % by gd’s on 4 such

that # = 7°. The A (7°) can be given the structure of a vector space over
¢ If r, ' € A(7°) and a, b € , define the realization ar @ b’ € A(°) by

Py
(ar D o7')y = 7, 82)

(ar @ br'), (1) = ar (1) + br(1), all ae.

The additive identity element in the vector space A(7°) 1s 7°.

Clearly, to classify all possible realizations of ¥ by gd’s on (7 it is
enough to find all of the vector spaces (¥(7°) where 7° runs through a
complete list of possible realizations of & by ordinary Lie derivatives
(derivations). The problem of classifying the realizations of % by
derivations has been studied in detail by Lie and completely solved for
Lie derivatives in one or two complex variables (n = 1, 2). For larger
values of n the results are incomplete (Lie [1], Vol. III). Here, we shall
fall back on Lie’s results and assume we know all of the realizations
° of & by derivations on (7. (This is equivalent to the knowledge of all
possible ways in which G can act as a local transformation group on an
n-dimensional complex manifold.) To complete the classification of all
possible realizations of & by gd’s we need only compute the vector space
(I(7°) for each 7°. This is still a difficult problem since in general (Z(+°) is
infinite-dimensional. To simplify the computations involved in the
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solution of this problem note that, for the purposes of special function
theory, the elements of (/(°) can be conveniently divided into
equivalence classes. This can be seen as follows: Let ¢ e/ where
¢(0) 7= 0. Then, ¢! € /. This function defines vector space isomor-
phisms ¢ and ¢! of & onto (7 such that ¢[f](x) = ¢(x) f(x) and
e '[f](x) = ¢7(x) f(x) for all fedl. Similarly ¢ induces an iso-
morphism ¢’ of the vector space (Z(7°) onto itself. Here,

?'[7], = o0 = F, + 7(1) + o7 (p) (8.3)

for all r € (/(7°), « € & (see Lemma 4.4). The function ¢(x) can always

be expressed in the form ¢(x) = exp(f(x)) = ¥, (f(x))*/k! where
f el (fi1s not unique). Then (8.3) becomes

Pl = 74 +7(1) + 7). (8.4)

In Chapters 4 and 5 it was shown by means of examples that the special
function theory associated with the operators 7, is completely equivalent
to the special function theory associated with the operators ¢'[r], .
Clearly, the special functions corresponding to the two sets of operators
are related by the multiplicative factor ¢(x). Using this discussion as
motivation we make the general definition:

Definition Two realizations 7, 7 of ¢ by gd’s on A are
said to be cohomologous, r ~ 7/, if there is an fe A4 such that
7, =%, (1) = (1) + #(f), all x € Z.

By definition ““~" is an equivalence relation on A(7°). Thus, A(7°) is
divided into equivalence classes of cohomologous operators. Moreover,
this equivalence relation respects the vector space structure of 4(7°). The
set N(7%) = {n € A(7°): p ~ 7%, i.e,, the equivalence class containing °
1s clearly a subspace of 4(7°). Furthermore, it is easy to show r ~ 7' for
7, 7 € A(7°) if and only if 7 = 7" @ u for some u € N(+°). This proves
the existence of an isomorphism between the set of equivalence classes
in A(7°) and the quotient space A(7°)/N(+°). In particular the set of
equivalence classes can be assigned a vector space structure.

As suggested by the term ‘“‘cohomologous,” the above result can be
formulated in terms of the cohomology theory of Lie algebras. We
follow Jacobson’s presentation [1, Chapter 3]. Let 2 be a realization of
% by derivations on the algebra 4. If i = 1, an i-dimensional
A-cochain for % is an i-linear mapping f which associates to each
i-tuple (« ..., ), &; € %, an element f(o ..., o;) of 4 in such a way that
f is skew-symmetric in its ¢ arguments. A 0-dimensional A-cochain
is a map o — h where « € % and 4 is a fixed element of 4. The collection
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C(%, A) of all i-cochains for 4 forms a complex vector space under
the usual definitions of addition and scalar multiplication of functions.

The coboundary operator 6 is a linear mapping of C{%, 4) into
C**(%, A),1 = 0, defined by

i+1

O (0 yerey 1) = 3 (— 1) 72 £ (0 yeney g ey i)

=1

Fo 3 PR (Tomamlyoawe Gpnen By v ). (83

P=q

(Omit the arguments &,,d,.) For feCY fiao— A, we require

0 f(a) = 7oh. If f € C* the cochain 8f € C**! is called the coboundary of
f. Note that

of (a5 ap) = 7o, f () — 75, f () — f([ow , ), (8.6)

8f (a1, 005 09) = 75, f (g, 08) — 70 f (0, 0t3)

+ ngf(ﬁ-ﬁ v o) — f (Lo s o), 05) + ([, ag], o)
— f [z, 2], o). (8.7)

An ¢-cochain f is a cocycle if 8f = 0 and a coboundary if f = 84 for
some he C"1. Clearly, the set Z/(%, 4) of all i-dimensional cocycles
and the set BY(%, A) of all i-dimensional coboundaries are subspaces of
C*, From the definition (8.5) it is a standard argument to show that
6 = 0, 1.e. B*C Z%, The factor space H{(¥, A) = Z{(¥%, A)/Bi(¥%, A)
1s called the i-dimensional cohomology space of ¥ relative to A.

In the above discussion we have defined the cohomology spaces of %
relative to an algebra A. However, the same construction goes through
for a module, .#, and one can define cohomology spaces H(¥%, .#)
(See Jacobson [1], Chapter 3). We shall have occasion to make use of
this remark later,

A comparison of our study of A4(+°) and the cohomology theory for
the pair 4, 4 is illuminating. H%%, A) can be identified with the space
of all elements & € 4 such that %4 = 0, all « € ¥. Thus, +° is transitive
implies that dim H%%, A) = 1. From Lemma 8.1, 7€ A(+°) if and
only if r(1) 1s a 1-cocycle. In fact, this correspondence establishes an
isomorphism between the vector space A(7) and the space ZY(%, A) of
I-cocycles. T'wo realizations 7, 7' € A(7°) are cohomologous if and only
if their corresponding l-cocycles differ by a coboundary, ie., v ~ 7' if
and only if 7)(1) = 7,(1) + 8f, fe C%¥, A). The space N(°) can be
identified with the space of 1-coboundaries BY(¥, 4).
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Theorem 8.2 A(+°)/N(+°) = H ¥, A). The HY(¥, 4) is isomor-
phic to the space of equivalence classes of realizations of ¢ by generalized
derivations on A.

We return now to the special case 4 = (7. Suppose 7° is analytic in an
open set U containing 0 € Z*. According to Theorem 8.1 there is a
one-to-one correspondence between elements of (7(7°) and elements of
the set X(r°) consisting of all multiplier representations 7% of G on (¥
such that the action x — xg, of G as a local transformation group on U
1s induced by °. The operators T¥(g) are given by

[T"@) fI(x) =v(x,8)f(xg), g€G, fel, xeU, (8.8)

where v is 2 multiplier (see Section 1-3). Put another way, there is one-to-
one correspondence between elements of (%(7°) and complex functions v
on U X G such that

a) v(x,e) =1,
(a) ¥(x,e) (8.9)
(b) v(x,8:8) = v(x, &) v(xgy , &)

for x in a suitably small neighborhood of 0 and g, , g, in a suitably small
neighborhood of the identity element e of G. In particular the multiplier
vo(X, &) = | corresponds to 72,

We can use this one-to-one correspondence to induce a vector space
structure and an equivalence relation on X(7°). Thus if the multiplier
representations 7%, 7% are associated with the realizations r, 7', respec-
tively, we require the sum 7% to be the multiplier representation
associated with the realization + @ 7’ and the scalar multiple 7% of
T* by ae ¢ to be the multiplier representation associated with ar.
Similarly we say 7% is cohomologous to 7% (7%~ 7%) if and only if

!

T &~ 7. The result of this construction is the definition:

Definition The sum of 7% 7% e X(+°) is the multiplier representa-
tion 7" e X(7°) where w'(x,g) = v(x, g)v'(x,2); and the scalar
multiple of 7* by ae( is the representation T+ e X(°) where
(X, §) = [v(x, g)]*. The representations 7% and 7" are cohomologous
(I" ~ TV)if T = @~ 1T forsome g, i.e., if v'(x, g) = v(x, g) p(xg)/p(x)
for some ¢ €%, @(0) == 0.

According to these definitions X(7°) is a vector space 1somorphic to
(I(7°). Moreover the factor space X(7°)/X°(7°) is 1isomorphic to H{(¥9, ()
where X°(7%) = {T* e X(7°): T* ~ T*} is the cohomology class of the
identity element of X(72). These relationships can be used to derive more
information about HY(%, (7).
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At this point we make the assumption that 7 is transitive or, what is
the same thing, that the elements of X(7°) are locally transitive on U.
Intransitive multiplier representations do not seem to be of much
interest for the purposes of special function theory. In particular, all of
the multiplier representations studied in this book and applied to the
functions of hypergeometric type are locally transitive.

Let K, be the isotropy subgroup of G with respect to the point
xe U, ie, K, = {ge G: xg = x}. It is well known that the groups
K., K, corresponding to any two points X,y in a sufficiently small
neighborhood of 0 € U are conjugate subgroups of G (Pontrjagin [1],
Chapter 9). There will be no loss of generality if we restrict ourselves to
consideration of the isotropy subgroup K = K. [Since G is locally
transitive and K is closed in G the set U can be identified with an open
set in the local homogeneous space G/K and the action of G on U as a
local transformation group can be identified with the natural action of
G on G/K by right multiplication (Pontrjagin [1], Chapter 9)].

Let T e X(7°). Since G is locally transitive it is possible to choose
an element g, € G for all x in a suitably small neighborhood of 0 such
that 0g, = x and the function x — g, is analytic in the coordinates of X.
From (8.9) there follows the relation

v(0, kyky) = v(0, k) (0, k5), Ry, Ry, RiRy E K.

Thus, p(k) = v(0, k) defines a local 1-dimensional representation of K.
Furthermore,

v(0, kg) = v(0, &) (0, g), keK, g koeC.
This equation and (8.9) yield the useful relation

u(x, g) = ”j?éﬁixi) = F(k{ﬂ;fg’);fj?:gwj {E]U]

where k(x, g) € Kisdefinedbyg,g = k(x, g) g5, - [f weset ¢(x) = v(0, g,),
then ¢ € (Z, (0) # 0, and (8.10) becomes

w(k(x, £)) p(xg)
L (8.11)

v(x, g) =

Conversely, if ¢ € @, ¢(0) £ 0, and p is a local 1-dimensional represen-
tation of K, by reversing the above argument it is easy to show that the
function v defined by (8.11) satisfies conditions (8.9), hence, defines a
multiplier representation 7* of G.
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Comparing (8.11) with the definition of cohomologous multiplier
representations we find 7 ~ T* if and only if p(k) = u'(k) for all
k € K. Thus to determine all noncohomologous multiplier representations
of G with given action on U, we need only determine the possible
analytic 1-dimensional representations of K.

If i i1s an analytic 1-dimensional representation of K, then p maps all
commutators in K into 1 € €'

ok Ry ") = pulRy) (k) n(Ry)™ p(ks) ™ = 1.

Let K* be the commutator subgroup of K, i.e., the closed normal
subgroup generated by the commutators kk,k; k3" of K. In this case
p(K*) = 1 and p induces a representation u® of the abelian factor

group K/K*:
u*(EK*) = w(k), keK. (8.12)

Suppose K/K* has dimension s as a local Lie group. Then there are
local coordinates (x ,..., x,) for K/K* in a neighborhood of 0 € £* such
that the coordinates of e K* are (0,..., 0), and 1if 2, K*, £, K* have coordi-
nates (@ ,..., @), (by,..., bs), respectively, then (R K*)(k,K*) = kK*

has coordinates (a; + by,..., a, + b,). Since pu* i1s a l-dimensional
analytic representation of an s-dimensional abelian group, there must
exist complex constants ¢ ,..., ¢, such that

RHRK®) = (% ooy %,) = exp(16y + %ty + ++ + %) (8.13)

where (x,,..., x,) are the local coordinates of RK* € K/K*. Conversely,
if complex constants ¢, ,..., ¢, are given and p* is defined on K/K* by
(8.13), we can define a representation u of K by (8.12) and thus determine
a multiplier representation 7" of G. There is a one-to-one correspondence
between classes of cohomologous multiplier representations of G and
complex s-tuples (¢ ,..., ¢,). Indeed, two multiplier representations are
cohomologous if and only if they are associated with the same complex
s-tuple.

The set of all complex s-tuples has a natural vector space structure
which agrees with the induced structure of the space of cohomology
classes. In fact, if T, T*" € X(7°) are associated with (¢; ,..., €;), (€1 yeers C5),
respectively, then an easy computation shows 7* is associated with the
s-tuple (¢; + ¢ ..., € + ¢;). Similarly, 7% is associated with the
s-tuple (ac, ,..., ac,).

As a consequence of the above construction there follow the equalities

dim HY(%, (1) = dim X(°)/X°(+°) = dim K — dim K* = s.
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These equalities prove that the cohomology space HY(¥, (7) is finite-
dimensional and that each cohomology class is associated with a unique
s-tuple (¢q,..., ¢,). Such results suggest the possibility of a practical
method for computing the cohomology classes.

We can use the isomorphism between X(7°) and (/(7°) to phrase our
conclusions in terms of differential operators.

Theorem 8.3 Let ° be a transitive realization of & by derivations
on (¥ and let # be the isotropy subalgebra of % with respect to 77,

H ={aec@:[r2f1(0)=0, alfed].
Then, if #* = [, A"] is the derived algebra of 2, we have
dim HY(¥, (F) = 1,
dim HY%, (1) = dim " — dim %%,

PROOF A = L(K), #* = L(K™),

Here ' * is the Lie algebra generated by the set of all commutators
[, B], o, BeHA. Theorem 8.3 1s of fundamental importance for the
computation of cohomology classes for realizations of &. In fact, given a
transitive realization = of & on ( we can read off the dimensions of 4
and ¢ * directly and thus determine the dimension of HY(%, (f). We will
use these results in Section 8-3 to explicitly compute realizations 7 in
each of the cohomology classes of 0Z(7°).

Before leaving the abstract theory, however, we make several obser-
vations:

(1) Let 7 be a realization of % by gd’s on (7 and let .# be the sub-
algebra of ¢ defined by J = {ae %: 7, f =0, all feZ}. It is easy to
show that .# is an ideal in 4, [¥, .#] C 4. Thus, 7 induces a realization 7'
of the factor algebra ¥' = %/.5. (1., y = 7. for all ae ¥.) Now 7’ is an
effective realization of &’ in the sense that if « + # € ', a ¢ 7, then
7., 7 7 0. As a consequence of this fact there is no loss in generality if we
study only those realizations of % which are effective. Thus, in the
remainder of this chapter only the spaces of realizations (/(7°) of ¥ by
gd’s such that at least one 7 e (/(7°) is effective will be considered.

(2) Let 7 € (Z(°) be an effective realization of ¥ and consider the set
M = {ae¥: 2f =0, all fe}. Clearly, # is an abelian ideal in &:

(9, #1CH, [M,H#]=0.
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If dim .# = m, the set of functions r,(1) e/ defined for all o c.#
form an m-dimensional vector space ((#) in (7. (If dim /(M) < m
there exists an o € .# such that =, = 0, in which case 7 is not effective.)
O((A) can be given the structure of an abelian Lie algebra by defining
the commutator of any two elements to be 0 € (Z(.#). Then the Lie
algebras .# and (/(.#) are isomorphic and can be identified. & acts on
4 by the derivations 79,

To(7e(1)) = Trag( 1), xe¥, Bed. (8.14)

7 induces an effective realization 7 of the factor algebra ¥’ = ¥/.#
on ./ obtained in an obvious manner from (8.14). Thus, given an effective
realization of ¢ by gd’s on (7 we have constructed an effective realization
of the factor algebra %’ by derivations on (Z(.#).

Conversely, let u° be an effective realization of a Lie algebra %’ by
derivations on an m-dimensional vector space (¢(.#)C (1. We impose
upon (/(.#) the structure of an abelian Lie algebra and identify it with
the abstract m-dimensional Lie algebra .#. By reversing the argument in
the preceding paragraph and using the theory of extensions of Lie
algebras (Seminaire Sophus Lie [1], Cartan and Eilenberg [1]), we can
find a Lie algebra & containing .# as an ideal and an effective realization
T of ¥ by gd’s on (¥ (neither ¥ nor 7 is unique) such that 4/.# ~ %’
and 7 induces the realization p® of ¥’ on .#. In fact, it can be shown that
the possible extensions % of .# by %’ are in one-to-one correspondence
with the elements of the space H¥( %', (I(.#)) where the action of %’ on
Ol(A) is given by p°.

In the case where %’ is semisimple we can apply the Whitehead
lemmas (Jacobson [I], Chapter 3) which state H{¥', ({(#4)) = 0,
1 =0, 1, 2,.... Thus, H¥%', (l(#)) consists of the zero element alone
and there is only one possible extension of # by %’. As is well known,
that extension is ¥ = ¥’ @ .4, the split extension of ' by .# (Jacobson
[1], Chapter 1; Seminaire Sophus Lie [1]).

Theorem 8.4 Let & be a Lie algebra and 7 a transitive effective
realization of & by gd’son (/. Let # = {0 € 9: %, =0}, ¥’ = %/ 4 as
defined above. If &’ is semisimple then ¥ ~ %' @ #.

‘The above results constitute a “bootstrap” method for constructing
realizations 7 of a Lie algebra & by gd’s from a knowledge of the realiza-
tions u° of lower-dimensional Lie algebras %' by derivations. This
method will prove useful in the next section. Note that the Whitehead
lemmas are not applicable to the computation of the cohomology spaces
H %, d), i =0, 1, 2,..., because (7 is infinite-dimensional.
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8-3 Computation of the Cohomology Classes

The abstract theory presented in the last section will now be applied to
explicitly construct the possible realizations of a Lie algebra. Let 7° be a
transitive realization of ¢ by derivations on (7 with isotropy subalgebra

A,
H ={aeeF:[r.f](0) =0, all f e 0l}.

If » = dim  we can choose a basis o ,..., o, for % and define the
structure constants C]; with respect to this basis by

[, o] = Z Cizfﬂfz: 1<, j<r. (8.15)
=1

As is well known (Jacobson [1], Chapter 1), the skew-symmetry of the
commutator and the Jacobi equality imply the relations

Ci = Cj, ¥ (CECy + CEC,; + CHCp)) = 0 (8.16)
p=1
for 1 <44, b <r.
According to (8.15) the Lie derivatives Y; defined by Y; = 7¢ ,
j = 1,..., r, satisfy the relations

YJY}: e Y}',:YJ — Z ;?kYﬂJ 1 1 %j, k % r {E.l?}

p=1

In terms of local coordinates in U C £" the ¥; can be expressed in the
form

V=", Pﬁ{x}i, 1<j<Lr, r>=mn,
=] oxy
where P; € (I. Since 7° is transitive the r X n matrix (Pj(0)) has rank z.
If 7€ d/(7°) the functions f; € (7 defined by f; = 7,(1), 1 <j <,
satisfy the relations

Y=Y =Y Cifor 1<jh

=]

i\

r. (8.18)

Conversely, any set {f;}, | <X j < 7, of elements of (¥ that satisfies (8.18)
uniquely defines a member 7 of /(°). In fact r, = Y; 4 f;. Thus, the
problem of determining all members of (/(7°) is the same as the problem
of determining all solutions f; ,..., f, of (8.18).
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If 7, 7" € 0/(°), then = ~ 7' if and only if

Ji=hL+Y{f), 1<j<n (8.19)

for some f e (7, where f; = 7.(1), fj = =’ «(1). To find a realization in
each cohomology class of (7(7°) we need to find all solutions {f;} of
(8.18) and then from among these solutions pick out one element in
each equivalence class (8.19). ¢Z(°) is in general infinite-dimensional so
this seems to be a difficult problem. However, use of Theorem 8.3
simplifies the computation considerably.

For simplicity assume there exists an n-dimensional subalgebra
# ot & such that &4 = 5 | ¢ (direct sum as a vector space), where
" is the isotropy subalgebra of & with respect to 7% It is not necessary
that 5# be an ideal in &. If this condition is satisfied, we say 7 is regular.
Clearly, if 72 is regular the restriction of 7° to the subalgebra # yields a
transitive realization of J# on (7 with isotropy subalgebra zero.

Regular realizations are of frequent occurrence. In fact, an examination
of Lie’s tables (Lie [1], Vol. III, pp. 4-5 and 71-73) listing the local
transformation groups operating effectively on spaces of one and two
complex variables shows that all of these realizations satisfy this condi-
tion. Furthermore, most of the realizations 7° studied in this book also
satisfy it.

To recapitulate, we are concerned with an r-dimensional complex Lie
algebra & and a regular realization ° of % by derivations on the space
(¢ of analytic functions of #n complex variables. ¥ — # L # where #
1s an n-dimensional subalgebra and .#" is the isotropy subalgebra of %
with respect to 7°. Let dim 4" = k, dim # * = s where ¥ * is the derived
subalgebra of 2. Clearly k =7 —n > 0. We can choose a basis
o 5.y &, fOr & such that « ,..., o, form a basis for 3# and o, ,..., a,
form a basis for 2. In this case the Lie derivatives Y, ,..., Y, arﬁ
linearly mdependent in a neighborhood of 0 e " while [Y f]( ]
for all fed and j = n + 1,..., 7. Since 7°/# has isotropy ﬂubalgebra
zero we know from Theurem 8 3 that T,f'ﬁ ~ 7/ for any T € 0/(7°).
(‘This follows from the fact that H(5#, (/) = 0.) Thus any element of

Ul(7°) 1s cohomologous to a realization = for which f; = =, (1) =0,
I =g =% Furthermﬂre if 7,7'€ll(+?) with (1) = 7. (I) = 0,
1 <j < m then r ~ 7' if and only if r, = 7/ for all e A, App]}ung
Theorem 8.3 again we have:

Lemma 8.2 If 7 is regular, there is an isomorphism between the
(k — s)-dimensional space of cohomology classes of (¥(°) and the space

of solutions ( f, , fy,..., f;) of Egs. (8.18) such that f; = f, = -+ = f, = 0.
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The most general solution of this kind depends linearly on & — s
constants of integration and the choice of these constants determines the
cohomology class of the solution.

As an example we will find a realization in each cohomology class of
the space (/(°) where 7° is the realization of s/(2) by differential operators

Tag = 2° i (8.20)

y
oy
o
2
Rl &

Here,
[0, 0] = —oy, (ot , 03] = oy, [og , o] = —2a,.

The realization = € (/(7°) takes the form

d
= B = FAE) 7o = B 1 fi(a)

d 5.0 d df.
L_alh_op, M adh g (go1)

Clearly, ¢ 1s the 2-dimensional subalgebra of s/(2) with basis {a,, a3} and
X * has basis {«y}. For 5# we can choose the subalgebra with basis {x,}.
Then, Theorem 8.3 implies dim H(s{(2), (¥) = 2 — 1 = 1. According
to Lemma 8.2, 7 is cohomologous to a realization for which fj(2) = 0.
Thus, Eqgs. (8.21) reduce to

d
B0, =4,
with solution
d d d
1'“1:@, Ty _HE_]_E’ TuHZEEE‘FZEE, cel. (8.22)

The value of the constant ¢ determines the cohomology class in which ~
lies. All other solutions of (8.21) are cohomologous to a solution (8.22)
and no two solutions of the form (8.22) are cohomologous unless they
are identical. The general solution of (8.21) is

d  df d df

1~ dz | dz’ C i dg_r_ﬂ_t_gdz’

-.'I
l

d df
— g g &
o zd2+2ﬂ3'—|—5 Ia

Ta

where f is an arbitrary element of (%,
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'The above example was so elementary that the cohomology classes
could easily have been computed without recourse to Theorem 8.3
and Lemma 8.2. However, for higher-dimensional Lie algebras these
results assume considerable practical importance. Nonregular realizations
of a Lie algebra do not obey Lemma 8.2 and it is much more difficult
to compute explicitly the cohomology classes of such realizations. An
example of a nonregular realization is {, (Section 8-4).

In Sections 2-7 and 2-8 we computed realizations of s/(2) that seem to
violate the analyticity assumptions made in this chapter. In particular
the differential operators

d d d
Tay 25_5’ =25 +A  T,=2' (2 +p)z  (8.23)
form a realization of s/(2), where A, p are complex constants. If p £ ()
this realization has a singularity at 2 = 0. Thus, = ¢ (/(+°) for p # 0.
However, if 7 is transformed to the realization v = @~lr¢ where ¢ is

the function ¢(2) = 2¢, then

"";1:£= T;E:zé—l—c, T;3=zﬂﬁé -+ 2¢z, c = A+ p. (8.24)
Clearly, 7" is an element of ¢Z(7°) in the normalized form (8.22). (Note:
Equation (4.82) remains valid even 1f ¢(0) = 0 or ¢ ¢ ¢Z.) In Chapter 5
it was shown that the realizations 7 for p 7 0 could be used to construct
certain infinite-dimensional irreducible representations of s/(2). The basis
functions for these representations were h,(2) = 2%, k£ = 0, +1, 4-2,....
However, it is easy to show that these same representations could be
obtained from the realizations 7" = ¢~!r¢ operating on the space gener-
ated by the functions %,(2) = ¢~ Y2) Ai(2) = 2%, k = 0, 1, +2,....
Thus, it was not necessary to use the singular operators in Chapter 5; we
could have obtained the same results in special function theory by using
the analytic operators 7' and the basis {#;}. The singular operators were
used simply because the basis {4} is more convenient for computational
purposes. There i1s thus no loss of generality in restricting ourselves to
elements of C/(7?).

These remarks hold true for all of the realizations of the Lie algebras
%(a, b) and 7 by differential operators as computed in Chapters 3-6.
In each case where the realization 7 has a singularity at the point x° = 0
we can find a function @(x) such that the realization 7 = ¢ l7¢ is an
element of Z(#'). There 1s no loss of generality for special function theory
involved in the restriction to elements of (/(#'). Note, however, that in
the construction of irreducible representations of ¢ in terms of a reali-
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zation 7 we do not necessarily assume that the basis space for this
representation is a subspace of (. The elements of the basis space may
have a singularity at x° = 0.

8-4 Tables of Cohomology Classes

As a first application of our results we list all transitive effective
realizations of Lie algebras by gd’s acting on functions of one complex
variable, i.e.,, # = 1. To determine this list it is sufficient to use the
methods indicated in observation (2), Section 8-2. Lie has proved that,
to within an analytic change of variable, the only transitive effective
realizations of a Lie algebra by ordinary derivations in one complex

variable are (Lie [1], Vol. III, pp. 4-5)

M &
(2) ;j;, z%; (8.25)
d d

In each of the three possible cases the differential operators corresponding
to a basis of the associated Lie algebra are given. In particular, (3) is the
realization of s/(2) studied in the last section.

For n = 1 the only possibilities for the factor algebras %’ defined in
observation (2) are the three Lie algebras determined by (8.25). Corre-
sponding to each of these three cases we must find all finite-dimensional
subspaces . of (7 which are invariant under the action of %’ on (¥ as given
by (8.25). (Such a classification is most easily obtained by finding a basis
for 4 such that the matrix of d/dz is in Jordan canonical form.)
Considering each such subspace .# as an abelian Lie algebra we must
then determine up to isomorphism all possible Lie algebras & D .#
such that ¥/.# ~ %’. The list of all Lie algebras # so obtained exhausts
the list of Lie algebras which have a transitive effective realization in
terms of gd's in one complex variable. The above computation is
straightforward but tedious so we shall merely list the results.

For each Lie algebra in the list we give an effective realization +. All
other realizations in the set Z(%) can easily be obtained from = by using
the methods presented in Section 8-2. For each realization the
values of » = dim %, & = dim 2", s = dim 2#* will be given. Recall
dim HY%, /) = k — s.
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Theorem 8.5 If 7 is a transitive effective realization of a finite-
dimensional Lie algebra by gd’s in one complex variable, then either
7' € (/(%) for some 7 in the following list or 7' can be obtained from such
a realization by an analytic change of variable. The list 1s:

e 2l S B e W b =A0L 1 s 0

a; €, aa; —1) =0,

a; = a; for i]. m; , ¢ nonnegative integers
r=q+14 ) my, k=r—1, 3=0. (8.26)
j=1
d d
= B =2 k=1, § =0 (8.27)
di_, g%, zt: | =0,1,...,q, ¢ an integer,
= (8.28)
TZQ}'E, k=q+2; 5:'?'
d d d
C,oat, @i r=3 k=2 s=1 (8.29)
i gi 32 i 1; y = 4? k= 3, 5 = l. {8-30}

All of the realizations of the Lie algebras %(a, b) obtained in Section
2-8 are special cases of this theorem. Thus, the realizations of %(0, 0)
are obtained from (8.26) by setting g = 3, 4, =0, @y = 1, ag = — 1,
1y =y — iy =0

d - - = —
E ' Ig £7 BTy 'k — 5 =2
(Introduce the new variable 2" = ¢°) The realizations of %(0, 1) follow
from (8.28), where ¢ = I:

d d
a, EEE, 1, < k=3, =1

The realizations of %(1, 0) are obtained from (8.30):

d d o d ‘ e -
E, EE‘ HE, ]_, k 3., -5'—]..
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There are no realizations of %(a, b) for n = 1 other than those given here.
This proves that the restrictive assumptions made in Section 2-8 were
not necessary; indeed, the most general realization of %(a, b) is cohomo-
logous to a realization derived in Section 2-8. (Note that there is no
realization of 7, by gd’s in one complex variable.)

The algebraic difficulties involved in computing all transitive
realizations of Lie algebras by gd’s in two complex variables are great
enough so as to make it impractical to write down such a list. However, it
is not difficult to find all possible such realizations of a given Lie algebra
%. Lie has computed a list of all possible realizations of Lie algebras
by ordinary derivations for the case n = 2 (Lie [1], Vol. II1, pp. 71-73).
To find all realizations of a given Lie algebra % by gd’s it 1s necessary
to classify the possible abelian ideals .# of 4. (The ideals .# and .#" are
identified if there is an automorphism of % which maps .# onto .#".)
For each such .#, Lie’s tables can be used to determine the possible
realizations of the factor algebra ¥’ ~ %/.# by ordinary derivations.
Each of these realizations of %’ can then be extended to give realizations
of . According to observation (2) at the end of Section 8-2, every
realization of & can be obtained in this way.

In Chapters 3-6 it was shown that the functions of hypergeometric
type were associated with realizations of the Lie algebras s/(2), (0, 1),
T, , T, by the differential operator types A-F. It was not clear why those
particular realizations were singled out for attention or whether there
were other realizations in terms of gd’s in two complex variables. We
shall resolve this problem by listing all transitive effective realizations
of these Lie algebras for n = 2. The results are:

(I) sl(2)
¢ 0 ¢ ¢ d
S P € P2, + €*1 tan *2 52, —e7%1 o, + e~*1tan % O, ;
r=13 k=1, 5=0.
g E%;‘ e ;2 - - e*’*la—i:, e a‘; + e % ;;1 :
=73 k=l §=0

Every transitive realization of s/(2) by gd’s in two complex variables 1s,
to within a change of coordinates, either an element of (/(p,) or an
element of (Z(u,). The type A and type B operators correspond to a
selection of an element in each cohomology class in (Z(x;) and (/(u,),
respectively.
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(II) %(0,1)

Paverlanieyelod, 8 oo dviag
&l zﬂﬁzﬂ_gl oz, ' 0% " %2 ggs T
f:‘i} Bi—= 3 3:01
¢ ¢ o o

?':4, ;?.——-2, g="().

Every transitive effective realization of %(0, 1) by gd’s in two complex
variables is, to within change of coordinates, an element of one of the
spaces (2({;), i = 1,..., 4. The type D’ and C’ operators correspond to a
selection of an element in each cohomology class in ¢({,) and (7 Q
respectively. The realizations in (%({;) and () have not occurred in
this book up to now. However, as the reader can verify, they do not
lead to any new results in special function theory.

(III) 7,
& a—i~, Ezlﬁi’ E“*l%, r=3 k=1 5=
Eat T “83_31%’ Eji, ﬂiﬂ’ Fr=3 E=1 =0
£, E!_il’ Eﬂlﬂig’ e~ r=3 k=1 .5=0

Every transitive effective realization of 7, by gd’s in two wariables is,
to within a change of coordinates, an element of (&) fori = 1, 2, or 3.
The type D" and C” operators correspond to a selection of an element
in each cohomology class in (7(¢,) and (Z(&,), respectively. Realizations
in (¢(&;) did not occur in Chapter 3, but they lead to no new special
functions.
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(IV) Fs
. a 2 a ] z a -4 -E:' | —_— E',r
Py Fra EIFEETEIEEHEEE]., ~—€ lazg—re itanzﬂﬂzl'
€1C08%,, —SINZ, €71¢0082,; r=6 k=4 s=2,
. a = a & 5 — la —Z a
Po’ 7=’ e1&gﬂ—31631, e lﬂzﬂ_l_e 15,

— ity gl ettt F =06, BE=94. $§=2

Every transitive effective realization of Z; by gd’s in two complex
variables is, to within a change of coordinates, an element of /(p,) or
0l(ps). The type E and F operators correspond to a selection of an element
in each cohomology class of (7Z(,) and (Z(p,), respectively.



