CHAPTER 2

The Schrédinger and Heat
Equations

2.1 Separation of Variables for the Schrodinger Equation
(19,49, )¥(tx)=0

In the quantum-mechanical study of a nonrelativistic system n two-di-
‘mensional space-time, consisting of a particle (mass m) subject to a
potential V'(x), it 1s postulated that the state of the system at time ¢ is
completely determined by a state function ¥(¢, x) which is a solution of the
Atime-dependent Schrodinger equation
ﬁl

ih8,¥ =~ -

d. ¥+ V(x)V, (1.1)
‘where i=h /27 and h is Planck’s constant [70]. (The constants 4 and
h*/2m, although very important in physics, are simply a nuisance in this
‘book, so we will henceforth choose units such that A=h*/2m=1.) Among
the most important Schrédinger equations are those for which the potential
function V' (x) takes one of the forms in Table 5. For systems (1)—(4) the
variable x ranges over the real line, while for (5)-(7) we assume x is
‘nonnegative. (These latter equations arise from Schrodinger equations in
‘higher-dimensional space-time which separate in polar or spherical coordi-
‘nates. In (5)-(7) x=r, the radial coordinate [70].) Anderson er al. [3] and
‘Boyer [18] have classified all Schrodinger equations (1.1) that admit
‘nontrivial symmetry algebras. (Clearly all Schrodinger equations admit the
‘two-dimensional complex symmetry algebra with basis d, and E=1. By
“‘nontrivial” we mean that the symmetry algebra is at least three dimen-
sional.) They have shown that the only such equations are those with
‘potentials (1)—(7). These potentials can be characterized in terms of sym-
metry groups.
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74 The Schrodinger and Heat Equations 2.1.

Table 5 Potentials V' (x) with Nontrivial Symmetries

Vix) Name of system
() 0 Free particle
(2) kx?, k>0 Harmonic oscillator
(3) —kx%: k>0 Repulsive oscillator
(4) ax, a++0 Free fall (linear potential)
(5) a/x* a+0 Radial free particle
(6) a/x*+kx* a=0, k>0 Radial harmonic oscillator
(N a/x*—kx?, a#0, k>0 Radial repulsive oscillator

In the next three sections we shall study these seven equations and
uncover the surprising relations between them and the connection with
separation of variables.

We write the free-particle Schrodinger equation in the form

OV¥=0, Q=id+0,,. (1.2)

To compute the symmetry algebra of this equation, we follow the method
described in Section 1.1. That is, we find all linear differential operators

L=a(1.x)d, +b(1,x)0,+c(1,x),

a, b, ¢, analytic in a suitable region °) of the x-r plane, such that LY
satisfies (1.2) whenever ¥, analytic in D, satisfies (1.2). A necessary and
sufficient condition for L to belong to the symmetry algebra i1s

[L,0] =R, (1:x)Q (13)
for some function R, analytic in ). By equating coefficients of 9., d,, d..
and 1 on both sides of (1.3), we obtain a system of differential equations
for a, b, ¢, and R. Details of the straightforward computation can be found
in [3, 15, 18]. The final result is that the symmetry operators L form a

six-dimensional complex Lie algebra &5 with basis

K,=-1*0,—txd,—t/2+ix*/4, K,=—10 +ix/2,

(1.4)
Ks=i, K_;=39 K_,=0, K°=x0_+21d+1/2

xR

and commutation relations

(K%K |=jK (j=%2,%=1,0), [K_.K ]=1iK, :
].
[ K K =K, o [ ] =i, [K_E,H31=—K“.( )

The reader should now be able to appreciate expression (1.3), since it has
enabled us to compute symmetry operators for (1.2) that are not im-
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mediately obvious. Furthermore, some of the operators are not purely
differential but involve multipliers. The geometrical significance of K,
K_,,and K_, is obvious and K° is the generator for a dilatation symmetry
¥(1,x)>¥(a’r, ax). However, K| is the generator of a Galilean transforma-
tion, not an obvious symmetry, and the geometrical interpretation of K, is
unknown to the writer. Furthermore, K? and K, do not commute with Q
‘even though they map solutions to solutions, so they correspond to
operators L in (1.3) with R, #O0.

Since x and ¢ are real variables and since we wish to exponentiate the
Symmetry operators (1.4) to obtain group symmetries, we restrict ourselves
‘to the real six-dimensional Lie algebra §, with basis (1.4). (Note that we
cannot throw out the identity operator K, since K, occurs as the com-
‘mutator 2[K_, K ].) A second useful basis for G, is {C, L, E} where

C,=K_,, (=K, Ly=K_,—K,,
(1.6)
Li=K° L,=K_,+K, E=K,

‘The commutation relations become

:LI,LE: =—2L,, [Lj,L,] =2L,, [Lz. L3]=2Li,
:C|=C2:=%E* [L3.C|]=CE, [L3~Cz:[=“ch (1-?)
jLz,C|:=[C,L|]=_C1, [L11C1]=[inc}_1=_CI

‘where E generates the center of G,.
To explain the structure of G, we recall some facts about the group
SL(2,R) of all real 2 X2 matrices 4 with determinant + 1.

A=(: f;)‘ ad—yB=1, a,f3,v,0 ER. (1.8)

As 1s well known [46, 82], the Lie algebra s/(2,R) of SL(2,R) consists of
all 22 real matrices @ with trace zero,

=i b
a=(¢ _ﬂ), a,b,cER. (1.9)
This Lie algebra is three dimensional and the matrices

O I

form a basis with commutation relations

[B B, ]=—28y, [R50 ]=28,  [E,.8,]=28, (1.11)
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It follows immediately that the symmetry operators L, form a basis for a
subalgebra of &, isomorphic to s/(2,R).

Furthermore, the operators C,,C,, E form a basis for a subalgebra of &,
isomorphic to the Weyl algebra °lUf,. The Weyl group W, consists of all
real 3 X3 matrices

l v 2p+uv/2
B(u,v,p)=10 1 9, , u,v,pE R, (1.12)
0 0 I

with group multiplication

B(u,v,p)B(u',v,p)=Bl(u+u v+ ,p+p +(vu' —u')/4). (1.13)
The Lie algebra U, has basis

0 1 0
C=0 0 0, &,
0 0 0

0 0 0 000 2
0O 0 1|, b=(0 0 0
0

o=
-

with commutation relations

1€,@,1=16, [&.&]=0. (1.14)

1
2

Using standard results from Lie theory (Theorem A.3), we can exponen-
tiate the differential operators of G, to obtain a local Lie group G, of
symmetry operators. The action of the Weyl group W, is given by
operators

T(u,v,p) =exp([p+uv /4] E ) exp(uC, ) exp(vC, )

where
T(u,v,p)®(1,x)=exp| ip+i(uv+2ux—u’t)/4|®(t,x+c—ur) (1.15)

and ® belongs to the space % of analytic functions with domain ). The
group multiplication property is given by (1.13). The action of SL(2,R) 15

given by
! Izﬁfq T‘I‘f[l’ X
N5+

T(A)®(1,x)=exp (6+r£)_'ﬁ¢(3+r3. a+:3) (1.16)
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where 4 € SL(2, R) is represented in the form (1.8). Here,

Ty F)=ewtor).  1(! 0)=erpoy),

(5 L)mowen) 1(20 s}y, )
coshg sinhg
T = ]
(sinhqp cc}sh{p) (ols)

Now SL(2,R) acts on W, via the adjoint representation
T(A ™ ")T(u,0,p)T(A) =T(ud+ vB,uy + va, p), (1.18)

so the full symmetry group G,, the Schrodinger group in two-dimensional
space-time, is obtained as a semidirect product of SL(2,R) and W, [18,
39]:

g=(4,w)EG,, AESL(Z,R),

w=(u,v,p)EW,, T(g)=T(A)T(w), (1.19)
T(g)T(g") =T(A4"){T(4"~")T(W)T(A")} T(W)=T(gg").

It follows from our general theory that T(g) maps solutions ¥ of (1.2) into
solutions T( g)¥. However, G, is only a local symmetry group, for not only
do we have the domain problem in defining T( g)®, as discussed in Section
.1, but also expression (1.16) makes no sense when 8+ 78 =0. Expression
(1.16) follows from the exponentiation of Lie derivatives only if |13/8|< 1.
For [1/8]> 1 this expression still defines a symmetry, but one that is not
directly obtainable from the symmetry algebra.

The Schrodinger group G, acts on the Lie algebra 8, of symmetry
operators K via the adjoint representation

K—>K:=T(g)KT(g ')

and this action splits §, into G, orbits. For our purposes the operator
Ko=1i, which generates the center {K,} of &,, is trivial, so we merely
determine the orbit structure of the factor space §; =6, /{K,}. The results
are as follows. Let

K=HIK2+£IIK]+HGKD+E_]K_]+ﬂ_zK_2

be a nonzero element of G and set a=a,a_,+a2. It is straightforward to
show that « is invariant under the adjoint representation. In Table 6 we
give a complete set of orbit representatives. That is, K lies on the same G,
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orbit as a real multiple of exactly one of the five operators in the hst.

Casel (a<0) K_,—K,=L;;
Case2 (a>0) K9 (1.20)
Case3 (a=0) K+K_,K_, K_;.

Note that there are five orbits.

Since K_, and K_, commute, they can be simultaneously diagonalized.
Furthermore, K_,¥=iK2 ¥ for all solutions ¥ of Q¥=0. Thus we
associate the same coordinate system {,x} with both of these orbits and
end up with only four separable coordinate systems.

One can also compute the second-order symmetries of Q¥ =0 and show
that the free-particle Schrodinger equation is class I. However, all separ-
able coordinate systems for the equation turn out to be associated with
orbits of first-order symmetries. This is related to the fact that the
Schrodinger equation is only first order in the varable .

For this equation it is useful (and necessary) to consider R-separable
solutions. To explain this concept we choose a nonzero analytic function
R (1,x)=exp(i%R (¢,x)) and write ¥ = R® where ¥ satisfies the Schrodinger
equation Q¥ =0. Writing the differential equation in terms of @, we find
Q'®=0 where Q'=R ~'QR is the transformed differential operator. Now
suppose the new equation Q'®=0 admits separable solutions ®,=
U, (1) ¥y (v) in terms of a {u.v} coordinate system. If R=a(u)b(r)—that
is, if R factors in the {u,v} coordinates—then ¥, =a(u) U, (u)b(v) V,(v) IS
a separable solution of Q¥,=0 and we have obtained nothing new.
However, if R (u, v) does not factor, then we have obtained a new family of
R-separable solutions ¥, =exp(iR (u,v)) U, (u)¥,(v). Thus R-separability
is a generalization of ordinary separability. R-separable solutions of one
equation Q¥ =0 correspond to ordinary separable solutions of an equiv-
alent equation Q'®=0, 0'=R ~'OR.

We have not introduced the notion of R-separability earlier because the
equations studied in Chapter 1 admit no R-separable solutions that are not
already separable in the ordinary sense. However, the situation changes for
the Schrodinger operators. The existence of R-separable solutions is clearly
related to the existence of symmetry operators K that do not commute
with O, even though they map solutions into solutions.

In [59]. Kalnins and the author have computed all coordinate systems
that permit R-separation of variables for equation (1.2) and have shown
that the associated R-separated solutions ¥, =exp(iR (u,v))U,(u)V,(v)
can be characterized as eigenfunctions of some K €6,, K¥, =iA¥,, 09,
=(. The association between orbits in &, and separable coordinates is
given in Table 6.
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Table 6 R-Separable Coordinates for the Equation (id, + 0, )¥(r,x)=0
Operator Coordinates {u,v}  Multiplier R=¢" Separated Solutions

| K_.K_, x=u ¢ =0 Product of exponentials
2a K ,— K, x=u+v?/2 R =uv/2 Airy times exponential
function
2b K+ K-y x=uv+1/20 R =(u’vo—u/v)/4 Airy times exponential
functions
Ja K° x=uVv R =0 Parabolic cylinder times
exponential function
3b K+ K_, x=ull—v?"? R=xu’/4 Parabolic cylinder times
(+if|v| > 1, exponential function
—if|o|<1)
4 K,—K_; x=u(l+v)'/? R =u%/4 Hermite times

exponential function

For all coordinate systems {w,v} 1n Table 6, v=1t. As stated earlier,
there are only four types of separable coordinates and these are associated
with four nontrivial G, orbits in &,. (Here we are identifying the two orbits
with commuting representatives K_,, K_,.) However, the table contains six
entries, and each of the six separable systems appears to be distinct from
the rest. The explanation for this relates to our definition of equivalent
coordinate systems. We regard two systems as equivalent if one system can
be mapped into the other by a G, transformation T( g). However, such
transformations, particularly (1.16), can sometimes have a rather com-
plicated form, so that two equivalent systems will appear very different.
Since the operator K, has a rather obscure physical significance, it is
difficult to interpret the physical or geometrical relationship between two
systems that are related by the exponential of this operator.

However, there is a five-parameter subgroup of G, whose physical
significance 1s well understood [73]. This is the Galilei group plus dilations
with Lie algebra basis {K_,, K, |, Ky, K°}. If we regard systems from the
point of view of equivalence under the Galiler group plus dilatations, we
find that G, orbits 2 and 3 each split into two Galilean—dilatation orbits.
This accounts for the six systems listed in Table 6. (However, the classifica-
tion 1s based more on significance for separation of variables than ac-
curacy for Galilean—dilatation orbits. Indeed, 2a splits into two
Galilean—dilatation orbits K_,*+ K, and 2b splits into K,* K_,. These
subcases yield coordinates that differ only in the sign of a parameter, and
we choose not to distinguish between them.)

We can describe the equivalences on orbits 2 and 3 in terms of the
operator J =exp|(7 /40K, — K_,)]=exp(— (7 /4)L,).

L T E:-Lp(ﬁz/al)(D(I_l I@) (121)

{]+;)Iﬁ 1+t t+1 41
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Note that J2=exp[(7 /2)(K,— K_,)|=exp((—7/2)L5), and

J2®(1,x)=

explix® /41 =
p( /){D( lx) Jio=—®, JYo=0. (1.22)

Vi t Sk

A direct computation yields
J(K_s+ KT~ '=K%  JX(K—K_,J ?=K_+K, (1.23)

which proves the G, equivalence of systems 2a, 2b and 3a, 3b.

We now show that the operators (1.4) can be interpreted as a Lie algebra
of skew-Hermitian operators on the Hilbert space L,(R) of complex-val-
ued Lebesgue square-integrable functions on the real line (Chapter I,
(5.2)). To do this we consider the operators (1.4) formally restricted to the
solution space of (1.2). Then we can replace 0, by id,, in these expressions
and consider ¢ as a fixed parameter. It is easy to show that the resulting
operators restricted to the domain 0 C L,(R) of infinitely differentiable
functions with compact support are skew-symmetric. Moreover, each of
these operators, when multiplied by /. has a unique self-adjoint extension.
Indeed, the operators (1.4) are real linear combinations of

ﬁ{-1=l;.1'2/!4, E]{|=f3:/2,
Wov=0, Ho=id - K= HO=x0,+3,

(1.24)

and i%,iK ? have unique self-adjoint extensions. When the parameter 7 is
set equal to zero, K; becomes T, and K becomes K 0 Tt follows that the
script operators also satisfy commutation relations (1.5).

From spectral theory [111, Chapter VIII], we know that to each skew-
Hermitian JC €8, there corresponds a one-parameter group U(a)=
exp(a() of unitary operators on L,(R). This group in turn acts on G, via
K — U(a) K U(— ). In particular, the following result is of importance in
quantum mechanics:

exp(ﬂ“]{_zjf{x}=l.i.m.(4wfa)‘1f’3f_m e};p[ u(x—y)z/-‘-l»fu]f{y}aj), (1.23)
fE Ly(R),a%O0.

(Here (ia)'/>=e™/%a|'/? for a>0 and e "/*a|'/* for a<0. See [67, p.
493] for a proof of (1.25).) We can verify that

exp(rh_,)H; exp( - (K _5) =K, (1.26)
exp(1K_,) K exp(—1H_,)=K".
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(A formal proof is easily obtained from the commutation relations (1.5),
although a rigorous proof specifying domains is somewhat more difficult.)

Now if fEL,(R) and f belongs to the domain of the self-adjoint
operator K_,, then W(z, x)=exp(rHK_ 2)f(x) satisfies 9,¥ =K _,¥
or ig,¥=—3, ¥ for almost every 7, and V(0,x)=f(x). We see that
exp(tX_,) is the operator of time translation in quantum mechanics [70,
109]. Moreover, this operator is unitary, so

fm ‘P]{I,x}ﬁz(r, x)dx={exp(tX_,) f,, exp(rH_,) )

=00

== [ @A @ (127)

independent of 1. We have introduced a Hilbert space structure on the
solutions of (1.2) that agrees exactly with the usual Hilbert space of states
corresponding to a free-particle system. Moreover, the mappings (1.26)
relating the time-zero (script) operators to the time- (1talic) operators are
the usual transformations relating the Heisenberg and Schrodinger pictures
in quantum theory [109, [18]. It is also easy to show that the unitary
operators exp(aK)=exp(rH_,)exp(aX)exp(—tK_,) map a Hilbert space
solution ¥ of (1.2) into ®=exp(aK)¥, which also satisfies (1.2). Thus the
unitary operators exp(aK) are symmetries of (1.2).

Later we will see that the K operators generate a global unitary
representation of a covering group G, of G,, although not of G, itself.
Assuming this for the moment, let U(g),g€G,, be the corresponding
unitary operators, and set T(g)=exp(t¥_ DU(g)exp(—tK_,). Again it is
easy to demonstrate that the T(g) are unitary symmetries of (1.2) and that
the associated infinitesimal operators are K =exp(1H_,) K exp(— 1K _,).

Now consider the operator £ ,=%_,— % ,=id_— ix’/4€8,. If fe
Ly(R), then ¥(1,x)=exp(1£ ,) f(x) satisfies o¥=L,¥orid,¥=-09_¥+
x*¥ /4 and ¥(0,x)=f(x). Similarly, the unitary operators V(g)=
exp(1£ ;)U(g)exp(— ¢ ;) are symmetries of this equation, the Schrodinger
equation for the harmonic oscillator. (2) in Table 5. (Here we have
normalized & to the value ;.) One can verify that the associated infinitesi-
mal operators exp(s£ ;) %K exp(— £ ;) can be expressed as first-order dif-
ferential operators in x and ¢. (In particular these operators will be real
linear combinations of the basis operators (1.24) with coefficients that
depend on ¢. Considering these operators as acting on the solution space of

@ the harmonic oscillator Schrodinger equation, we can replace i d,, by

d,+ix? /4 wherever it occurs.) Conversely, if K’ is a first-order symmetry

5 operator for the time-dependent harmonic oscillator Schrodinger equation,
& we can show that at time t=0, K’ reduces to a real linear combination of
> the operators (1.24). It follows that the symmetry algebras of the equations

8 with potentials (1) and (2) in Table 5 are both isomorphic to §, with basis



82 The Schrodinger and Heat Equations 2.1.

(124). For the free-particle equation the symmetries are K=
exp(tK_,) K exp(—tHK_,), while for the harmonic oscillator equation the
symmetries are K’ =exp(t£ ;) exp(— £ ;). In each case the K operators
are identical. Moreover, for fixed ¥, the operators K and K’ are unitary
equivalent, K'=A()KA(7)"", although the unitary operator A(1)=
exp(tL ;) exp(—¢H_,) depends on . _

Continuing in this manner, we consider the operator £,=%_,+
K,=id , —ix?/4€6,. If fEL,(R), then ¥(1,x)=exp(tL ;) f(x) satisfies
9¥=L,¥ or id,¥=—10,¥%—x*¥/4 and ¥(0,x)=f(x). The operators
W( g)=exp(t£ ,)U(g)exp(— (£ ;) form the unitary symmetry group of this
equation, repulsive harmonic oscillator potential ((3) in Table 5), and the
associated infinitesimal operators exp(z£ ,)X exp(— £ ,) are first order in
x and 7. Finally, we consider the operator W =K _,— K, =i9,,—ix/2€
6,. If f€ L,(R), then ¥(z,x)=exp(tW ) f(x) satisfies Q¥=UW¥orid¥=
—3,. ¥+ x¥/2 and ¥(0,x)=f(x). The umtary operators X(g)=
exp(1UW)U(g)exp(— tW) are symmetries of this Schrodinger equation
corresponding to a linear potential and the infinitesimal operators
exp(1U) I exp(— 1) are first order in x and /.

Note further from (1.20) that the operators H_,, £5, £,, H_,— %,
corresponding to the free-particle, attractive and repulsive harmonic oscil-
lator, and linear potential Hamiltonians lie on the same G, orbits as the
four representatives K_,, £, H° and ¥ ,+H_,, respectively. Thus,
these four Hamiltonians correspond exactly to the four systems of coordi-
nates in which equation (1.2) separates. We see that these Hamiltonians
form a complete set of orbit representatives in &,.

It now follows that the Schrédinger equations (1}{4) in Table 5 have
isomorphic symmetry algebras. In each case if we compute the symmetry
operators at time =0, we obtain the Lie algebra G, with basis (1.24).
Although we first obtained this symmetry algebra through a study of the
Schrodinger equation (1), we could equally have obtained it by studying
(2), (3), or (4). Moreover, we see from the preceding paragraphs how to
construct the (time-dependent) unitary operators on L,(R) that map a
solution of any one of these equations to a solution of another equation.
The four equations can and should be studied as a umit.

The connection between orbits and separation of variables can now be
made clear. Suppose ¥(¢,x) is a solution of the free-particle equation

ig¥=—29_V. (1.28)

This equation clearly separates in the variables {t,x} and these variables
are “naturally” associated with (1.28). Now we have seen that the operator
A()=exp(12;)exp(— tH_,)=exp(—tH_,)exp(tL;) maps ¥ to a solution
®(t,x)= A (1)¥(t,x) of the harmonic oscillator equation

i3,®=—0_0—x>®/4. (1.29)




2.1. Separation of Variables for the Schrodinger Equation (id, +3,)¥(s, x)=0 83

Explicitly,

O(1,x)=(cost)” "flexp( —ix*tan(7) /4)¥(tant, x /cost).

Now equation (1.29) “naturally” separates in the variables {1,x}, so we can
find solutions ¥ of (1.28) in the form

Y(r,x)=(1+v?) I’Mexp(.iuzu/ﬁl)'i!(tan_ 'vau), x=u(l+ t:z}w, =,
(1.30)

since (1.29) separates in {tan™'v,u}, hence {v,u), it follows that equation
(1.28) R-separates ir «he coordinates {v,u} where the multiplier R =¢? is
given by R =iu*v/4. (The factor (1+v%)~'/* can be absorbed in the
separated solution.) Thus we have explained the existence of the coordi-
nates 4 in Table 6, associated with the operator K_,—%,. In a similar
manner we can associate a “natural” coordinate system with each of our
four Hamiltonians, thus exhausting the possible R-separable coordinate
systems inequivalent with respect to G,.

Note that if two operators lie on the same G, orbit, then the first
operator is unitary equivalent to a real constant times the second operator.
Thus two suitable normalized operators on the same orbit have the same
spectrum. In particular, if K, K’'e6, with H'=U( g)HU(g™ ") and the
self-adjoint operator i has a complete set of (possibly generalized)
eigenvectors f, (x) with

i Hfy =M, <fl='f.;.r,>='§.-\.;.t (1.31)

where

Chiuhd= [ b(hy(x)dx, B ELy(R). (1.32)
then for f; =U(g) f, we have

fﬂ{:’fi=hfi, <f.'!::-f;>=6}'i.p (133)

and the f; form a complete set of eigenvectors for iK” [77). These remarks
imply that if we wish to compute the spectrum corresponding to each
operator K €6,, it is enough to determine the spectra of the four Hamilto-
nians listed earlier. Moreover, we may be able to choose another operator
K on the same G, orbit as a given Hamiltonian such that the spectral
decomposition of K is especially easy. The spectral decomposition of the
Hamiltonian and the corresponding eigenfunction expansions then follow
from those of T by application of a group operator U( g2).
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As a special case of these remarks consider the operator K_,=id,.If
{f,) is the basis of generalized eigenvectors for some operator H €6,,
then {¥, =exp(tH_,)f,} 1s the basis of generalized eigenvectors for K=
exp(tH_,) K exp(— 1K _,) and the ¥, satisfy the free-particle Schrodinger
equation (1.28). Similar remarks hold for the other Hamiltonians.

We begin our explicit computations by determining the spectral resolu-
tion of the operator £ ;=K _,— K ,. The results are well known [141]. The
eigenfunction equation 18

iR, f=N, (=3 +x/4)f=M
and the normalized eigenfunctions are

jf'(x}=[n!(Ew)'ﬂT']_”Eexp(—x2/4)Hn(x/\/_2- ), A=n+3, (134
=012 SR =0m

where H,(x) is a Hermite polynomial, (B.12). The { £} form an ON basis
for L,(R).
From (1.34) we see that

exp(27€ ;) fi¥ = exp| —2mi(n+ )| f==15"

so exp(27f ;)= — E where E is the identity operator on L,(R). However,
from (1.17) if the operators exp(a'i) generate a global unitary representa-
tion of G, on L,(R), we should have exp(27E ;)=E. In fact, it can be
shown that the K operators exponentiate to a global irreducible repre-
sentation of the simply connected covering group G, of G,.

To describe this covering group we first consider the topology of the
group manifold SL(2,R), (1.8).

A=(H ‘B)ESL(Z,R}, ad— By=1.
y O

Setting
2a=(a+8)+i(y—PB), 2b=(—a+8)+i(y+p). (1.35)
we see that the complex numbers a, b satisfy the identity
la|*—|bfP=1. (1.36)

Conversely, if a=a, + ia,, b= b, + ib,, and a.b satisfy (1.36), then relations
(1.35) can be uniquely inverted to yield an 4 € SL(2,R) with parameters
a=a,—b,, f=—a,+ by, y=a,+ by, §=a,+b;. It follows from (1.36) that
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topologically SL(2, R) can be identified with the hyperboloid

ai+a;—bi—hi=1.
Another parametrization of SL(2,R) is due to Bargmann [10]. He sets
p=b/a, w=arga, —7<w< 7(mod27). (1.37)
It follows from (1.36) that | u| < 1. Furthermore,
a=e(1-|yP)™"",  b=elu(1—|pp)""2 (138)

We can now write A=(p,w0), |p|<], —7<w<w, and parametrize
SL(Z,R) in terms of p and w. The group product can be expressed as
follows. If 4=(p,w), 4"=(p’,&'), then AA"=(p",w") where

W + #E—Zr'm | B B IE—IE:.: -],
p'=(p+p )(1+ ) (1.39)

@' =@+ +(1/20)In| (1+fp'e =2 )(1+ pre?) ']

Inz 1s defined by its principal value (Inre“=Inr+if, r>0, —7<f< ),
and «’ is defined mod 2. It is easy to check that L, w are appropriate Lie
group parameters [115). We now have a topological characterization of
SL(2,R) as the product of the open unit disk |p|<1 and the circle
—m<w<sm, mod 2. S

The universal covering group SL (2, R) of SL(2,R) is the Lie group with
elements

SL(2,R)={{ mw}: <1, —c0<w< ).

Here, distinct values of w correspond to distinct group elements. Group
multiplication is defined by (1.39) except that w” is no longer defined mod

27, There is a homomorphism of E(Z,R) onto SL(2,R) given by

(10}—>(p,w) and the elements {0,271}, n=0,+1,+2,...,of SL(2R)
are exactly those which map onto the identity element (0,0) of SL(2, R).

Finally, it is easy to verify that any element of SL (2, R) can be factored
in the form

{p.,m}=[[],—-9/2}[r,ﬂ}{0,m+ﬂ/2}, w=re", (1.40)

and if r>0, — 7 <@ < 7, this factorization is unique.



86 The Schrodinger and Heat Equations 2.1.

It is now straightforward to show that the "k operators exponentiate to a
global unitary irreducible representation of the simply connected covering
group G, of G,. Indeed, from the known recurrence formulas for the
Hermite polynomials one can check that the operators £, £,, £ 5 acting
on the f basis define a reducible representation of s/(2,R) belungmg to

the discrete series. We will work out these recurrence formulas in Sectmn
2.2.) The value of the Casimir operator is (£ >+£,2—£,})=—. As
first shown by Bargmann ([10]; see also [115]), this Lie algebra representa-

tion extends to a global unitary reducible representation of SL(2,R).
Similarly, the operators C,,C,,E, acting on the f® basis define the
irreducible representation (A,/)=(—3,1) of the Lie algebra of the
harmonic oscillator group § [82]. Agam this Lie algebra representation is
known to generate a global unitary irreducible representation of § [80, 86].

Since from (1.40) we see that every operator from SL (2, R) can be written
in the form exp(—(8/2)L;)exp(—7L )exp{[(#/2)+w]C,;} with 2r=
In[(147)/(1—r)] where exp(f£ ;) also belongs to S, and since £ is a
first-order operator whose exponential is easily determined, we can check
that the identity (1.18) holds in general. (That is, we replace T(A4) by
exp(—(0/2)L ;) exp(— 7L ) exp{[(8/2) + w]E ;} and use (1.35), (1.37),
(1.38), (1.40) to express a, B,7,8 in terms of ,7,w on the right-hand side of
(l 18).) Then expressions (1.19) define G, as a semidirect product of

SL (2,R) and W,. Thus our representatmn of §, extends to a global
unitary representation U of G, that is 1rreduc1ble since U|S is already

irreducible.
The unitary operators U(g) on L,(R) are easily computed. The opera-

tors

U(u,v,p) =exp([p+ uv /4| & )exp(uC,) exp(vC))

defining a representation of W, take the form

U{u,ﬂ,p)h(x)=exp[i(p+ uu/4+ux/2)]h(x+ﬂ), heL,(R). (141)

e’

The operators U{ p,w}, {p,w}E SL(2,R), are more complicated. Here
exp(aX_,) is given by (1.25) and it is elementary to show

exp(bH O (x)=exp(b/2)h(e’x),  exp(cK ,)h(x)=exp(icx?/4)h(x).
(1.42)

Relations (1.17), (1.39) imply

exp(@f ,) =exp(tanh(g) K ,) exp(sinh(p)cosh(p) K _,) exp(—In cosh(p) X
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$0 (1.25) and (1.42) yield

exp| (ix?*/4)tanhe|
exp(@l )h(x)= [ ' v ] l.i.m.
(4misinhg)

s ¥ 52 2
f exp[ i) ]h{y)a:v, (1.43)

4isinhgcoshg
p#0.
‘A similar computation for exp(# £,) gives
exp| (ix*/4)coté
exp(d L )h(x)= [ 4 = } Lim.
(4misind )"/
* —(y%cosf—2xy)
f exp[ 4isinf Jh(y) Y, (hAda)
— oD
0<|0)| <7,
exp(27L J)h(x) = — h(x). (1.44b)

The general group operator U(g) can be obtained from these results.
From (1.25) we see that the ON basis functions £¥(x) map to the ON
basis functions F(1,x)=exp(tH_,) f@(x) or

2

-1/2 ek 2
FO(t,x)={n2"[20(1+*)]"? exp| + 2 —
s aas)] } P\471+2 4(1+4%)

-—:'(n+ %)Ian"f)Hﬁ {;:/[2(1 +r1]]lﬂ}, n=0.1.2,.... (1.45)

which are solutions of (1.28). This result can be derived from (1.30) or 4,
Table 6. Indeed we know that variables {u,v)R-separate in the integral
expression for (1.45) where u=x/(1+*)'/?, e=1, and ® =ju’c /4. Apply-
ing the standard methods discussed in Chapter 1, we obtain expressions
(1.45),

Next we study the spectral theory for the orbit containing the operators
H_,+ K, (repulsive oscillator) and K °. Since the spectral analysis for

0 is more elementary, we study it first. (The corresponding results for
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H_,+ K, will then follow by application of the ‘unitary operator | =
exp((—7/4)EL ;), (1.21), (1.23).) The eigenfunction equation is

iRf=N, H°=x0d +3.

The spectral resolution for this operator is well known [128]. It is obtained
by considering L,(R) as the direct sum L,(R—)® L,(R+) of square-inte-
grable functions on the negative and positive reals, respectively, and taking
the Mellin transform of each component. Then (K ° transforms into
multiplication by the transform variable. The spectrum is continuous and
covers the real axis with multiplicity two. The generalized eigenfunctions
are

f}ES}i(I):(EW]—IJ’EI;H—%} s
+ =+ + = (]-46)
O[O =8A—p), O fO7)=0,
where
Ia__{xﬂ o x20, o 0 if x>0,
T 0 if 0 = (=x)° if x<0.

From (1.25) we find F®=(1,x)=exp(rh _,) fP*(x) where

. (ﬁf}_wwpl 2
8it 4 i 8) (2 )

F:Eﬂi(fsl')=ﬂ5’ip(‘ + (872 )l,xz i
Tl

—iw /4

xe
HD,-;.L_%( (21)""2 ) t >0, (1.47)
I'(z) 1s a gamma function (Appendix B, Section 1) and D,(z) is a parabolic
cylinder function (Appendix B, Section 4). (This follows from (1.25) by
displacement of the integration contour from the positive real axis to a ray
making an angle of 7 /4 with the real axis. We also use the fact that, from
3a in Table 6, we have pure separation of variables in the coordinates
u=x/Vt,v=1t) Also we have

FO ()= FQ* (=6,x),  FO-(4,x)=FO*(1,—x).  (148)

[t follows immediately from (1.46) that the { F{*’*} form a basis for L,(R)
with orthogonality relations

<F£'311~Fﬁ3]i>=6{’;\__ﬂ)‘ {F}Ejji‘FL:"]::?:O {]4

for each fixed 7. Application of these orthogonality and completenes
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relations to expand an arbitrary 4 & L,(R) yields the Hilbert space version
of Cherry’s theorem [28, 37], which is an expansion in terms of parabolic

cylinder functions. Note that our expansion is simply related to the
spectral resolution of the operator

K®=219,+x9,+1=2itd,, +xd,+ 1.

The next orbit we consider contains the operators H_,— K, (linear
potential) and H,+J_,. Since the spectral analysis for the second
operator is simpler, we study it. (The corresponding results for K = el

will follow upon application of the unitary operator $*=exp[(— =/ 2)L 4],
(1.21)-(1.23).) The eigenfunction equation is

(K, +K_ ) f=Af, Ho+XH_ =ix?/4+3..

The spectral resolution is easily obtained from the Fourier integral theo-

rem. The spectrum is continuous and covers the real axis, and a basis of
generalized eigenfunctions is

Ax)=@m)" Pexp[ i +x°/12)],  —w<A< oo,
1.50
(ROSLED>=8(A—p). i

‘We find that

O X)=expf — Lot — g2y Wy AN o1/6 0 23, U
F7(t x)=exp| 4{-:'r+ o2 Hb+ﬂ+ U)]Z Aif2 (2 +A)], (1.51)

x=uc+Q2v) 1=y,
‘where Ai(z) is an Airy function

Ai(z)=7""(2/3)"%K, ,,(223/%/3), largz| <27/3.  (1.52)

As usual, we derive (1.51) by R-separation of variables in (1.25). The
{F{*} are basis functions for the operator Ky+ K_=—it?d,,+(1 —1x)9,
= 1/2+ix%/4.

_ Finally, for the operator K_,=3_ a complete set of generalized eigen-
functions is

A(x)=Q27) V2%~ N — 0 <A< o0,
(1.53)
AP =MY, OIS =8 (A —p).

Furthermore,

FX"(1,x)=exp(tK_,) {"(x)= (27) uzexp[ iAt=Ax)].  (1.54)
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If { f,(x)} is a basis of (generalized) eigenfunctions of some *h €6, and
Fy(t,x)=exp(tK_,) /A(x), then F,(7,x)=exp([T— t{|H_,)F,(t,x) and we
have the Hilbert space expansions

k(t,x=y)= [ Eu(6.2)fu(y)dN,

k(r—t,x=y)= [ F(r,x)F, (.y)dA

(1.55)

where the integration domain is the spectrum of /K and
k(t,x)=(4mit) * exp(— x*/4it)

is the kernel of the integral operator exp(fh_,). These expansions are
known as continuous generating functions [35, 136].

Now we compute the overlap functions (f{’,f{?) which allow us to
expand eigenfunctions £ in terms of eigenfunctions f/. Since {U(g)f &
U(g) [ = (£, f{?), the same expressions allow us to expand eigenfunc-
tions U(g)f? in terms of eigenfunctions U(g)f{”. In particular, for
U(g)=exp(tH_,) we have (F,FY)={f{"fV for fixed 7, and this
permits us to expand one basis of solutions for the free-particle Schro-
dinger equation in terms of another basis.

We give here some overlaps of special interest.

CT(iN/24 5+

T(A/2+ 5+ n/2)
27 (2"n!t)/?

+1 F—H/Z,l—n/Z |
}{[{—l}"]z‘r1 2_in2—n/2|*| (136)

ISR y= @

b3 —

For the calculation of the overlaps ( f,f{#) it is convenient to give a
generating function rather than an explicit expression. The result is

21f3exp{ —i[é+h+(2y)lﬂ] } Aj{fﬁ[i —f}\—f(ll’)h‘z]}

o0 V‘i }' ?
2 Eg | n!)ii PSP, (1.57)

This expression follows from the form of the generating function fo
Hermite polynomials that we will derive in Section 2.2.

O SOy =[nl(=2)"n] Pexp(—N)H,[@V], (158
POLDY =LA (=N | (159

Additional overlaps can be found in [59].
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The computation of mixed-basis matrix elements (U(g) /", f> permits
the derivation of many more expansions relating solutions of the Schro-
dinger equations. For example, we have

Cexp(tH_,) [ £ >={fisexp(— 1K _5) £

(2D B3] 4 jrye/? [ i(n+1)tan~1e]
= exp| —i\n+5)tan™ "¢
@) 42 P (1—ir) /s -

S TR 0, — 2, —n/2 1=t
'F(—"+—+—) F = |3 .
2 4 o %_f,u./z—ﬂfz ) (l 60}

with a similar result for f'~. This expression allows us to expand Hermite
polynomials as an integral over parabolic cylinder functions and parabolic

cylinder functions in series of Hermite polynomials.

The matrix elements (U(g) [P, f > =(T(g)EW, F'Y> are easily com-
puted and of great interest. However, in Section 2.2 we will apply Weis-
ner's method to the complex heat equation and derive expansions for
Hermite polynomials that yield these matrix elements as special cases.

It is also of great interest to compute the matrix elements with respect to
the basis { f’*} of generalized eigenvectors for K °. In this case the
addition theorem for the matrix elements becomes an integral. In [128§]
Vilenkin has computed these matrix elements for the subgroup of @2
whose Lie algebra has basis {H |, K _,,H ,, K °). The group operators are

U(a,b,c,t) where

U(a,b,e,m)h(x)=exp(aX ;) exp(cH ,)exp(rH ) exp(bK_ )h(x)
=exp(t/2+iax/2+ic)h(e"x+ b), (1.61)

a,b,e,TER, h€ L,(R).

(The rule for group multiplication can easily be determined from (1.61).)
Vilenkin shows that the matrix elements of the operator U(a,b,c,7) in the
{f’*) basis can be expressed in terms of confluent hypergeometric
functions | F, and that the resulting addition theorems yield many interest-
ing integral identities for these functions. Furthermore, just as in the
analogous case for the group E(1,1) (Section 1.5), we can allow the
parameter a in (1.61) to become complex and derive more general integral
identities. For these results see Vilenkin ([128]; also [81]).
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2.2 The Heat Equation (3,—9,,)?=0 |

The heat equation in two-dimensional space-time (with units ap-
propriately normalized) is

Qo=0, 0=0,—0d,, (2.1)

where ¢, x are the real time and space variables, respectively [107]. Clearly,
this equation can be obtained from the Schrodinger equation by replacing
t in (1.2) by —it, so the symmetry algebras of these equations are closely
related. Indeed a simple computation shows that the symmetry algebra of
(2.1) is six dimensional, with basis

H,=1*3,+txd +1/2+x*/4,  H=13,+x/2,

(2.2)
Hy=1, H_;=0,; H_ =0 H%=%0,+%08+1;

and commutation relations (H, commuies with everything),

[HOH]=jH, j=%2,%*1,0, [H,H]=[H_,H_,]=0,
[H—11H1]=Hl:- [H—I!HI]=%HD! (23)
(H_,H\|=H_, [H_;H,]=H°

We denote by 8 the real Lie algebra with basis (2.2).

As usual we can exponentiate the elements of §; to obtain a local Lie
group G of operators acting on the space 6f of functions W(z,x) analytic in
some given domain @ of the x— plane. The operators H_,,H,, H, form a
basis for the Weyl algebra Q, and the corresponding action of the Weyl

group W, is given by operators

T(u,v,p) =exp([p+uv/4] H,)exp(uH, )exp(vH_,) (24

with multiplication

T(u, 0,0)T(, 0, p) =T(u+ w0, v+ 0 p+p'+ (o —ur’) 4) (25

where
T(u,v,p)¥(1,x) =exp[p+ (uv+2ux+u’t) /4| ¥(t,x+to+ut), VYE )

The operators H,,H ,, H® form a basis for a subalgebra isomorphic
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s(2,R) and the corresponding action of SL(2,R) is given by operators

T(A)‘I‘(r,x)=exp(— ';f’:; ) (64+18) 'fl‘P( ;I:E, 3-::,8) (2.6)

where

A=($ aﬁ)ESL(Z,R).

Here,

T(l f):exp(*ﬁﬂz), T(_:r ?)=exp(vh'_z),

0
! (2.7)
T(E O_ﬂ) =exp(aH?).
The group SL(2,R) acts on W, via the adjoint representation
T~ '(A)T(u,0,p)T(A) =T(ud — vf, va— uy, p). (2.8)

‘We can now define the symmetry group G, as a semidirect product of
SL(2,R) and W,:

g=(4,w)EG;, AESL(2,R), w=(u,v,p)EW,

T(g)=T(A4)T(w), (2.9)

T(g)T(g)=T(AA)[ T~ (A" )T(W)T(4") T(W)=T(gg').

Clearly, the operators T( g) map solutions of (2.1) into solutions. Further-

more, G, acts on the Lie algebra §; of differential operators H via the
adjoint representation

H—-H*=T(g)HT '(g)

and this action splits §; into G, orbits.

It is straightforward to show that there are five orbits in &, /{ H,) under
the adjoint representation (just as in Section 2.1 we ignore the center of &)
with corresponding orbit representatives H° H, + H_,.H_ 5+
H\,H_, H_,.Since H_,=(H_,)* for solutions of the heat equation, only
four R-separable coordinate systems are associated with the five orbits.
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Table 7 R-separable Coordinates for the Equation (d, — d,,.)®(7,x)=0

Operator H  Coordinates {u,v} Multiplier R=¢% Separated solutions

| H H 5, x=u R =0 Product of exponentials

2 H_,+H, x=u+v?/2 R =—uv/2 Airy times exponential
function

3 H° x=uVv R =0 Hermite times
exponential function

4 H,+H_, x=u(l+0vH)/? R =u’/4 Parabolic cylinder times

exponential function

The eigenfunctions of H? are of special interest. From Table 7, the
eigenfunctions separate in the variables u=x/V1, v=1. Moreover, the
solutions @, (¢,x) of the heat equation that satisfy H°® =(n+3)®,, n=
0,1.2,..., are the heat polynomials

®,(t.x)=(iV1 /2) H, (ix/2V1). (2.10)

(These functions are easily seen to be polynomials in ¢ and x.) Rosenbloom
and Widder [113] have presented a complete theory of the expansion of
solutions of the heat equation in terms of heat polynomials.

Although the symmetries (2.6) are not very well known, there is a special
case that has been of great importance in the theory of the heat equation.

If in (2.6) we set
y =2—r;z( ] 1) As=(l D)j
Y o e 0 1

we find the symmetries

T(AU)‘I’(I,I)=E}{[:( b ]( V2 )uz..[,( =1 @x) ¢ )

1+ ¢ 1 +¢ (+17 t+1

(2.11)

2

T(Aﬁ)?(r,x)=exp(—4“:-)r' 'fl’lf(Tl : 1::)
The symmetry T(A47) is called the Appell transform [4, 13]. We have
embedded this transform in a Lie symmetry group.

It is well known that if f(x) is a bounded continuous function defined
on the real line, then there is exactly one solution ¥(z,x) of the heat
equation (2.1), bounded and continuous in (z,x) for all x€ R and 7> 0 and
continuously differentiable in ¢, twice continuously differentiable in x for
all xe R and 1 >0, such that ¥(0,x)=f(x) [107]. This solution 1s given by
the expression

(1,x)=(4n)) " [ exp] = (x—pV /4] S () =1 (1), (2.12)
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Moreover,

V(t,x)=[4n(t=1)]""" [ exp[ —(x—p)/4t—1) |¥(ry) b, (2.13)
1>,

‘which shows how to obtain the solution ¥ at time 7 given a knowledge of
W at an earlier time 7< 1.

Although some expansion theorems for solutions of (2.1) can be ob-
tained through use of the time-independent form

(¥,0)= L iqr(:,x)ap t,x) dx

where ¥,® are solutions of the heat equation (see [113]), the operators
(2.4)-(2.6) are not all unitary. There appears to be no convenient Hilbert
Space structure for this problem. Nonetheless, in analogy with our work for
the Schrédinger equations, we can find another model of the group action
that is very useful. To obtain this model we consider the operators (2.2)
restricted to the solution space of the heat equation. Then we can replace
0, by 9, in expressions (2.2) and consider >0 as a fixed parameter. We
now think of the H operators as the symmetry operators at a fixed time .
At time /=0 these operators become

Kr=x%/4,  H,=x/2, K =1,

2.14
g{:—_]=ax, E]{:_,1=axx, c.]‘CD”—'xax-!'% ( )
and when restricted, say, to the space %, of infinitely differentiable

functions f(x) on R with compact support, the K operators satisfy the
usual commutation relations (2.3).

" A deeper understanding of this procedure follows from the observation
hat (2.12) has the interpretation

Y(,x)=1'(f)=exp(2d.. ) f(x)= exp(tJC_,) f(x), (2.15)
FEY1>0,
1 analogy with (1.25). Then with integration by parts, we can check that

Hexp(13_,)=exp(tIC_,)I (2.16)

here H €G; and IC is obtained from H by setting ¢=0. (Precisely, if
{,x)=1'(f), then H¥(z,x)=1I'(9(f).) Note that (2.16) is the counterpart
(1.26), except that here we avoid use of the unbounded operator

)(—1JC_,), t>0. The theory leading to (2.16) appears to have been first
died by Hida [49).



96 The Schrodinger and Heat Equations 2.2.

Similarly we can derive results of the form
exp(aH )exp(13(_,)=exp(rH_,)exp(al). (2.17)
Just as in the preceding section, we can show that the equations
3,¥(t,x)=(0,,+axd, +bd, + cx? +dx + f)"{’[hx). a,....e€R (2.18)

all have symmetry algebras isomorphic to G, and that in fact these
equations are all equivalent.

We present an example, due to Rosencrans [114], which exhibits this
equivalence and shows how to make use of it to solve the Cauchy problem
for each of the equations (2.18). (We shall present a formal argument. The
rigorous validity of the result can easily be checked.)

We wish to determine the bounded solution ®(z,x) of the heat equation
with linear drift

5,0=0 D kxd & k>0, (2.19)

for all >0 such that ®(0,x)=f(x) where f(x) 1s bounded and continuous
on the real line. Now (2.19) reads 8,®=(IC_, — kI(° +(k/2)Io)®@, 2(0, x)

= f(x), or
®(1,x)=exp| i(I_,— kIO +(k/2)3Co) | F(%)-

Since the J( operators satisfy the same commutation relations as the H
operators, we can use expressions (2.7) and group multiplication in
SL(2,R) to evaluate products of exponentials of the operators %_2,‘3(“,
IC o- We find

exp{ 1[ H_,— kI O+ (k/2)3,] )
=exp| (tk/2)3C, ] exp(— thICO)exp{ [(1—e %) /2k ] K _,}
= exp| (tk /2)ICo | exp[ (€3 = 1)/2k I _, | exp(— tk 7). (2.20)
From (2.12), (2.15), and the easily verified relation
exp( — tkICO)h(x) =exp(— tk /2)h(exp(— tk)x)

we obtain

(2@, s =t e 0 'k[exp(—fk)x—y]l] |
o(1.x)={ 2 [1-exp(~2k1)] | f :xp{ T ] Jf(y}.

as the solution to the Cauchy problem for (2.19).
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Next we study the complex heat equation, that is, equation (2.1) with the
variables 7, x complex. It is easy to show that the symmetry algebra G5 of
this equation is six dimensional with basis (2.2) and commutation relations
(2.3). However, now the Lie algebra consists of all complex linear combina-
tions of the basis elements. We can exponentiate the elements of G5 to
obtain a local Lie group G5 of operators acting on the space % of functions
¥(7,x) analytic in some given domain % in the complex x—t plane. The
group action 1s given by (2.4)+2.9) where the parameters u, v, p are allowed
a B
Yy 6
over the group SL(2,¢) of all complex matrices with determinant + 1:
a,B.v,8 E¢, ad— By=1. As usual, the operators T(g),g € G,, map solu-
tions of the complex heat equation into solutions. Furthermore, G5 acts on
the Lie algebra G5 of Lie derivatives H via the adjoint representation

to take arbitrary complex values and the matrices A =( ) now range

H-H:=T(g)HT !(g)

and splits &5 (as well as 65 /{ H,}) into G5 orbits. It is straightforward to
show that there are exactly four orbits in &5/ {HD} with orbit representa-
tives H°, H _ 2+;‘i’1,.1’:r" »»H _,. (The distinct orbits in G, /{ H,} with repre-
sentatives H® and H,+ H_, become equivalent when the group G, 18
extended to G5 by complexification.) Since H_,=(H _,)* when acting on
solutions of the complex heat equation, there are only three R-separable
coordinate systems associated with the four orbits. (It can be shown that
these are the only R-separable systems admitted by the complex heat
equation. Here an admissible coordinate system {u,v} must be such that
u(t,x), v(r,x) are complex analytic functions of (f,x) with nonzero
Jacobian. Two separable systems are equivalent if one system can be
mapped 1nto the other by an element of G5.) The results appear in Table 8,
where 1= v for each separable system {u,v}.

Table 8 R-Separable Coordinates for the Complex Heat Equation
Operator H  Coordinates {¥,v} Multiplier R=e®  Separated solutions
H o H s X=u =0 Product of exponentials

2 H_,+H, x=u+v?/2 R =—uyp/2 Airy times exponential
function
i O x=uVv R =0 Hermite times

exponential function

Note that the complex heat equation is the complexification of both the
;eal heat equation and the free-particle Schrédinger equation. The effect of
lhe complexification in terms of separation of variables is that orbits 1 and
1n Tables 6 and 7 correspond to orbits 1 and 2 in Table 8, while orbits 3
nd 4 in Tables 6 and 7 collapse to the single orbit 3 in Table 8.
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To derive identities relating separated solutions of the complex heat
equation we can use Weisner’s method and expand arbitrary analytic
solutions in terms of the Hermite functions (orbit 3, Table 8). This was
carried out in detail by Weisner [135] and the Lie algebraic aspects are
covered in [82], so here we discuss only a few of the features of these
expansions.

As suggested by (2.10) and 3, Table 8, for Hermite polynomial solutions
of (2.1) the coordinates {s,z} are appropriate, where

s=—iVt /2, z=ix/2Vi. (2.22)
In terms of these coordinates the operators (2.2) become

H,=—2s%(z8, %50, +1-22%), = .H,=s(—=0.+22), -  Hy=l,

=t S8 — bl 2
H_ = 2 d,, H_,= 3 (20, —s54d,), H —3354-2,
and the heat equation reads
(d.,—2z0.42s59, )®(z,5)=0. (2.24)

Consider the solutions @ of (2.24) which are eigenfunctions of H:
H®=(n+1)0=0=f (z)s".

Substituting these solutions into (2.24) and comparing the resulting
ordinary differential equation in z with (B.10), we find that the functions

® (z,8)=H, (2)s", D.(z,5)=e“H_,_, (iz)s" (2.25)

form a basis of simultaneous solutions where the Hermite functions H,(z)
are defined by

H (z)=2"%exp(z*/2)D,(V2z), ne(, (2.26)

and D, (z) 1s a parabolic cylinder function. If n=0,1,2,...,then H, (z) 1s
the Hermite polynomial (B.12).

To understand the significance of the polynomial solutions, let us
consider the system of equations

H_®=0, Q®=0,

which has the solution ®=1, unique to within a multiplicative constant.
We will use this elementary solution and our knowledge of the symmetry
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algebra G5 to construct other solutions. If ®(z,s) is in analytic function of
(z,5), we knﬂw from standard Lie theory that

exp(aH, )®(z,s) =exp(2azs — a’s?*)®(z — as,s) = 2 %(H, )" ®(z,5).
n=0 "

Furthermore, if @ is a solution of the complex heat equation, then
exp(aH,)® is a solution (provided it is well defined). Putting our solution
®=1 in this expression, we find

=L (2.27)
Os=1,.0.=(H:) Py ,on=1,2. 5

Now consider the action of the symmetry operators H; on the @,. An
elementary induction argument based on [H_,, H J=3H, shows
[H_,,(H)"1=(n/2)(H,)"" ', n=1,2,.... Applying both sides of this iden-

tity to @,, we obtain

H ®=(n/2)® _,, n=12,.... (2.28)

(This expression makes sense for n=0 if we define ®,=0 for n<0.) By
definition of ®, we also have

B =l e = (e (2.29)
and, from [H° H,]=H

H'®,=(n+3)®,, ®,=f(2)s" (2.30)

It follows from (2.30) that the f (z) are expressible in terms of Hermite
functions. Indeed, comparing (2.28), (2.29) with the recurrence relations
(B.13), we find

® (z,5)=H, (z)s", n=0,1,2,..., (2.31)

~ the Hermite polynomial solutions. Substituting (2.31) into (2.27) and
setting s =1, we obtain the fundamental generating function for Hermite
~ polynomials

exp(2az — a?) = 2 L_H,(2), (2.32)
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In addition to the recurrence formulas (2.28), (2.29) for the Hermite
polynomials we can use the commutation relations to derive

H-':-'..‘I}n — (ﬂ/d’)(ﬂ — 1}(1)”_1, HE{I,H s ¢H+ 7 Hﬂ,‘I‘n =¢)H? (2.33)
n=0;1.2,...-

We can obtain many other identities obeyed by Hermite polynomials if
we apply the group operators T(g),g € G5 (see (29) to a basis element @
and expand the result in terms of the {®,} basis:

T(g)®,(z,5)= § T,.(g)®,(z,s5), m=012.... (2.34)
n=0

This procedure is practical provided we can compute the matrix elements
T. (g). However, for g close to the group identity element, these matrix
elements can be computed directly from the Lie algebra relations
(2.28)—(2.30) and (2.33).

To perform the computation it is convenient to construct a simpler
model of the Lie algebra representation. We choose f, (w)=w" and

2 dw
il o (2.35)
IEI'= s e = —_— e —

These operators satisfy the commutation relations of ¢S and their action
on the basis functions f,(w) agrees with the action (2.28)—(2.30), (2.33) on
the @, basis. In terms of this model we define the matrix elements

Tum(.B), Ry, B):

exp(e Jexp( BH: ) 1, ()= 2 Ton (e B) Sy (), (2368

exp(al, )exp( BH 1 )y (W)= S Rom(@,B)f,(w); (2360

n=0
that is, we apply the group operators exp(aH )exp( SH’) to a basis functior
w™ and expand the resulting analytic functions in power series about w=
The matrix elements are model independent. We will compute them usir
the simple model (2.35), then apply the results to the heat equatiol
Elementary Lie theory yields

exp(aH, ) f(w)=exp(aw) f(w),  exp( BH,)f(w)=exp(Bw?)f(w),
exp(BH_,) f(w)=F(w+B/2).
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Thus (2.36) becomes

exp(aw+ pw?) = § T Lo BYw =" (2.37a)
n=(

exp(an)(w+B/2)"= 3 R, (aB)w" (2.37b)
n=0

These are well-known generating functions (2.32), (7.30), which yield

(—"V’E )"-m o :
Tnm(ﬂﬂﬁ)= (n-m)! Hﬂﬁm(zﬁ )! B,

0, n<m; (2.38)
Bm@p)=(5) Lo SE)

where L,*)(z) is a Laguerre polynomial (see (B.9i)).

- Now we exponentiate the operators (2.23). In addition to (2.27) we
obtain

= daz?s? 2
exp(aH,)®(z,5)=(1+4as?) "/ ?ex ( )tﬁ -
p(aHL)P(z,5)=( ) Himae (1+4as2)"

4 (l+4;2)uz } el
H b
| & z LS 2
S et (S M ST ZE B

eXp(YH _ )®(z,5)=P(z+ v /4s,5),

exp(8H °)®(z,5) =exp(8 /2)®(z,e’%),

eXp(@H))P(z,5) = e¥D(z,s). (2.39)
'_s_ﬁtuting (2.38) and (2.39) into (2.36), we find (after simplification)

Hm £ — 3
((1 —32)”’2)

A,(0)H,,,(z), |s|<l, (2.40a)

ey —(m+1)/2
(1=15%) E}{p{ ;

NG

n=I0)

2zsa — (22 + a?)s? J

| Bl
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exp(— s’a?—2zsa)H,,(z +sa— B/5)s™

= S (=B L (—aB)H,(2)s".  (2.40b)

n=0

Expression (2.40a) is a generalization of Mehler’s theorem [37, p. 194], to
which it reduces in the case in which m=0 (Hy(z)=1),

2zsa— (2% + a?)s? 2 (s/2)"
(1 —51)‘lf1exp[ I( - ) ]: ( L) H (a)H,(z), (241)
s o n=0 '
5| <.
For B=0, s=1, expression (2.40b) simplifies to
3 1 Lo
exp(—a’—2za)H,, (z+a)= 2 = H o i(z) (2.42)
n=0 .
and for a=0, s=1 it becomes
H,(z—B8)= 2 (")B™"H,(2) (2.43)

n=0

where (":") is a binomial coefficient (see (B.1)). By computing additional
matrix elements 7, ( g) of G£, we could derive further generating functions
for the Hermite polynomials [135, 82].

We now discuss the Hermite function, nonpolynomial solutions of the
complex heat equation, that is, the eigenfunctions ® (z,s), (2.25), with
n€ ¢, n#0,1,2,.... In particular, we will study the eigenfunctions

®,(z,5)=H, (2)s". A€EL. (2.44)
where A is not an integer. The @, satisty
H°®, =(A+1)®,, 0@,=0. (2.45)

The commutation relations [H ", H)=jH,j=0, %1, +2 imply that the op-
erators H;, map a solution of (2.45) corresponding to eigenvalue A into a ¢
solution corresponding to eigenvalue A+ . Indeed, using the fundamental €
recurrence formulas (B.13) it is straightforward to show

H—ttbh:% N1 H—E(Dh:%(}‘_l)@ﬁ—l*

(2.46)
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These relations are the same as (2.28), (2.29), (2.33) except here A is not an
integer. By applying the operators H; to a given @, we can thus obtain an
infinite ladder of solutions @, ,, where n runs over all Integers.

For a study of the transformation properties of these solutions under G5
it is convenient to consider the operators exp(aH,)exp( BH,),exp(aH)
exp(BH _,), and exp(aH,)exp( BH _,). (We can obtain the general group

action as a product of three such operators and the trivial exp(yH")
exp(6H,).) The matrix elements are defined by

oD

xp(al, )exp(BH )Ry 1= 3 T, (aB)Bryp  (2472)

Lr %]

explatl,Jexp(BH_ )Py, = X R, (a,B)®y,, (247b)

exp(aty )exp(BH _,)®,,,= 2 S, (a.f)®,, (247c)

= — o0

From (2.46) it is easy to see that the T,..(a,p) are identical with the matrix
elements 7, (a,B), (2.38), except that now m and n may take negative
integral values. Thus, (2.47a) becomes (2.40a) and H, replaced by H, , .

H,,,, replaced by H, , . ... where m can take on all integer values. This is
a further generalization of Mehler’s theorem.

To compute the matrix elements R, («, ) we choose a simpler model of

some of the relations (2.46). Indeed, the choices 4, [(w)=w", m=0, +
R, ..

B SR

|
dison WS i

satisfy [H.H _|]=—3 H, and

A+ m
Hlkh+m=h}.+m+lﬂ H—Ihl+ﬂ:=(T)hh+rﬂ—l‘

n agreement with (2.46). In this model

exp(aH )exp( BH _ Yy, .(w)=exp(aw)(1+ /2wy "ypm

= > R,.(a,B)w" (2.48)

' e 3

mputing the coefficient of w”, we find

R, (a.)= ( _2@)"'*"%,2;,,,( ;;ﬁ) (2.49)



104 The Schrodinger and Heat Equations 2.2.

where L{"(z) is a generalized Laguerre function,

T(r+A+1) ( M

(v4+1DI(A+1) L z)‘ 2-20)

L) =

proportional to a general ,F,. Thus, (2.47b) becomes
exp(—s’a’—2zsa)H, ., (z+sa—B/5)s™
= F (=B)" LN (oB)H s (2) (2.51)
A= — o0

m=0, 2 ). e

To compute the matrix elements S, (a,8) we choose another model:

A+m+2\ . 3 (AF2)
A T T o_ . d 1
Him 2o m o0 ! HO=ile kg

With these operators

AP ) SXHCBH 5 Wy )
¥ F( At+m+2 )w’" (1 3 Ewl)—{:\+m+2jf2

2
A+m—1)/2
x(l+ £ 1) (=)t m7 17
(I—afB)w
= 2 Swml@p)r(AE5E2 )wn
ow?| <1, | BI<[|(1=aB)w?, (2.52)
SO
A (1 _ﬂﬁ ){A‘Fm_-"}fla{nﬂ-m}fl
Sum(at, B)=
I'((n—m+2)/2)
[ A+n+2 1-A—m ﬁ
21 ke —ap :
X 5 F, i B if n—m even,
2

S (a,8)=0 if n—modd. (2.53)

ISBN-0-201-13503-5
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(We use the fact that , F\(a,b; ¢; z) /T(c) is an entire function of ¢ to make
sense of these expressions for m > n.) Thus (2.47¢) becomes

(A+m)/2
~(A+m+1)/2 B 4ozs?
1+4as? (I—ﬂ': -—-—) ex (
( ) ¥ 45° h | +4as?

~1/2
XH, ., z[(l+4m2}(l—aﬁ—4—i—” ‘s’”
- 2 Sn@h, @ L oy <H<lal™ (259

Next we present a simple application of the general Weisner method to a
case where the expansion coefficients in a Hermite polynomial basis
cannot be computed from the Lie algebra alone. Consider the function
¥(z,5)=exp(—4H _,)®,(z,s) where ®, is given by (2.25), (2.26) with
A=n€¢ and |s|<1. Then

!

‘If(z,s)=HA[ = o }(1+53)M1= 2 [, s|<l. (2.55)
(1+s?) Jj=0

(Note that this expansion is not a special case of (2.54). Since Q¥ =0, it
follows that Q (f(z)s/)=0 for each /, hence f(z) is a linear combination of
the H° basis functions ®; and @; see (2.25). However, since H,(w) is an
entire function of w, it follows easily from (2.55) that the highest power of
Z occurring in fi(z) is z/. Thus fi(2)=¢;H,(z). Setting z=w~',s=wp in

(2.55) and letting w go to zero, we obtain

H) (v)= § *'{;-(21;){

=0

owever, the special case of (2.51) with 8= —v,s=1,m=0 yields

H, (z+v)= E (f;.)Hh_j(z)(Zv)j. (2.56)

Thus ﬂ:’:(_};)ﬂh —;(0). This result suggests the existence of a more general

generating function. Indeed, consideration of exp(dwH _1—4H _,)®, leads
0 the generating function

W+ zs J=i(h')Hh_j{w)h}(f}ﬂ' Is|<1. (2.57)
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For derivations of this and many other generating functions for Hermite
polynomials, including some from the Airy basis, see [135].

2.3 Separation of Variables for the Schrodinger Equation
(id, +0,,—a/x*)¥=0

Next we apply the methods discussed in Section 2.1 to the radial
Schrodinger equation for a free particle

i9¥=—3 ¥+ Ly (3.1)
oA II

Here a is a nonzero real constant, ¢ is real, and x >0. As mentioned in the
discussion following Table 5, this equation arises for certain values of @ >0
from free-particle Schrédinger equations for higher-dimensional spaces in
which spherical coordinates have been introduced and all of the angular
variables separated out (e.g., [70, p. 108]). Here x = r, the radial coordinate.
We shall show that a group-theoretic study of (3.1) leads naturally to the
Schrodinger equations for the radial harmonic oscillator and radial repul-
sive oscillator. Thus, our analysis of equations (1.2) and (3.1) will incorpo-
rate all seven potentials listed in Table 5.

A straightforward computation shows that the complex symmetry alge-
bra of (3.1) is three dimensional, with basis

.2

0_ 1
>t K'=219,+x0.+5 (3.2)

and commutation relations
(K%K o] = 22K,  [KuK_5]=K"
For the alternate basis { L} where
L|=KD, L1=K_E+K2, L3=K_E'_K1

we have the relations

[Lysdy]==2L, [L31L,]=2L1. [ Ly L, |=—2L,. (33)
Comparing these results with (1.4), (1.5), (1.7), we see that the real Lie
algebra generated by the basis elements is s/(2, R) and that the correspond-
ing local group action of SL(2,R) on functions ®(z,x) is given by the
operators T(A), (1.16). The explicit relations between the group and Lie

algebra operators follow from (1.17). (Note, however, that in (1.16) we
must require x >0.)
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The group SL(2,R) acts on s/(2,R) via the adjoint representation and
splits the Lie algebra into orbits. Let

K=a,K,+a_,K_,+a,K Esl(2.R)

and set a=aya_,+ag. It is straightforward to check that « is invariant
under the adjoint action and that K lies on the same SL(2,R) orbit as
exactly one of these three operators:

Case | (a<0) K_,—K,=Lg;
Case2 (a>0) K (3.4)
Case3 (a=0) K,

Thus, there are three orbits.

The computation of all R-separable coordinate systems for (3.1) is easily
carried out, due to the fact that an R-separable system must also be
R-separable for the free-particle equation (set a=0 in (3.1)). Thus the
possible systems are those listed in Table 6, subject to the additional
requirement that they are still R-separable when the potential a/x? is
added to the free-particle Hamiltonian. We find that only orbit 2 in Table
6 is lost. The results are presented in Table 9, where as usual we have 1= ¢.

Table 9 R-Separable Coordinates for the Equation (id,+ 9., —a/x?)¥(t, x)=0

Operator K Coordinates {w,v} Multiplier R=¢’®  Separated solutions

A K, xX=U =0 Bessel times
exponential function
b K, X=uv R =uv/4 Bessel times
exponential function
2a K° x=u\Vep R =0 Whittaker times

exponential function
2b K +K_, x=u[x(l—v?)]/? R =+u’/4 Whittaker times

exponential function
3. K—K_, x=u(l+v)? R =u/4 Laguerre times

exponential function

Note that we have listed two coordinate systems on each of the orbits |
and 2 even though the systems are SL(2.R) equivalent. These systems are
nequivalent with respect to the subgroup of “obvious symmetries” gener-
ated by time translation and dilatations. The exact relationship is

J(Ky+K_ ) '=K%  JK_,] ?*=-K, (3.5)

where J and J? are given by (1.21), (1.22).
In analogy with our argument in Section 2.1 we can interpret the
operators (3.2) as a Lie algebra of skew-symmetric operators on the Hilbert
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space L,(R+) of complex-valued Lebesgue square-integrable functions on
the positive real line, 0 < x <oo. This is accomplished by considering 7 as a
fixed parameter and replacing 9, with id,, —ia/x* in expressions (3.2). The
resulting operators, when multiplied by i and restricted to the domain of
infinitely differentiable functions with compact support in R+, are, via
Weyl’s theorem [122, p. 297], seen to be essentially self-adjoint provided
a>3/4. In the remainder of this section we assume that the constant a
satisfies this inequality. We see then that the operators are real linear
combinations of the skew-symmetric operators

K_,=id, —ia/x% K,=ix*/4,  K°=x9,+; (3.6)
to which they reduce when ¢=0. Similarly, the skew-symmetric operators

R=H"=xd,+3, P,=K_,+K,=id,, —ia/x*+ix*/4,

h (3.7)
R,=FK_,—K,=id, —ia/x*—ix*/4,
satisfy relations (3.3) and the L, reduce to £, when /=0.
In analogy with (1.26) we find
exp(th _,)H.exp(—tK_,)=K,
£i ? (3.8)

exp(1H_,)E exp(—1K_,)=L;

where exp(:K_,) is a unitary operator on Ly(R+). Thus for any f€
L,(R+) the function W(z,x)=exp(rH_,)f(x) satisties o¥="H_,¥ or
idg¥=—9 ¥+a¥/x* and ¥(0,x)=f(x). Also the unitary operators
exp(K)=exp(tK _,)exp(K )exp(— 1K _,), K €s/(2,R) map solutions of
the equation d,¥ =% _,¥ into other solutions.

We will soon demonstrate that the operators K . ,, K ? generate a global

unitary irreducible representation of the universal covering group SL

(2,R) of SL(2,R), (1.37)—-(1.40), by operators U(g),g€ SL(2,KR), on
L,(R +). Assuming this, we see that the operators T(g)=
exp(tH _,)U(g)exp(— K _,) define a group of unitary symmetries for
equation (3.1), with associated infinitesimal operators K=
exp(tH _,)H exp(—tH _,). This discussion shows the relationship be=
tween our Lie algebra of K operators and the Schrodinger equation for
the radial free particle.

Next consider the operator £ ;E€s/(2,R). If fE€EL,(R+), then ¥(1,x)=
exp(zf ;) f(x) satisfies 9, ¥ =L, ¥ or id,¥= —3_ V+a¥/x*+ x>V /4, the
Schrodinger equation for the radial harmonic oscillator. The unitary opera:
tors V(g)=exp(¢£ )U(g)exp(— L ;) are symmetries of this equation and
the associated infinitesimal operators exp(7£ ;) exp(—t£ ;) can be writ
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ten as first-order linear differential operators in x and . Similarly, if f€
L(R+), then ¥(t,x)=exp(£,)f(x) satisfies d¥=L£,¥ or id¥=
—0, V+a¥/x*— x>¥ /4, the Schrodinger equation for the repulsive ra-
dial oscillator. The operators W(g)=exp(¢£ ,)U( g)exp(—L£ ,) determine
the symmetry group of this equation and the associated infinitesimal
operators exp(1£ ,)H exp(—1£,) can be written as first order in x and .

[t follows from these remarks that the Schrodinger equations (5)—(7) in
Table 5 have 1somorphic symmetry algebras. For each of these equations
the algebra of symmetry operators at time r=0 is s/(2, R) with basis (3.6).
Although we first derived this symmetry algebra through a study of the
Schrodinger equation (5), we could also have obtained it from (6) or (7) in
Table 5. Moreover, we have shown how to map a solution of any of these
equations to a solution of another equation.

From (3.4) we see that the operators H_,, £ 5, £ ,, corresponding to the
radial free particle, attractive, and repulsive harmonic oscillator Hamiltoni-
ans, lie on the same SL(2,R) orbits as the three orbit representatives
K ,,L£ 5, and K °, respectively. Our three Hamiltonians correspond to the
three orbits of s/(2, R). The remarks concerning expressions (1.31)—(1.33)
and the invariance of spectra for operators on an orbit carry over without
change to this case, except that the inner product 1s now

Chohy= [ “hi((x)dx,  BELy(R+). (3.9)

Note that if {f,} i1s the basis of generalized eigenvectors for some
K Esl(2,R), then {¥,(1,x)=exp(z:K_,)fi(x)} is the basis of eigenvectors
for K=exp(tH_,)H exp(—tH_,) and the ¥, satisfy the Schrodinger
equation for the radial free particle. Similar remarks hold for the other
Hamiltonians.

We first present the well-known results for the spectrum of £ 4. The
eigenfunction equation is

il f=N, (—0.,+a/x*+x*/4)f=MN

and the normalized eigenfunctions are

oy 1/2
fE}(I)=( H'Z p/2 ) E}E]'J(_“EE)I{PHHELETPKE](“?)’

F(n+1+p/2)
; (3.10)
[T (e*=1)
}\=}."=—2n—5—1, a= 1 . p=2,n=0,12...,

where L{*)(z) is a Laguerre polynomial (see (B.9i)). The { £} form an ON
basis for L,(R+) [123, p. 108].
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Using known recurrence relations for the Laguerre polynomials, (4.9),
we can check that the operators £, acting on the f© basis define an
irreducible representation of s/(2,R) belonging to the discrete series. The
Casimir operator is 3(£ 2+£ ;2= £ ;5)=—3/16+a/4. As is well known
[10, 115], this Lie algebra representation extends to a global unitary
irreducible representation of SL (2,R). The matrix elements of the opera-
tors U(g) in an f® basis can be found in [115] or [87].

We now compute the operators U(g) directly. Clearly,

exp(aH ®)h(x)=exp(a/2)h(e)
exp(a¥ ,)h(x)=expliax®/4)h(x), hEL,(R+).

Furthermore,

exp| Fim(p+2)/4 o
exp(BE Jh(m)= 22! 2|5fn‘”‘m Lo [ [Ty

exp( £ £ (2 +22)lcotBIV, o gy Jr ) BD

0<|B| <,

where we take the upper sign for 8 >0 and the lower for 8<0. The
additional relation exp(wf ;)=exp[—im(1+p/2)] allows us to determine
exp( BL ,) for any B. To prove these results we apply the integral operator
(3.11) to an f@basis element, using the Hille-Hardy formula, (4.27), and
the fact that exp( BE£ ;) [P =exp[—if 2n+p/2+1)]f to check its valid-
ity. Since (3.11) is valid on an ON basis and exp(BL ;) is unitary, the
expression must be true for all A€ L,(R+).
The group multiplication formula

exp(yH_,) =exp(—sin(# ) cos(8) X ;) exp(Incos(8) K ?) exp(6 £ 5)

with y=tan# and expressions (3.10), (3.11) easily yield

Fim(p+2)/4 b
exp(yh_p)h(x)= = IEE: % l'i'm'fﬂ (x)'/2
(¥ +y?) .
.E:}'Lp(t 4y )JME(%)!:(_V)&&A (3.12)

where we take the upper sign for y >0 and the lower for y <0. A similar
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group-theoretic calculation gives

exp| Fim(pu+2)/4
2[sinh |

exp(pL,)h(x)= }].i.m.fm(xy)]ﬁ
0

/

.e:n:p( 71 (x?+y?)coth tp)JMl ( od

2|sinhg

J)h(y}ea». (3.13)

From (3.12) we find that the basis functions £(x) map to the ON basis
functions ‘I'ff]'{f.x}=exp(rﬁ_ﬂﬂ“{x):

; +2 2 \(erii/A
¥ (1,5)=(~2)"exp| £im B ][ 2 (=i
4 | 4 12

¢ (f—l‘ I;Jj.il,r'4+ Ifdi[_nﬁ};p ,TE{-’.{ = ]) Lhu_f"l‘.l(l _‘ri_)‘ I#U, (3‘14)
401+2) |7 \P 142

which are R-separable solutions of (3.1). (Indeed we can derive (3.14) from

our knowledge that the ¥ are R-separable solutions of the form 3 in
Table 9.)

The SL(2, R) orbit containing the operator £, (repulsive radial oscilla-
tor) also contains K °, so we merely study the spectral theory for K °. The
results are well known [128]. The eigenfunction equation is

(R =, KO=x3 +1.

The spectrum is continuous and covers the real axis with multiplicity one.
The generalized eigenfunctions are

RP(x)=(2m) T eBa, N FSP=8(A=F). (3.15)

Using (3.12) and separation of variables, we find Pt x) =
exp(r K _,) ,P(x) where

H(10=0m) (R - £ 4 ]) ‘““"p{' b *‘*"‘)Jzﬂ_mh"m&

- 7

_rz (pu+1)/4 G755 o
{
X(_r_) Lf;ilf:_'ﬂfz_lfz(q__‘r')‘ I}O-

V(- 1, x)=¥2 (1, x). (3.16)
It follows from our procedure that the basis functions satisfy
ERAL ), YO )p=8(A-¢)

and can be used to expand any h e L(R+).
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Finally, the orbit containing % _,, corresponding to the radial free
particle, also contains % ,. The spectral theory for ‘K , is elementary, since
this operator is already diagonalized in our realization. The generalized
eigenfunctions are (symbolically)

O(x)=8(x=A), iH,fV=(A/4)f", A>0. (3.17)

The spectrum is continuous and covers the positive real axis with multiplic-
ity one. We have ¥{"(¢,x)=exp(tH_,) f{ (x) or

i(x*+A*
(xh)lfzexp(( 4‘: ))Jpﬁ(%)

(3.18)

exp[ Fim(p+2)/4]
2|1]

¥ (1,x) =

with (¥, ¥ =8 (A — ). Expansions in the basis (WD} are equivalent to
the inversion theorem for the Hankel transform [141, p. 199]. The ¥y are

basis functions for the operator K,.
Each of our bases has a continuous generating function of the form

(1.55) where now

X
J"H(Zifl )

(3.19)

+im(p+2)/4 i(x2+y?
k(r,x,y)=exp[ w;ﬁj; )/ ](xy}'ﬁexp[ (IM}’ )}

(see [59]). -
The overlap functions ( f”, £’ have the same significance as described
in Section 2.1. Because of the simplicity of the basis f{", the only nontrivial

overlap 1s

OS> =

Flnaed )2}, opon. ]'”r(-s&/zw/w]/z)
2;;,.-"2 2iA—1
wn! L(1+p/2)

S ( —n,fh/ﬁ:!-:n//:-klfﬁlz)_ .20

In particular, we note that the overlap functions are dependent on the
representatives £, chosen on each orbit. The most general way &
define an overlap function is as a mixed-basis matrix elemen

OUR .8 € SL (2,R). Some of these elements have been compute
in [24].
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2.4 The Complex Equation (0. —9__ +a/x>)®(r,x)=0

Here we study the complexification of equation (3.1). The variables 7, x
are now allowed to take complex values and a is a given nonzero complex
constant. Introducing the new variable 7 =iz, we can write this equation in
the form

(9, — 3, +a/x?)®(r,x)=0. (4.1)

The complex symmetry algebra for equation (4.1) is easily seen to be three
dimensional with basis

Jt=1%9 +1xd +7/2+x%/4,

(4.2)
J T =—-10, JO=73, +3x3, +1
and commutation relations
[JOF* | s®Ts,  [Thd]=24" (4.3)

This Lie algebra 1s isomorphic to s/(2, ), as we shall soon show. Thus the
operators (4.2) can be exponentiated to yield a local representation of
SL(2,¢) by operators T(A4),4 € SL(2, {), acting on the solution space of
(4.1). Furthermore, it is obvious that SL(2,¢) acts on the symmetry
algebra s/(2, ¢) via the adjoint representation and decomposes the algebra
into SL(2,¢) orbits. A straightforward computation shows that there are
exactly two orbits in s/(2, ) with orbit representatives J = and J°. (The
orbits in s/(2, R), (3.4), with representatives K_,— K, and K° both belong
to the orbit of s/(2,¢) with representative J° while the orbit with repre-
sentative K, belongs to the complex J ~ (same as J *) orbit.) Similarly, it
can be shown that (4.1) R-separates in exactly two complex analytic
coordinate systems. (As usual we consider two systems as equivalent if one
‘can be mapped onto the other by one of the operators T(4),4 € SL(2, ¢).
The separable systems are listed in Table 10.

Table 10 R-Separable Coordinates for the Complex Equation
(0,— 0 +a/xHD=0

Operator/  Coordinates {u, v} Multiplier R Separated solutions
- X=UT=0 R=1] Bessel times exponential
function
g g0 x=uVv .,7=v R=1 Laguerre times

exponential function

To derive identities relating the various separated solutions of (4.1), we
‘can apply Weisner’s method and expand arbitrary analytic solutions in
terms of the Laguerre functions (orbit 2). These results are worked out in
detail in Chapter 5 of [82], so here we will be very brief.
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As suggested by (3.16) and 2 (Table 10), the Laguerre function solutions
of (4.1) correspond to the coordinates {s,z} where

s=71, z=-—x"/4r. (4.4)

Furthermore, it is convenient to transform (4.1), which we write Q¥ =0, to
the equivalent equation Q'¥'=0 where ¥' =R ~'W¥=5!/4A¥ and Q'=
R "'QR. The symmetry algebra of the primed equation consists of the
operators J'= R ~'JR where J belongs to the symmetry algebra of (4.1).
Explicitly, we have

J't=5*d 4520, —sz—1ls, J  =-0,+(z/5)0,—1/s, JC=s0d,
4.5
B=i+,  a=d(L-D), Ieg, 6
and the differential equation Q'¥' =0 reads
(20,,— (21+2)3,+53,+1)¥(z,5)=0. (4.6)

(In the remainder of this section we will use only the operators (4.5) and
equation (4.6), so we henceforth drop the primes.)
Now consider the solutions ¥ of (4.6) that are eigenfunctions of J°:

JO=mI=¥=f (z)s™

Substituting this solution into (4.6), we see that the ordinary differential
equation obtained by factoring out s is of the form (B.7). Thus the f (z)
are confluent hypergeometric functions. In particular, the functions

¥,(z;8)=LE " (2)s™ (4.7)

satisfy these equations.

Note that for /¢, 2/%0,1,2,..., and m=—1I+n, n=0,1,2,..., the
solutions ¥, are well defined and reduce to polynomials in the variable z,
the Laguerre polynomials L{~%~"(z),(B.91). To understand the signifi-
cance of these polynomial solutions it is helpful to consider the system of
equations

JT0=0, J'®=-—]0,
which has the solution ®(z,s)=s"', unique to within a multiplicative
constant. It is easy to verify that @ also satisfies the differential equation
(4.6). Now we use our knowledge of the symmetry algebra of (4.6) to
construct other solutions. If ®(z,s) is any analytic function of (z,s), it is a
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simple consequence of local Lie theory that

i (]Eizz.r) ]¢( ljﬂ.i' " ljm')

exp(aJ * )®(z,5)=(1—as) exp

Furthermore, if ® is a solution of (4.6), then so are (J*)"® and
exp(a ")®, provided they are well defined. Substituting our solution
‘®=5""in this expression, we find

(1 —a.f)ﬂs_"exp[ —azs /(1 —a.*;)] = § a"® (z,5),
Z=0 (4.8)
®,=(1/n)(J*)'®, Dy=d, |as|<].

‘Using the definition of ®,, the commutation relations (4.3), and a straight-
forward induction argument, we can derive the recurrence formulas

I, =(n—1)®,, J*,=(n+1)®,,,, J ®,=QI-n+1)d,_,, (49)
®_,=0,n=0,1,2,....

Furthermore, comparison of these results with the recurrence formulas
(B.8) and ®,=s "' yields

D,(z,5)=Y, [2,5)=L{HN(z)s", n=0,1,2,.... (4.10)

Thus (4.8°) becomes a generating function for Laguerre polynomials:

(l—cr)yexp[—az/(l—a}}= § «"LiT#7D(2),  |a|<1. (4.11)
n=10

To derive more identities for Laguerre polynomials we need to de-
termine the operators T(A4) that define the action of the local symmetry
group SL(2,¢) on the solution space of (4.6). Recall that SL(2,¢) is the
complex Lie group of complex 2 X2 matrices 4 with determinant + 1:

A=(": 3), a,b,e.del, ad—be=1. (4.12)

The Lie algebra s/(2, ¢) of this group consists of all complex 2 X 2 matrices
5 A with trace zero:

A=(f: _Bﬂ), OB yEL.



116 The Schrodinger and Heat Equations 2.4.

As a basis for s/(2,¢) we choose the matrices

with commutation relations
[P.$1=2F, [§.§ ]=29.

Since these relations coincide with (4.3) we see that the symmetry algebra
of (4.1) is indeed isomorphic to s/(2, 7).

A straightforward computation (see [82, Section 1.4]) shows that if
AESLQ2,¢) is given by (4.12) with 450, then

A=exp( B4 )exp(v§ ™) exp(74),
e"=d"B=—b/dy=—cd.

(4.14)

This expression enables us to parametrize a neighborhood of the identity in
SL(2,¢). Next we exponentiate the operators (4.5) to determine the corre-
sponding local multiplier representation of SL(2,¢) by operators T(A4)
acting on analytic functions ©(z,s). According to (4.14) we have

T(A)=exp((—b/d)J* )exp(—cdJ ~ )exp(—2IndJ°)  (4.15)

for A in a suitably small neighborhood of the identity element. We have
already computed exp(aJ 7) in (4.8). Similar computations yield

exp(yJ ~ )®P(z,5)=(1— '}r/s*)ftf'(z(l —v/s)" 5— ]r),
exp(rJ°)®(z,5)=®(z,e7s).

Composing these operators, we find

T(A)D(z,5)=(d+ bS)’(ﬂ )E‘*""P[ (;ﬂs) }

KtIi( zs a3+c) ‘__

, . >I<1, 4.16
(as+c)(d+bs) d+bs (4.1}

defined for all analytic functions @ such that the right-hand side makes
sense. Note that T(A4) maps an analytic solution of (4.6) to another
solution.
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We now apply the operators T(A) to a basis function ®_ and expand the
resulting function in terms of the {®,} basis:

T(4),(2,5)= i T, (A)0,(2,5). @.17)

For 4 close to the identity we can compute the matrix elements T.(A)
directly from the Lie algebra relations (4.9). The computation is simplified
through the construction of another model of our Lie algebra representa-
tion (4.9). Following Section 5.2 of [82], we choose basis functions

L(w)=(n)""T(n—=2D)w", n=0,12,....

and operators

J+=wza%—23'w, J_=_E’%’ Jo=w— 1 (4.18)

It is easy to check that these operators and basis functions satisfy (4.3) and

f 4.9). Furthermore, by applying (4.15), we can show that the corresponding
local group action of SL(2,¢) is determined by operators T(A) where

T(A)f(w)=(bw+d)2"f( gﬁi;) lbw/d|< 1. (4.19)

The matrix elements are given by

T(A)fo ()= 3 Ty (A)f, (0

d*="(1+bw/dy'~"(aw+ c)y"T(m—21)/ m!

= § LA (n=20w"/nl,  |bw/d|<]1. (4.20)
n=0

__,anding the left-hand side of (4.20) in a power series in w and comput-
1g the coefficient of w”, we obtain

ﬂdlt’um m—n| =
(y=" " "T(m )ZF[(_”””_Z"
I'(m—n+1)T(n—21) m—n+1

i—:,). (4.21)
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Moreover, the local representation property T(4A4")=T(A)T(A") valid for
A, A" in a suitably small neighborhood of the identity in SL(2,¢') implies

= S T (4T, (49
k=)

Substituting (4.10) and (4.21) into (4.17), we obtain the identities

(14 bs/d)*~"(1+ ¢/ as)™ exp[bzs /(d + bs)]
XLC2=Dz(14bc) " '(1+c/as) (1 +bs/d)" "]

- S nl n—m L =1 —m,n—2l E]
=2 m!( sb/dY'~"T(n—m+1) IFI( LA el
XLEA0z),  |bs/d|< 1.d=(1+bc)/a, 4.22)

valid for all integers m >0 and for all /¢ such that 2/50,1,2,.... (In
(4.21) and (4.22) we use the fact that 2a‘“,(ﬂtf z) /T(y) is an entire

function of a, 8,y to define this expression for y a negative integer.)
If a=d=s=1,c=0, the identity simplifies to

(1- b)y_mexp[ —bz/(1-b)|LG %" ”(z(l —b)_')

= B (ML Uiy 1Bl
n=i{

For m=0 this last expression becomes (4.11) with a=5b. When a=d=s=
I,6=0, then (4.22) simplifies to

(14¢)"LGHD(2(1+0) )= 3 (M= 2U=1)err G20 (),

n=A()

Similar identities can be derived for the basis functions (4.7) that are not
polynomials in z, that is, m+/70,1,2,.... For these results see Section 5.8
of [82].

To derive more general identities for Laguerre functions we use the full
power of Weisner’s method. If ¥(z,s) is an analytic solution of (4.6) with
convergent Laurent series expansion

¥(z,5)= % Sn(2)8"™,
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then the f, (z) are confluent hypergeometric (Laguerre) functions (linear

combinations of L{7%~"(z) and z#*'L&'* D (2) for 21 not an integer). If in

addition ¥ is analytic in a neighborhood of z=0, it follows that fn(2)=
¢uLrid N2 c, €. Thus,

Y(z.5)= 3, L2V (2)s. (4.23)

The expansion (4.22) is an example of such an identity where we can use
Lie algebraic techniques to explicitly compute the coefficients ¢,,. How-
ever, this 1s no longer true for the example T(A )Y ,.p € €, where

e

and ¥, is given by (4.7). Then we have

3“'(1—3)"%1}3[* IE_SS ]LLﬁ""”( ]‘_Efs )

e

= Zﬂc,,L,‘,‘”'”(z}s‘*"*", 5] < 1.
n=

i IS expansion is not of the form (4.22) because A4 is bounded away from
the identity and p is not necessarily an integer. We can easily evaluate the
constants ¢, by setting z=0. The result is

' - Z5 —rf] Ly
-0/ "on{ 20 (1)

L& . B=p+UT(p—1) —
_En(_S) I‘{.ﬂ*‘r—24"}I'(1’—,t:-'—-r.a'+1)1‘(.!“1-1::'-1*]}L’Ei Th) (4.24)

ls| <1,

d generating function for Laguerre polynomials.

For our next example we choose the generating function ¥ in (4.23) to
€ an eigenfunction of the operator J ~. Since J - belongs to orbit | in
able 10, we see that in the coordinates x.r (suitably transformed from
41) to (4.6)), we can choose ¥ as separable and expressible in terms of a
iessel function. Indeed, a simultaneous solution ¥ of (4.0)andJ " ¥=—V¥

Y(z,5)=5"'e* (z5)"* ”ﬁJ_?_,_, (2(33}”2). (4.25)
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Moreover the function

A gy 2 (a+bz)s+c Gty
V' =T(A)¥(z,5)=s '(d+bs) exp P 5)
2(35)”1 b
KJ—”"( d+bs | FS =l

where A is given by (4.12), also satisfies (4.6) and the equation (J ~)'¥'=
— ¥’ where

(J~Y=T(4)] T(A~")=—bY*+d*J ~—2bdJ°.

Since w~™J, (w) is an entire function of w for all m& ¢, ¥'(z,s) has a
Laurent expansion in s of the form

¥(z;5)= D ¢, (ALY >~ (2)s", |bs /d| < 1.

n=0
Setting z =0, we find

bs

7 <1,

2 as+ec\_ < 1 e
(d+ bs) exp(a,+bS)—n§ﬂf,,(A)T(ﬂ 25)”_=

and comparing this expression with (4.22) in the case where m=0, we
obtain

fl

c,(A)= exp( l+bc)r(ﬂ”'2!] —lr(_ I-T-bbc*) Ly U(f?(lf"bﬂ})’

=012, 21520,1.2;... .

For the group parameter ¢ =0, the result of our computation is the identity

(a+bz)s }(azz ){IFHJIIJ o (2(35)';'2 )

a '+ bs a '+ bs

(1+abs) ' exp

oo
= 2 (” 2 )( abs) L4~ ”(—E-)Lf,'_y_”(z), labs| < 1. (4.26)
=0
If a=1,b=0, (4.26) reduces to

E,T(H){IHIUIJ_H_I (2(53)1;’1)= 2 Lf:‘l"_”(i)-i‘"fr(ﬂ—‘zf),
n=1{0
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—1/2

while if a=iy'/?2,b=i it reduces to the Hille-Hardy formula
Y

+ 2 1/2
8y} Vg _ 2PFA ], (200029)
( P 20—1
[—s li==7%
=2 I( mﬂ)L"*_”_”'(y)LE'I"‘”(z)s”, Is|<1, (4.27)
n=0 1\ —

see [37, p. 189].

2.5 Separation of Variables for the Schrodinger Equation
(i9,+9,,+9,)¥=0

Now we apply the methods of Section 2.1 to time-dependent Schro-
dinger equations in two space variables:

i9,¥=—03,¥—0 V+V(xy)¥ (5.1)

where V' is the potential function. Boyer [18] has classified all equations
(5.1) that admit a nontrivial symmetry algebra of first-order differential
operators. He has shown that (a) the maximal dimension for a symmetry
algebra is nine, (b) this maximum occurs only for the four potentials V
listed in Table 11, and (c) the algebras of maximal dimension are isomor-
phic. (There are actually four classes of such potentials corresponding to
orbits in the symmetry algebra. We have simply listed a representative
from each class in Table 11.) Niederer [102] has shown that the four
equations with maximal symmetry are in fact equivalent. Here we will
examine this equivalence explicitly and relate it to separation of variables.

As in Section 2.1 we begin with a study of the free-particle Schrodinger
equation, which we write in the form

Q¥ =0, Q=id-+05 F00; (x),%3) = (x,y). (5.2)

The complex symmetry algebra &5 of this equation is nine dimensional

Table 11 Potentials V' (x,y) with Maximal Symmetry

V Name of System
(1) 0 Free particle
(2) k(x*+y3).,k>0 Harmonic oscillator
(3) —k(x*+y3),k>0 Repulsive oscillator

(4) ax,a+0 Free fall (linear potential)
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with basis
K,=—1r9,—t(x, 0., + X0, )— t+i(xi+x3)/4, K_,=4,

P=0,, B=—1d +ix/2,  j=12, (5.3)

M=x|ax2_xza_rl, E=f} D=.I|a‘xj+xzaxz+2fal+l

and commutation relations

[D,K.,]=%2K,,, [D, B_;':%: [D:P; = _P:;:
[D,M]=0, [M,K.,]=0, [P,M =(=1)/*'P,

[BjsM]=(- 1)j+ IB!! [Ky K _,]= D, IKI#B; =0,

iK-—}!:Bj]=_}}r [K—I?P:f:=0= I‘F:.r'?K2:=B'

[P, B]]=3E, [P,B]=0, j,I=12, j#l, (5.4)

with £ in the center of §5. In the following we will study only the
Schrodinger algebra G5, the real Lie algebra with basis (5.3).

A second useful basis for §; is given by the operators B, P;, E, which
generate the five-dimensional Weyl algebra U, the operator M, and the
three operators L, L,, L, where

LI=D, L2=K1+K_E, L3=K_2_K1. (5-5‘)
Here,
[L,,L2]= =2 L5 [L3,L|}=2L2, [LI,LJJ =2L,, (5.6)

so that the L, form a basis for the Lie algebra s/(2,R); compare with
(1.11). It follows that G, is a semidirect product of s/(2, R)®o(2) and AULS,.
Here 0(2) is the one-dimensional Lie algebra spanned by M.

Using standard results from Lie theory, we can exponentiate the opera-
tors (5.3) to obtain a local Lie group G, (the Schrodinger group) of
operators acting on the space % of locally analytic functions of the real
variables 7,x; and mapping solutions of (5.2) into solutions. The required
computations can be carried out in simple analogy with expressions

(1.15)+1.19).
The action of the Weyl group W, is given by operators

T(w,z, p) =exp(w,B,) exp(z, P) exp(w, B,) exp(z, P,) exp(pE),

w=(w,,w2), z=(z,,zz),
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such that

T(w,z,p)T(W,2',p) = T(w+ w.z+z',p+p' + %w" . z), (5.7)

where
T(w,z,p)D(£,x) =exp[i(2x * w— tw+ w+4p) /4]D(1,x — tw+z),
¢,
Here x *w=x,w, + x,w,. The action of SO (2) 1s given by T(8)=exp(6M),
T(0)T(8')=T(6+8")

where

T(0)P(1,x)=®(¢1,x0), =( cosd sinﬂ)
(6)®(1,x) (,x0), © e | (5.8)

Finally, the action of SL(2,R) is given by operators T(A4),

T(A)(I’(r,x)=exp[ 4:?1'{;} 1(a+rﬁ)*'¢[;:; ,(6+r,8)_'x}

A=(‘: f)ESL(z,R), (5.9)

T(A)T(B)=T(4B), A,BESL(2,R).
The one-parameter subgroups of SL(2,R) generated by Kol yida, Lo,

respectively, are given by expressions (1.17). The adjoint actions of SO (2)
and SL(2,R) on W, are

T~ (A)T(w,2,0)T(4)=T(W,Z,p),
p'=p+(W-z —w-z)/4W=0w+pz2,7 =az+yw
T~'(0)T(w,z,p)T(0) =T(w0,z0,p). (5.10)

These relations define G; as a semidirect product of SL(2, R)® S0 (2) and

g=(4,0,v)€G,, A€SL(2,R), 0 €50(2), v=(w,z,p)E W,;
T(g)=T(A4)T(0)T(v). (5.11)
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The group G; acts on the Lie algebra §, of differential operators via the
adjoint representation

K-Kt=T(g)KT '(g)

and this action splits &, into G orbits. We will classify the orbit structure
of the factor algebra §=G;/{E} where {E} is the center of §,. Let
K €6, and let a,,a45,a_,, respectively, be the coefficients corresponding to
K3 D,K_, in the expansion of K+0 in terms of the basis (5.3). Setting
a=a,a_,+aj, we find that a is invariant under the adjoint representation.

The following list is a complete set of orbit representatives in the sense

that any K0 lies on the same G, orbit as exactly one of the operators in
this list:

Case | (a<0) K_,—K,+p°M,|B|#1,K_,—K,+M+B,
Case2 (a>0) D+ M, (5.12)
Case3 (a=0) K,+M,K,+P,K,,M,P,+B,P,

We next consider the problem of determining higher-order differential
operators § that are symmetries of (5.2). The special structure of (3.28
enables us to simplify this problem somewhat. Since we will only apply §
to solutions ¥ of Q¥ =0, without loss of generality we can require that §
contain no derivatives in /. In other words, wherever 9, appears in S, we.
can replace it by i(d, . + d, .,). Another way to view this is to note that if’
§ is a symmetry operator, then so is §'=S + XQ where X is an arbitrary
differential operator. Moreover, S"¥ =S¥ for any solution ¥ of (5.2),

There is a unique choice of X such that S’ contains no derivatives with
respect to r.

With this in mind we see that only the operators P, B;, E, generating the
Weyl algebra, and M are first order or less in the X;. The elements
Ky=—i(Bi+ Bj), K_,=i(P}+P}), and D= —i({B,,P,}+{B, P,)) are
second order. (These equalities are valid modulo the replacement of d, by
i(0y x, +9,,,).) More generally, we can compute all symmetries S, that 2
second order or less in x,; and x,:

2

2
S= ¥ a{}-(x,r)a%+ >, bi(x,1) 9, +c(x,1).

=1 Ji=1

A tedious computation shows that such S form a 20-dimensional vector
space. A basis for this space is provided by the zeroth-order operator E, %
the five first-order operators P;; B;, M, and the three second-order operator 5
K . ,,iD listed earlier, plus the eleven second-order operators

B[I_BI‘E! B!PI—‘BEPE‘ PIE_.PEE, {BIFM}T {BE"M}? {F“M}’
{P}!:M}n B|Bz, P[P.?? BIPE_I_BIP'I* ME_
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It follows that all second-order
n B, P; E, and M.

The problem of R-separation of variables for equation (5.2) was solved
in [20]. In the following we will concern ourselves only with those systems
which, in addition to admitting R-separable solutions, have the property

that the separated factors satisfy three ordinary differential equations, one

in each of the separation variables. Since (5.2) is an equation in three
variables, there are now two

separation constants associated with each
separable system.

The relationship between orbits of first-order symmetries (3.12) and
separable systems is now rather tenuous. It is true that corresponding to
any first-order symmetry X we can find a new system of coordinates
{u,0,w}, not unique, such that the variable u# can be separated out of
equation (5.2). (See the analogous discussion for the Helmholtz equation in
Section 1.2.) However, the resulting equation in o, w may not permit
separation of variables. Thus, diagonalization of a symmetry operator K
hay correspond to a partial, but not total, separation of variables.

The results of [20] are as follows, Corresponding to every R-separation

of variables for (5.2) we can find a pair of differential operators K, S such
that:

Symmetries are symmetric quadratic forms

l. K and § are symmetries of (3.2) and [K, S]=0.
2. K€EG§,; that is, X is first order in XXy and £, -
3. §is second order in X1,%; and contains no term in 3,

The R-separation of variables is characterized by the simultaneous equa-
tions

Q¥=0, K¥=V¥, S¥=p¥. (5.14)

In particular, the eigenvalues A, p are the usual separation constants for the
R-separable solutions ¥.

It follows that K lies in the symmetry algebra f?3 while § can be
xpressed as a symmetric quadratic form in B,P.,E, and M. Thus the
possible coordinate systems in which (5.2) R-separates can always be
characterized by eigenfunction equations for operators at most second
order in the enveloping algebra of §,. The possible commuting operators

A, 3, R-separable coordinates { u,v,w}, and separated solutions are listed in

The notation for the coordinate systems that we introduce in Table 12
fequires some comment. Coordinate systems 13-17 are not of much
interest to us because they result from the fact that if P, is diagonalized,
the free-particle Schrodinger equation (5.2) essentially collapses to the

irec-particle equation (1.2). However, the remaining coordinate systems are

associated with the Hamiltonians for the free-particle, linear potential,

fiarmonic oscillator, and repulsive oscillator in exactly the same manner as



126

Table 12 Operators and R-Separable Coordinates for the Equation (id,+9,, +d,,) ¥ =0.

The Schrodinger and Heat Equations 2.5,

Operators K, S Coordinates {u,v,w) Multiplier ¢/* Separated solutions

la Fec! X=uw R =(u’+0v)»w/4  Exponential
K, B? y=ow Exponential

Ib Fc? xX=u 0 Exponential
K_y Pf y=uv Exponential

2a Fr! X= Uw oS ww/4 Bessel
K, M? y=uwsinv Exponential

2b Fr? X=UCosv 0 Bessel
K_,M? y=usino Exponential

3Ja Fp! x=w(u2—v?)/2 (2 + 022w/ 16 Parabolic cylinder
Ky, {By, M) y=uvw Parabolic cylinder

3b Fp? x=(u?—v?/2 0 Parabolic cylinder
K_,{P)M) y=uv Parabolic cylinder

da Fe' x=wcoshucosv (sinh?u +cos?v)w/4 Modified Mathieu
K5, M?— B} y=wsinhusinv Mathieu

4b Fe? x=coshucosv 0 Modified Mathieu
K_,M?*- P} y=sinhusinv Mathieu

5a Lc! x=uw+ta/w (2 +vH)w /4 Airy
Ky—2aP —2bP,, y=ovw+b/w —(au+bv)/2w  Airy
Bi+2bEP,

5b Lc? x=u+aw? (au+ bo)w Alry
K_;+2aB,+2bB,, y=uv+bw? Airy
PII—ZH'E.B|

6a Lp' x=(u?—vH)w/2 (*+v??w/16 Anharmonic oscillat
K,—aP,, +a/w —(u?—v?)a/4w Anharmonic oscilla
{B3,M)—aP} V= upw

6b Lp? x=(u?—v?)/2+aw?/2 (4 —v)aw/4 Anharmonic oscilla
K_,—aB,, y=uv Anharmonic oscillat
{Py. M} + ﬂBf

7 Oc x=u(l+w)!/2 (12 +vH)w /4 Hermite
K_;—-K,, y=o(l+w?)/2 Hermite
P+ B}

8 Or x=u(l+w?)"/2cosp utw /4 Laguerre
K_>—K,, y=u(l+w?"2sinp Exponential
Ml

9 Qe x=(1+w?)'/?coshucosv (sinh®u+cos’v)w/4 Ince
K_,—K,, y=(1+w?)"2sinhusinv Ince

M2— p2— B2
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Table 12 (Continued)
Operators K, § Coordinates {u,0,w}  Multiplier e‘? Separated solutions
10a Re! x=u|w|'/? 0 Parabolic cylinder
D,{B, P} y=uo|w|'/2 Parabolic cylinder
10b Rc? x=u|wi—1|'/2 e(ul+v?)w/4 Parabolic cylinder
K_,+K,, y=vjw?—1|'/2 Parabolic cylinder
P} - B}
lla Rr' x=u|w|'2cosv 0 Whittaker
D, M? y=u|w|'Zsin¢ Exponential
11b RF? x=|w?=1|"2ucosv eu’ w/4 Whittaker
K_,+K,, y=|w?—1|"2usinv Exponential
M?.
122 Re! x=|w|'/?coshucosv 0 Ince
D, y=|w|"/%sinhusinv Ince
M?— (B, Py}
12b Re? x=|w?—1["/2coshucosv e(sinh?u+cos’v)/4 Ince
K_,+K, y=|w?—1]|"2sinhusinv Ince
M?*—Pi+ B}
13 LI X=1u wo' /4 —bo /2w Exponential
P\,B;—2bEP, y=vw+b/w Airy
14 L2 x=u aow Exponential
P\,P;—2aEB, y=uv+aw? Airy
15 01 X=u wu’ /4 Exponential
PLP3+B}  y=o(l+w?)!/2 Hermite
16 RI X=uy 0 Exponential
P, {B, P}  y=v|w|'/2 Parabolic cylinder
17 R2 X=u evlw /4 Exponential
P,P{—B}  y=g|w?—1|'/2 Parabolic cylinder

described in Section 2.1. We denote each system in the form A4b/. The

capital letter corresponds to the type of Hamiltonian; that is, Fesfree
particle, Leslinear potential, Q<sharmonic oscillator, R<srepulsive oscilla-
tor. The small letter indicates the type of coordinate used in each of these
Hamiltonians; that is, cesCartesian, resradial (polar) coordinates, pes
- parabolic, and e<selliptic coordinates. The superscript j 1s used to dis-
tinguish two systems on the same G, orbit.

In each case w=r and the separated solution in the variable w is an
exponential function. In the last column of Table 12 we list first the form
of the separated solution in u followed by the separated solution in v. The
symbol e= =1 denotes the sign of 1—w? and the anharmonic oscillator
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functions are solutions of a differential equation of the form
f(w)+ M+ au*—B) f(u)=0, « BER. (5.15)

From the viewpoint of Galilean and dilatation symmetry alone there are
26 inequivalent coordinate systems. (As indicated in the remarks following
Table 6, this list of 26 Galilean—dilatation inequivalent coordinate systems
is not precisely a list of orbits because certain pairs of Galilean—dilatation
orbits yield separable coordinates that differ only in the sign of a parame-
ter.) However, we can also regard two coordinate systems as equivalent if
the first can be transformed to the second under the action of some g € G,
In terms of operators, the system described by K, S is equivalent to the
system described by K',S’ if, under the adjoint action of G; on the
enveloping algebra of &, the two-dimensional space spanned by K, S can
be mapped onto the two-dimensional space spanned by K’,S’. Under this
more general equivalence relation not all of the 26 systems are inequiv-
alent. Indeed, the systems denoted Ah' and Ab? lie on the same two-di-
mensional orbits, so that there are only 17 equivalence classes of orbits.
(For convenience in applications, the representatives of orbits 5,6, 13, 14
contain parameters a,b. Some of these parameters can be normalized to
+ 1 with the dilatation symmetry.)

We can describe these equivalences in terms of the operator J=

explm(K,— K_,)/4]:

JO(1,x)= V2 ﬂxp[f(l+f)_l%t-]¢(:—] \/f[f+1)_'x), ey,

Note that J*=exp[7(K,— K _,)/2], and

J*0(1,x)=1""exp[ ix*x/41]O(—1 ", 'x),

(5.17)

J®(1,x)=—®(1, —x),  J3®(r,x)=D(1,x).
It is easy to show that J(K _,+ K;)J ~'=D, and, checking the adjoint
action of J on second-order operators, we can verify that the three
coordinate systems Rc?, Ri%, Re* are equivalent under J to the three sys-
tems Re', Rr', Re', respectively.

Denoting the adjoint action of J* on K €6, by K'=J%KJ ~2, we find
P'=—B,B",=P.K' ;=—K,K'y=—K ,,D'==D M =M,E'=E, s0
that the six pairs of the form Fa', Fa* or La', La’ are equivalent under J 2.

We next demonstrate that the operators (5.3) can be interpreted as a Lie
algebra of skew-symmetric operators on the Hilbert space L,(R,) of
complex-valued Lebesgue square-integrable functions on the plane. This is
accomplished by considering ¢ as a fixed parameter and replacing d, by @



25. Separation of Variables for the Schrodinger Equation (i9,+9,,+9,,)¥=0 129

i(0y,x,+ 0,,) In expressions (5.3). It is then straightforward to show that
the resulting operators, multiplied by / and restricted to the domain of
infinitely differentiable functions on R, with compact support, have unique

self-adjoint extensions. In fact, these operators are real linear combinations
of the operators

Ho=i(xi+x3)/4,  H_,=i(d,, +9,,.), 9 =0
B =ix;/2, M=x, d,,—x,0,, b= (5.18)
&p =x|axt+xzﬂxz+1, j= in

Note that when the parameter =0, the operators (5.3) reduce to (5.18).
Thus the script operators (5.18) satisfy the same commutation relations

(5.4) as do the italic operators (5.3). More specifically, we have the general
identity

exp(rK_ ) Hexp(—tH_,)=K (5.19)

relating corresponding script () and italic (K) operators. Here exp
(1X_,) is a unitary operator on L,(R,) which corresponds to time transla-
tion for the free-particle system. It is shown in [67, p. 493] that

]
gxp{a‘:}{;_zjf{x}=1.i.m.(47ria)“'ff_m expl- (34‘,:) ]f(y)afyla}:z, (3.20)

JELy(R,y).

f fEL,(R,), then we can show that V(z,x)=exp(tH_,) f(x) satisfies
0¥ =%_,¥ or i3, ¥=—A,¥ (for almost every r) whenever fis in the
domain of K _,, and ¥(0,x)=f(x). Also, the unitary operators exp(aK)=
exp(1H_,)exp(aT)exp(— 1K _,) map ¥ into @ =exp(aK)¥, which also
atisfies /9,®=—A,® for each linear combination K of the operators
2.18). Thus the operators exp(aK) are symmetries of (5.2).

We will see later that the operators (5.18) generate a global unitary
freducible representation of G, on L,(R,). Assuming this here, we let
(g).2€ G;, be the corresponding unitary operators and set T(g)=
Xp(tH_,)U(g)exp(— ¢ _,). It then follows that the T(g) are unitary
ymmetries of (5.2) with associated infinitesimal operators K =
Xp(t K _,) K exp(— 13 _,).

Next consider the operator £ ;=%_,— % ,=i|A,— -l(x$+x§)]. If fe

4
)(R,), then W(r,x)=exp(L ;) f(x) satisfies a¥=0C.¥ or

i9,% =~ ¥+ 5 (x}+ X3V (5.21)
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and ¥(0,x)=f(x). Similarly, the unitary operators V(g)=exp(z£ ;)X
U( g)exp(—1£ ;) are symmetries of (5.21), the Schrodinger equation for the
harmonic oscillator, and the associated infinitesimal operators exp(z£ ;) X
K exp(—£ ;) can be expressed as first-order differential operators in ¢ and
x. Analogous statements hold for the operator £,=%H_, + K, =

f(ﬂ1+ —ji(xf + x%)) with associated equation 9,¥=£,¥ or

i3V =—A¥— %(x,u x2)¥ (5.22)

(Schrodinger equation for the repulsive oscillator) and the operator H_, —
B, =i(A,— x,/2) with associated equation 9, ¥ =(H_, — %)V,

i9,¥=—AV+ %xqu (5.23)

(linear potential).

These remarks show explicitly the equivalence of equations (5.2),
(5.21)~(5.23). Though we have chosen to start with equation (5.2), an
analysis of any of the other equations would have led to the same (script)
symmetry algebra (5.18).

From Table 12 we see that, except for coordinates 13-17, which are
essentially the same as those discussed in Section 2.1, every R-separable
coordinate system corresponds to a G5 orbit that contains exactly one of
the Hamiltonian operators i H_,,iE ;,if ,, or i(H_,—%B,). Thus each coor-
dinate system 1s naturally associated with one of these four Hamiltonians,
Moreover, the remarks accompanying expressions (1.29), (1.30) also hold
here: an R-separable coordinate system for the free-particle equation
corresponds to a truly separable coordinate system for one of the other
three Schrodinger equations, namely, that equation whose Hamiltonian 1§
diagonalized by the system.

Consider a pair of commuting self-adjoint operators i, & where
H €6, and & is a symmetric quadratic operator in the enveloping algebra
of §;. These operators have a common spectral resolution; that is, there is
a complete set of (generalized) eigenfunctions f, ,(x) in L,(R,) with

jEH:fl.p =}"fh,p$ %f?hp T J""f}.,,,p:l <fl,‘};:-fh’.p"> = SM"’SFF"&

where
<hi=hl>=ff_ h,(x)ﬁ*;(x]dx,,dxz, h € L,y(R,) (5-

(see [77, p. 76]). Now suppose ih’',o" are another pair of commuting
self-adjoint operators on the same G, orbit as i K, 5. Then by renormaliza-
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tion of these operators if necessary, it follows that there is a g € G, such
that

H'=U(g)HU(g™'), §'=U(g)sU(g™").

Thus the spectral resolution of the primed pair is identical to that for the
unprimed pair. Indeed for f'y ,=U(g)f, . we have

iR *f;h.ltL:}‘f’l.m > r‘f’l.p = ”fﬁlhp’ <f;-"~-#’fr?'~'=ﬂ'> ] amiﬁ-"#" (526)

and the /', , form a complete ON set in Ly R,).

~ In the following we will frequently need the spectral resolution of a pair
iK,S where i is one of the four Hamiltonians listed earlier. However, in
many cases we will be able to use the unitary symmetry operators U(g) to
construct an equivalent pair iK', &" whose spectral resolution 18 much
simpler to compute. This information will then provide the spectral resolu-
tion of the original pair.

As a special case of these remarks, consider the operator h_,=iA,. If
i fi..) 18 the basis (5.24) of generalized eigenfunctions for the pair X, S,
then { [’ ,(2,x)=exp(tH_,)f, (%)} 1s the corresponding basis of gener-
alized eigenvectors for the italic operators

K=exp(tH_,) K exp(—tH_,),  S=exp(rH_,)S exp(—h_,)

and the f’, ,(1,%) are also solutions of the free-particle Schrodinger equa-
tion (5.2). Similar remarks hold for the other Hamiltonians. This clarifies
the relationship between the two (x) and three (x,) variable models of Gj.

We now explicitly compute the spectral resolutions of the pairs of
commuting operators listed in Table 12. We begin with the Oc orbit and
the two-variable model; that is, we determine the spectral resolution of the
pair £ ,=K_,— K 5, 97+ B7. Equations (5.24) are

[ —8,+(x3+x3) /8] /=M. (B, = x1/4) f= 1.

Note that these equations are separable in the variables x,, x,. Comparing
with (1.34) we find the well-known ON basis of eigenfunctions

f;,hﬂ=ﬂfmm(x)={2”’+"wn!m!}_'”exp{—x +x/4H, (x,/V2)
SUH (N2, p=—n—3, A+ uw=m++, n.m=0,12,...,
<ﬂfu,m= ﬂ':n'_ m'> = Srm'ﬁmm'! (52.?}

where H_(x) is a Hermite polynomial.




132 The Schrodinger and Heat Equations 2.5,

At this point we can show directly that the operators (5.18) exponentiate
to yield a global unitary irreducible representation of G,. Indeed, from the
recurrence relations (2.28), (2.29), (2.33) for the Hermite polynomials we
can see that the operators £,,£ ,, £ ; acting on the oc basis define a unitary
representation of s/(2,R) that is a direct sum of representations from the
discrete series, and the “Uf, operators define a unitary irreducible repre-
sentation of U,. As follows from the work of Bargmann [10, 115], this Lie
algebra representation extends to a global representation of G, irreducible
since its restriction to W, is already irreducible.

We now compute the unitary operators U(g) on L,(R,). The operators

U(w,z,p) =exp(w,B,) exp(z,P,) exp(w,B,) exp(z,P,) exp(p& )
defining the irreducible representation of W, are

U(w,z,p)h(x)=exp(ip+iw*x/2)h(x+z), heEL,(R,). (528)

The operator U(f)=exp(@MN) is

U(# )h(x)=h(x0) (5.29)

where © is given by (5.8). The operators U(A4),4 € SL(2,R), are more
difficult to compute. We have the integral operator exp(ak_,) from (5.20).
Also,

exp(bH,)h(x)=exp(ibx+x/4)h(x), exp(cD)r(x)=e%h(ex). (5.30)
Using group multiplication in SL(2,R), we find

exp(pL,)=exp(tanh(p)X ,) exp(sinh(¢p) cosh(p)H_,) exp(—In(coshg)D)

so that
exp(icoth(g)x+x/4)
exp(pL ,)h(x)= 4misinhg
'ff:ﬂxph(‘ sin?iupx'”mth(q}}w)]
h(y)dyidyy, 970 g

(In this and the following two integrals, use of the short form Li.m. is to be
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understood.) Similar computations yield

'ff_ie"p[%(" siia"'”"“‘(m’”")]

h(y)dy, dy,, O nm, (5.32)
B cxnlilabs :;; 0/12)]

7! f_iﬂﬂp{ %{(x, _HPI_.Vl)z'l'(II_.Pz)I]}

-h(y)dy,dy,,  p50. (5.33)

2.6 Bases and Overlaps for the Schrodinger Equation

- From (5.20) and (5.27) it follows that the basis functions oc, ,,(x) map to
he ON basis functions Oc, ,(t,x)=exp(tH_,)oc, ,,(X), solutions of the
Schrodinger equation, where

im(m+n—1) (u*+0H)(1—iw)
2 B 4

fle. . (LxX)=/(2m+nt ’wn!m!)”zexp[

x(w+{

(m+n)/2
i)

(w—f)_le(u/ﬁ )H,(v/V2) (6.1)

x;=u(l+w?)"? x,=v(1+w?)"/? [=w.

e functions (6.1) correspond to the separable coordinate system Oc¢ in
Table 12.
Next we compute the spectral resolution for the system Or:

i(K_y—Ro)f=M, c_’:'lef=.“-f-
The basis of eigenfunctions is

or, . (x)=[m!/2"n(n+m)! |'/*exp(—r?/4)r™L{™ (r*/2) cosmb,

or, »(x)=tan(nf )or,’,.(x), (6.2)
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where n,m are integers with m>1,n>0 and x,=rcos#,x,=rsiné. ,_-E
eigenvalues A, p. are related to m,n via A=2n+m+1,p= —m?. For m=0)
there 1s one additional eigenvector

oryo(x)=(2/mn!)"2exp(—r* /4)LO (2 /2). (6.3)
Here, the L}f“:’(r} are Laguerre polynomials. The orthogonality relations are
<ﬂrffm"' n H'i aE-E aﬂﬂ 6#1”‘1 2 E’ £r= t -

The three-variable basis functions Or, ,,(#,x)=exp(tK _,)or, ,(x) are

+(fx)=}i:( it )‘” (=1)"*" (w i)/

w32m(n+m)! 22m (W_f)m,f2+n+l
w(iw—1
-exp ( ) ‘ L‘:’”} cc}s mv,
Or, ,(t,x)=tan(mv)Or' (1,x), m>1. (6.4)

For m=0 we have K=V?2 ; otherwise K=1. Also,
x, =1+ w")"%ucosv,  x,=(1+w?)"2usinv, [=w.
The equations for the system Oe,
i(Kop=F)f=M, (-9 -B))f=pf.

separate in elliptic coordinates x, =cosh{ cosn, x,=sinh{sinn. We obtain
the ON basis

08t (%) =7 "he (18, $)he (n. 3)
(6.5)
oe, ,(X)=7""hs7" (i, 5) s (1, 3).
where

he," (7, >)=exp(— % cos 2m) G (7, %}

hs," (n, )=exp(— 3 cos2n)S,"(n, 2)s

and m,p are integers with o <m < p.(— 1)"?=1. The eigenvalues A, p are
related to p,m via h=p+1,p=h/2+apm(§) or p=A/2+5b)"(3) and the
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orthogonality relations are

(08, s 08y ) =10,.0,,0, ., g8 =+,

The functions C"(9.£).S,"(1.{) are Ince polynomials [7], that is, poly-
nomial solutions of period 27 for the Whittaker—Hill equation

d*c : dv
E + {sin27q % +(a—p{cos2n)v=0. (6.6)

This equation has been investigated in detail by Arscott [8], and it is his
notation for the solutions and eigenvalues that we use. The G (n,{) are
polynomials of order p in cosm and correspond to the elgenvalues a=
a,"({), while the S,"(n,{) are polynomials of order p in sinn and corre-
'_spond to the eigenvalues a=b"(%).
The three-variable basis functions Oe, ,, (1.x)=exp(s°h _,)oe, ,,(x) are

Oe,’,,(,x)=(A"" /m)exp[ iw(sinh? u + cos? v)/4]

(w— )P (w4 i) _Fﬁhep’" (s'u, %)hep’”(e, %) (6.7)

where

x;=(1+w?)"2coshucosv,  x,=(14+w?)"2sinhusine, 1=w.

'I'he e::-;preselen for Oe,,, (1,X) is as above except the phase factor
~ and the functions hc¢,"(n,{) are replaced
b}r F:s*"(n $). The constants AP*”— are calculable in pnnelple from a knowl-
edge of the explicit form of the Ince polynomials. Note that the expression
Oe, ,,=exp(t'h _,)oe, . is a nontrivial relation satisfied by products of Ince
polynomials. We are able to evaluate this integral (in a manner analogous
to the evaluation of (3.38), Section 1.3) because we know in advance that
the integral is an R-separable solution of the Schrodinger equation in the
variables u, v, w.

For the remaining cases in Table 12 there are always two coordinate
ystems associated with each orbit. For simplicity we shall always treat the
oordinate system with superscript 1. The corresponding results for system
follow immediately upon application of the unitary operators J or J2
(5.16),(5.17).

The Fc system is defined by equations

K, f=—377, B, f=1iycos(a)f,
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and has a basis of generalized eigenfunctions

_]ﬁ::.:,“:,!(za:)=r—l,f’l*a(Jr-~'~,-f}ﬁ(n'?—.t:v:)i O0<a<2m, 0<y, €8)

feywfey or=8(y—Y)8(a—a’), x;=rcosf, x,=rsind.

The three-variable basis functions Fc, ,(f,x)=exp(th _,) fe, ,(x) are

(6.9)

y1/2 [ f[(x,—Tcnsu)z+(13—?sinﬂ}?’]
exp

FC‘I’*“(I”‘): dqrit 41

The Fr system is defined by
iXof=—-3v4 iMf=—-mf
with basis
frym ()= Qar) " %8 (r=y)e™,  {fry oy =8 (Y =V )8 (6.10)

Here 0< v, m=0, =1,... and r,f are polar coordinates. The three-variable
basis functions are

i(r*+v?)
41

1/2 Em—-l

o
pratin=( ) e

exp(imf )J ( :2-,;) (6.11)

where J, (z) is a Bessel function.
The F, system is determined by equations

iKof=—3v (DM} f=—pyf.

with eigenbasis

@T;(x)=(zwr)“f’1(1+ca59)—‘“="2'ﬁ(1—msﬂ)*'“ﬂ‘%a(r—ﬂ, — 0|
=), 0gl<m,

J&J'r—-#{x)=ﬁlrtp(r=ﬂ)= T-:l.(r:" —0), - (6.12)

Here r,@ are polar coordinates, 0<y, —oo<p<oo, and the spectrum 1s
continuous with multiplicity two. The orthogonality relations are

ooy =0 —Y)8(n—w),  {fo;ofpy>=0.
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The three-variable basis functions are

Fp,,(1,X)=

iy'Zexp(iv?/41) [ i(E2+79?)

ex

2%t cos(ipr) : 161
D2 L(0bt™ ]ﬁ)Dfpfz- H(ont ™ "2+ D _pip 2(—0bt™ 1/2)
Dy =%, >0,

Fpl (—1,%)=Tp , _,(1,%),
Fpyults X Xy) = Fpt (1, x;, — x3), (6.13)
where o= vy'/2exp(im /4) and £,m are parabolic coordinates
2x;=£*—7%  x,=&.
The Fe system is defined by equations
Kof==v (M+4D}-48) = —
(equivalent to 4a in Table 12 since ,= — i(H? + B2)). The basis functions

are

ce,(8,v%/2), n=0,1,2,...,
fe, ,(x)=(rm)="/28(r—
n(X)=(rm) (=) se_,(0,Y%/2), n=-1,-2,....

Y 2 U! <fET.ﬂ‘-" E}"iﬂ'> = 6 (Y - ?;)Sﬂﬂ" (6‘ 14)

where ce, (8,q),se,(8,q) are the periodic Mathieu functions (B.26) and r.0
are polar coordinates. The eigenvalues p=p are discrete and all of
multiplicity one. The basis functions Fe, ,(t,x)=exp(tT_,) fe, ,(x) are

A?,H‘ Y 1/2 L 2 . 2 2
Few,(:,x)= 4*:rn'fr(;) exp[rr(r.:ﬂs o+sinh“p+y )]

_{mﬂ(a,f/ﬂﬂ'e”(p,ﬁ/ﬂ, n=0,1,2,..., (6.15)

se_,(0,v*/2)Se_,(p,¥*/2), n=—1,-2...

o

Where A4, , is a normalization constant, Se,(p,q) and Ce, (p,q) are modified
Mathieu functions (3.40), Section 1.3, and

x;=—27coshpcose,  x,=—27rsinhpsino, I=r.
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The Lc system (transformed so that 5=0) can be defined by equations
i(Ky+a?) f=M, B3 f=—3p7, a0,

with basis functions

d(x,—p) n P2, Xj
ley, ,(x)= (2ﬁ|a|)'f3 Expl —ia (hx|+ T + E)

<""¢.T'L,p= Ich’.,p':) =0 (}'k T ‘1‘.’)3 (P i F’F): — 00 “ih: p < C0.

*

(6.16)

The three-variable basis functions are

(9a)™ 1/3
8iw(2ral)'?

Ley ,(1,x)= exp[i((u2+ uz)% e Db £50e a3 —z\/w)]

2

(36.::)‘”3(3 + 24 p—)

M a a 4a

where Ai(z) is an Airy function ((1.52), Section 2.1). Here
x| ;=uw+a/w, X5 =1VW, [=w.
The Lp system ® defined by

i(Ky+aD)f=N, ({By, M} +aP3)f=pf

with basis functions

oy ,(x)=Q27lal) """k, (x,) exp[ —i(A\x, + x,x3/4+ x7/12) /],

(6.18)
<‘rpl.n!fph',n'>=5(}i_h’)3m;'s _m{h"i o2, ﬂ=0, 1,2,“..

Here the anharmonic oscillator function A, (x) is a solution of

d’h(x) (P‘ Ax?
TE a’

4
L X 1 )h(x)=[}, A, a fixed, (6.19)

a at da

such that
ik “ b (x)Pdx=1. (6.20)
—

The eigenvalues = p,(A) of (6.19) subject to condition (6.20) are discrete
[100, p. 250] with multiplicity one, and we assume them ordered so that
o<y <, < ... . Here h,(x) is either even or odd for each value of n.
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Denote a general solution of (6.19) by 4, , ,(x). Then using separation of
variables it 1s straightforward to show that the basis functions Lp, ,(f,x)=

exp(1K_,)Ipy () are

lthH.l.afl(u)hlpn,h,ﬂfl(fﬂ) (6‘21)

(u2+ﬂ3)1w a(u®—v?) ;52 A

a— — — —

Lﬂuh,n(hx) i Ch.nw_ ! EIP'{ l

where the two h functions have the same parity as A,(x) and G, , 1s a
normalization constant. (Note that since (6.19) is invariant under the
replacement x— —x, for each p,A,a this equation has a single even
solution in x and a single odd solution to within multiplication by a
normalization constant.) Also,

x;=(u2—vHw/2+a/w,  x;=uow, [=w.
The Rc system is defined by the equations
iDf=pf, (BN} f=y

with basis eigenfunctions

ref(0=2m) (g A 20, (6:22)

_m{h,ﬁ'ﬁ: o, E,EF= . l:p—lu";

see (1.46). The orthogonality relations are

“ reEFN =866 A—=N)8(p—[).
<rE?q.L FCMI}' Sﬁ £'E ( h}a(lu' 1”')
The three-variable eigenfunctions are

—i(A+p)+1

Reit* (%)= (87%w) " [exp(im/4)(2w)' "]
I‘(% u f?k):['(% - I}L)E:xp[ i(u ;—D )

..om_%_( {;}fﬁ )D!-H_%( (2:)‘:‘;2 ] (>0, (6.23)

where x, =|w|'"%u, x,=|w|'/%, t=w. The remaining three-variable basis
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functions are given by

Rey* (u,0)=exp[ m(i+A+p) |Rey, ™ (—u, —v)
:w{f/2+}.)]RcA;+(—u,ﬂ}

w(i/2+ p)]erﬂ_ (u, —v).

=exp

=exp

The Rr system is defined by the equations
GDf= fPf: %f= I‘mf.

The eigenfunctions are

rie— l mei'

o m(X)=Q2m) ™"

x,=rcosé,

—hespsay M=kl 0k,

X,=rsinf,
satisfying the orthogonality relations

Pl s T ) = 8,y ® (P — ).
The three-variable basis functions are

(3m—1+1ip)

=2-m+1’p—2

. il T I
e:xp'm alwir/2=3

m+ip-+1

(-"H s S EP)/Z )e;{p(;mn) (6 26]'

I(m+1)"
where

=Vw ucosuo, X,=Vw usinv, t=w>0.

The Re system is defined by equations

Df=iM, 2+3{B5, D)) f=.

The ON basis of eigenfunctions is

rey, (X)=(27)~'/2r*"'Ge, (0,1, — ),
rex,(X)=Q2m)~ V&2 1Gs, (8,1, —N),

m=0,1,2,..., — 0 <A< o0,

(6.24)

(6.25)

(6.272)
(6.27b)

ISBN-0-201-13503-5
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where x, =rcos#, x,=rsinf. Here we have introduced the notation
Gr:m(ﬂ, s —}'x) =exp icos(26)/16] gcm(ﬂ, 3 —h),

Gs, (6,1, —))=exp[icos(20)/16] gs,.(6, 1, -A).

The functions ge,,(6,a, ), gs, (8,a, B) are even and odd nonpolynomial
solutions of the Whittaker—Hill equation

d’g

2 2
d—ﬂ;+(p+9—+aﬁc0529—a—ms4ﬂ)g=ﬁ (6.28)

8 8

with period 2. The subscript m (the number of zeros in the interval
[0,27]) labels the discrete eigenvalues pu=p, of the operator M2
+3{%,,?P,}. This notation is due to Urwin and Arscott [127]. Each of the
solutions Gc,,, Gs,, can be written as an infinite trigonometric series in

cosnb, sinnfl, respectively, which converges for the discrete eigenvalues p, .
The orthogonality relations are

(Teyms reremy =0 (A — N)S,. (resren, . >=0

and the three-variable basis functions are

Rey,, (1,x)=K)*w?-D/2Ge (iu, 1, —\)Ge,, (v, 4, =)

‘ (6.29)
Reg, (1,%)= Ko w=D/2Gs, (iu, 4, =) Gs,, (v, 4, =),

where
x;=Vw coshucosv, x,=Vw sinhusinv, t=w>0,
‘The constants K** are in principle calculable by choosing special values of

the parameters u,v,w. In fact, in the process of calculating the functions
Re™ by separation of variables, we obtain relations

Kn*Ge,(iu, b, —N)Ge, (0,1, —:a)=exp[f(sinh2u+msﬂu)/4]f” df
X Gcm(ﬂ, s —}.) exp[ — :'(mshucnwcnsﬂ+smhusinusinﬂ)z/ﬂ]
XDy _ (— [cnshucﬂsumsB+sinhusinusin9]/(2f)]ﬁ)

with a similar expression for the functions Gs,(8, ;, —A). The constants
" can be calculated for particular values of the arguments; for example,
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if Ge,,(0,%, —A)=2%_,A4" cos2k8, then

Kyt =270, (0AF] Gen(7/2.4, —N)Ge, (0,4, -2)] .
This completes our determination of bases for the solution space of the
Schrodinger equation (5.2).

Exactly as in Section 2.1 we can show that these results lead to a number
of Hilbert space expansion theorems. Indeed, if { f,,} is an ON basis for
L,(R,), then {U(g)f,,} for any g€ G, is also an ON basis. In particular,
each of the three-variable models constructed above provides a basis for
L,(R,) (as well as a basis of solutions for (5.2)). Furthermore, we can
derive discrete and continuous generating functions for each basis.

Now we compute some overlap functions (A4 a,, Bb,.,.» that allow us to
expand eigenfunctions Aay, in terms of eigenfunctions Bb,.,.. The utility of
these formulas is that they are invariant under the action of G, so the same
expressions allow us to expand U(g)4a,, in terms of U( g) Bb,. » Where the
results may be much less obvious. In the following we use the two-variable
bases to compute some overlaps of interest. Because of G, invariance,
identical results hold for the three-variable bases.

Here we omit overlaps involving the discrete basis oe. This basis is of
special interest but the overlap computation involves use of the Barg-
mann-Segal Hilbert space of analytic functions, which we will not discuss
here. Detailed results and an interesting connection between Ince poly-
nomials and the representation theory of SU(2) are presented in [21]. For
most of the other bases we give an overlap with either of the discrete bases
oc or or. The principle behind these computations should now be obvious,
so the interested reader can derive for himself any of the other overlaps.

(fe, o OFp )= v'%or=,(ycosa, ysina); (6.30)

0
if p#=*+m,

' 1/2 i ;
r2 exp| —— |ymLim [ L
2" (n+m)! 4 bRk

if +and p = + m=£0,

<fry,p!”"n_:n>=1 Ip ym!
2"t (n+ m)!

if —and p=* m==0

av\'2 (=7 Y’
— (o)
(ﬂ!) EIP( 4 )L"(Q)

if p=m=0;

1/2 2

o 2 6.31
Eﬁp( 4}" )Tm‘{‘}im}(%) ( )

m
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1/2 . ,
oot ym! Y \omp | Y
SO [ 2%(n+m)!] “p( 4 )"’ L” (2)
(1=F1)
Kexp[-—m 2 ](amia_m);
<f§yp!ﬂrﬂir> = <ﬁ}1ﬂ-;? ﬂrn%—m>;
(1/2—p) NEGRIEEE
a, =exp| « Jr(m+i)
2 M(m+iu+1)
o s +ip s +m L4 ’T(:ﬁ.l'_'jll")
o= m+flu,-|—l F(FH‘—I';L“F])
L T
o e R —1] : (6.32)
m—iu+ 1
il

! 1/2
<ff"r,p=*ﬂrntn> = H(p)(l +( - l)m_P)Ai( 2’"”;?:1 +: m)! {

ny 2
}(exp( : )?mLf,’”’(—Tz—); (6.33)

where 8 (x)=1 for x>0, and 8(x)=0 otherwise. A similar expression for
(fe, ,,or,.> can be obtained by replacing 8 (p) by 8(—p) and A F by B? in
>Xpression (6.33). Here 42, B are the coefficients in the trigonometric
Xpansions of the even and odd Mathieu functions, respectively. Also,

e p0 0 my=exp(=p?/4) 2"~ \am!) "' 2H, (o /VZ)C, (6:34)
vhere

Zexp| ~i("/*+A+p2/4+ V2 ) |Ai[223(1 /4~ in— ip2/4- i(29)")]

= i [((25)”%)”/::!]0,,,

n={)

id we have normalized so that g= — 1,

erp Py =2rlal) ™'k (0)8[ (A=) /a]. (635)

Crey,*oc,  S= L Paksss 1T ) RN P (6.36)
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where
2 A=AT(iN /241 /AT ((m+1)/2),,F, ( _];’2/2”}‘/“ L/ ‘2)
or = m even,

2+ AP (i /241 /4)T(m /2),F,

(1—m)/2,ir/2+3/4 B
3/2 | ’

m odd.

The remaining overlaps for re™~, re ™™, and r¢~~ can be calculated by
using relations (6.24).

(PP O = O @/ )2~ [ (m 4 )t /1 /2

—n,(m+1—i\)/2

><I'((m+l—£h)/2)1F|( g

{2), (6.37)
(e or, >=—i(— 1"t or, >, (6.38)

(13800 Ot =8, (27272 /() P)T((1— D) /2)

%, F, ( Sl - /2 'z) (6.39)

{0, - or, = O, gl (22””” 'nln,!(n+ m)!/ﬂl!)uz

K( | ) 'f*"{I‘((nl-knz—m)/Z)l"((nz—n]+m)/2)}"]

—n,1=(n,+ny,+m)/2

2F
- (n,—ny—m)/2

}— l] +i " {T((n,+n,—m)/2)

X D((n,—ny+m)/2)} " ,F, (6.4C

—ny, 1= (n+n,—m)/2 —l |
(n,—n,+m)/2 -
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For the basis re we have

(Peyms O > =13 ( [+(—=1)" _m!)(:i::! 27)"2Crrt or, s  (6.41)

T3 Ty =3(1+ (= 1)""™) B2 27)  Xrrispsor, 1y (6.42)

where 4™ and B are the coefficients for the expansion of the functions
g¢,,(8,3,—A\) and gs, (4, 7. —A), respectively, in trigonometric series analo-

gous to (B.26) [127].

2.7 The Real and Complex Heat Equations (3, —9__— d,,)2=0

X

The heat equation in three-dimensional space-time (suitably normalized)
is
Q®=0, Q=9—9,, —? (7.1)

=43

where 7,x,, x, are the real time and space variables, respectively. Since this
equation can be obtained from the Schrédinger equation by replacing 7 in
(5.2) with — iz, the symmetry algebras of these two equations are closely
related. The symmetry algebra of (7.1) is nine dimensional with basis

Hy=1?8,+tx,d, +1x,0, +1+(x}+x3)/4, H_,=9,
B=0,, B=13,+x/2, M=x3, —x,, (7.2)
HY=xid oo, 0. 4 000,41, ¢ Ho=1, 0 =12,

and commutation relations

[ Hg]=+2H,,  [H%B]=B, [HP]=-P,

[*ﬁ-‘: HI. = Bj? [j::;:- Bj]={=‘Hﬂ: [f:'” B;]'—'U,

[H-IF HE: = Hﬂ? [HilsM]=[HI!‘BJ]':[H—I!‘F}]:[HDrM]:O:

B M]=(-1)/"'B,  [H_,B]=P, [B.M]=(-1)*'p, (13)
Li=12, j#l,

where Hy is in the center of the algebra. We denote by 8 the real Lie

lgebra with basis (7.2). The operators B;, P, H, span the five-dimensional
Veyl subalgebra Ui, of 6, and local Lie theory yields the associated local
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group action

T(w,z,p)‘l'(f,x}=exp[ —%x-w+ %

Here, w=(w,w,), 2=(z,,2,), X-W=x,w, + x,w,, and w;»Z;,p € R. The oper-

ators act on the space % of functions ¥(¢,x), analytic in some given
domain 9 in three-space. Furthermore, these operators map solutions of

the heat equation into solutions.

Similarly, the operators H . ,, H, span the three-dimensional subalgebra

sI(2,R) and determine operators

Y+ fa

(a+:ﬁ)“~p(3+tﬁ , (3+:ﬁ)“x),

T(A)‘P(I,x)=exp[ - §(8+ B) 'x-x

A=(': f)ESL(z,R), Ve, (7.5)

which define a local representation of SL(2,R). The operator M dé-
termines a local representation of SO (2):

» _[ cosf# sin@
T(0)¥(1,x)=¥(,x0), © (—sinﬂ msa)' (7.6)

The local Lie group G5 of symmetry operators T can be represented as a

semidirect product of W, and SL(2,R)X SO(2) by means of expressions
analogous to (5.10) and (5.11).

For future use we point out explicitly the special case of (7.5) where

—a=falt ] I) B(I ﬂ).
S0=2 (—1 ) A= 1)

: - Vi sl N
T{Aﬂ)¥(r,x)=exp'—;i(1+r) Ix-x]m‘lf(i_l_l .73 K),

T(AZ)¥(t,x)=exp = éx-x] W (= x),

T(A4g)¥(t,x)= —¥(t, —x). (7.7)

Here, T(AJ) is the Appell transform [4, 13].

The problem of R-separation of variables for the heat equation (7.1) is
analogous to that for the free-particle Schrodinger equation (5.2) and the
results are similar [56]. Here the R-separable solutions of (7.1) take the

w-w+p [¥(r,x+rw+z). (7.4)

ISBN-0-201-13503-5
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form
O(7,x) =exp| R(u,0,w) |U(u)V (0)W (w), %R real, (7.8)

where either R =0 or R 0 cannot be written as a sum R =A(u)+ B(v)
+C(w). We require that {u, v,w} be a real analytic coordinate system
such that substitution of (7.8) into (7.1) reduces the partial differential
equation to three ordinary differential equations, one for each of the
factors U, ¥, W. Two coordinate systems are considered equivalent if they
can be obtained from one another under the adjoint action of (rs.

The results announced in [56] are as follows. Corresponding to every
R-separation of variables for (7.1) we can find a pair of differential
operators H, § such that:

. H and S are symmetries of (7.1) and [H, S]=0.
2. H€EG]; that is, H is first order in X, X5, and 1.
3. S is second order in X1, X5, and contains no term in d,.

The R-separation of variables is characterized by the simultaneous equa-
tions

0®=0, HO=i\d, SO=.d. (7.9)

The eigenvalues A, u are the usual separation constants for R-separable
solutions ®@.

It follows from these remarks that S can always be expressed as a
symmetric quadratic form in B, P, E, and M. The possible coordinates
and their characterizations are listed in Table 13.

For each system in Table 13 we have w=r and the separated solution in
the variable w is exponential. In the last column of the table we list first the
form of the separated solution in # followed by the separated solution in .
The anharmonic oscillator functions are solutions of a differential equation
of the form

f7 () + (A’ + au— ) f(u)=0. (7.10)

From the viewpoint of Galilean and dilatation symmetry alone there are
26 distinct coordinate systems. However, from the viewpoint of G symme-
try there are only 17 systems. It is easy to show that two systems whose
labels differ only in the superscripts lie on the same G; orbit. Indeed,

w systems of the form Fa', Fa® or La', La? are related by T(A4;), (7.7), and
2 systems of the form Ra', Ra? are related by T(A°). These are the only G;

1 equivalences.

The eigenfunctions of the commuting pair H°, M? are of special interest
Z for this equation. From Table 13, the corresponding eigenfunctions sep-
3 arate in the variables u=[(x2+y2)/1]'/2= y1~ /2, v=0, w=t, where x=
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Table 13 Operators and R-Separable Coordinates for the Equation (3, — 3., — d,, )2 =0

Operators H,§ Coordinates {u,0,w}  Multiplier ¢ Separated Solutions

la Fe! X=uw R =—(u*+v*)w/4  Exponential
H,, B} y=ouw Exponential

Ib Fe? x=u 0 Exponential
H- Pt y=0 Exponential

2a Fr! X=UWCOSD —utw/4 Bessel
Hy, M*? y=uwsinuv Exponential

2b Fr? X=uCOSV 0 Bessel
H_,,M? y=usingp Exponential

3a Fp! x=(ul—=vHHw/2 —(uw?+0v?Pw/16 Parabolic cylinder
Hy, {By, M} y=uvw Parabolic cylinder

3b Fp? x=(u*—0v%/2 0 Parabolic cylinder
H_;,{Py, M) y=uv Parabolic cylinder

4a Fe' x=wcoshucosv —(sinh?u +cos?v)w /4 Modified Mathieu
H,, M*— B? y=wsinhusinp Mathieu

4b Fe? x=coshucosuv 0 Modified Mathieu
H_,, M*—P3 y=sinhusinv Mathieu

S5a .Let x=uw+a/w — (w2 +oH)w/4 Airy
H,—2aP,—2bP;,, y=vw+b/w +(au+ bv) /2w Airy
B2—2bP,H,

5b Lc* x=u+aw? —(au+ bv)w Airy
H_,+2aB,+2bB, y=uv+bw? Airy
P{+2aBH,

6a Lp! x=(uwt—v)w/2+a/w —(W2+0v2Pw/16 Anharmonic oscillator
H,—aP,, ¥ =uow +a(u?—v?) /4w Anharmonic oscillator
{B,,M)}—aP}

6b Lp? x=(u*—=v?)/2+aw® —a(u*-vHw/2 Anharmonic oscillator
H_,—2aB,, y=uv Anharmonic oscillator
(Py,M)+2aB3

7 Oc x=u(l+w?)!/2 —(u*+ov¥)w /4 Parabolic cylinder
H_,+H, y=o(l+w?)!/? Parabolic cylinder
P+ B

8 Or x=(1+wH)2ycosv —ulw/4 Whittaker
H_,+H, M* y=(1+wH"2ysinv Exponential

9 Qe x=(1+wH"2coshucosv —(sinh®u+cos?v) Ince
H_,+H,, y=(1+w?"%sinhusinv w/4 Ince
M?— P{— B}
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Table 13 (Continued)

Operators H, S Coordinates {u,0,w}  Multiplier ¢ Separated Solutions

10a Rc! x=|w|'/2y 0 Hermite
H (B, P,) y=|w|'/% Hermite

I0b Re? x=u|l—w?!/2 —e(u?+v?)w/4 Hermite
H_s—H,, y=v|l —w?!/2 e=sign(l—w?)  Hermite
Pi—B{

112 Rr! x=|w|'"2ucosv 0 Laguerre
HO M? y=|w|'"?usinyv Exponential

IIb R4 x=|1—w?'2ycosp —eu’w/4 Laguerre
H ,—H,,M* y=|1—w"2ysinp Exponential

122 Re' x=|w|'/2coshucosv 0 Finite Ince
HO, y=|w|'/?sinhusinv Finite Ince
M?*—}{B,,P,)

12b  Re? x=|1—w?*'"2coshucosv — e(sinh?u Finite Ince
H_,— H,, y=[1—w?'2sinhusine  +cos?v)w /4 Finite Ince
M?—P}+ B

13 LI x=uy — v*w/4+ bo /2w Exponential
P1,3§+2bP3Hn y=vw+b/w Airy

i 5] 7 e x=u — avw Exponential
P,,P}+2aB,H, y=uv+aw? Airy

15 01 x=u —v?w/4 Exponential
P\,P;+ B y=v(l+w?)!/2 Parabolic cylinder

16 R1 x=yu 0 Exponential
Py, (B, P} y=uv|w|!/2 Hermite

17 R2 X=u —ev’w/4 Exponential
P, P;— B3 y=uv|l—w?!/2 Hermite

rcost, y=rsinf. Moreover, the solutions ®,..(4,x) of the heat equation
(bounded at x=0) that satisfy

H®, =(m+2n+ No,, . MQ, ,=imd, ., (7.11)
n=0,12,....m=nn— L
are expressible in terms of Laguerre polynomials
@, (6,X)=1"(re®) "L (- r2 /4r). (7.12)

Studies of expansions of solutions of the heat equation in terms of these
polynomials can be found in [25] and [29].
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It is well known that if f(x) is a bounded continuous function defined in
the plane R,, then there is a unique solution ®(¢z,x) of the heat equation,
bounded and continuous in (#,x) for all xER,, 1>0, and continuously
differentiable in 7, twice continuously differentiable in x,x, for all x&

R,1>0, such that ®(0,x)= f(x) [107]. This solution is

o(t,x)=(4m) " [ [ exp[ ~(x=y) (x=y)/41] S5 b,
=1'(f), >0. (7.13)

In analogy with our work in Section 2.2 we can construct another model of
the symmetry algebra (7.2). First we restrict the operators (7.2) to the
solution space of the heat equation. This allows us to replace d, by 4, in
the expressions for these operators and to consider 1>0 as a fixed
parameter. With this interpretation the operators (7.2) are the symmetry
operators at a fixed time 7. At time =0 they become

Ho=(x1+x3)/4,  H_,=4, 9=3,, B=x/2
M =x0,,—x,8,, HO=x0, +x,0, +1, (7.14)
CJ{'_[:I- = E! jz 112!

and when acting on, say, the space %, of infinitely differentiable functions
f(x) on R, with compact support, these operators satisfy the usual com-
mutation relations (7.3).

Exactly as in Section 2.2 we can interpret (7.13) in the form

O(2,x)=1'(f)=exp(rd,) f(x)=exp(tH_,)f(x), [fE€%,t>0, (7.15)

and show that the connection between the italic operators H, (7.2), and the
corresponding script operators J(, (7.14), is

Hexp(rH_,)=exp(tH_5)H (7.16)

where H €64 and I is obtained from H by setting =0. In addition, we
can obtain results of the form

exp(aH )exp(tH_,)=exp(tH _,)exp(al() (7.17)
and show that the equations
E},*I'=(ﬂ3+ ax-x+a, E{rl + a3axl+ ::;'4(,1'1 33_2 — Izax, )
+a5x1+aﬁx2+a-,.(x,8xl+xlax2)+a3)®, a; € R, (7.18)

have isomorphic symmetry algebras and are equivalent to (7.1). The
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techniques for solving the Cauchy problem, discussed in Section 2.2, work
for all of the equations (7.18).

At this point it is useful to discuss a method for constructing explicit
solutions of the heat equation, which applies equally well to many other
equations studied in this book. Every R-separable coordinate system for
(7.1) is associated with a pair of commuting operators, one of which is first
order. By diagonalizing this first-order operator, we can separate out the
corresponding coordinate and reduce the heat equation to an equation
with one less variable. For example, diagonalizing the symmetry operator
d,, we can separate out the ¢ variable and obtain solutions

O(1,x)=exp(— k) F(x)
where F is any solution of the Helmholtz equation

A F+ k2 F=0. (7.19)

This rather obvious remark becomes less trivial when we realize that each
of the symmetry operators T( g), (7.4)-(7.6), maps @ into another solution
T(g)®. For example, if g=A,, (7.7), we have the result that

T(Ag)®(r.x)=exp| (—k2(1—1)—1x-x) /(1 + 1)]
X221+ 1) F (22 /(14 1)) (7.20)

1s a solution of the heat equation for any solution F of the Helmholtz
equation (7.19). By choosing appropriate group elements g and solutions F,
we can construct solutions of the heat equation satisfying a wide variety of
initial and boundary conditions. Some examples are given by Bateman [13,
p. 340].

Now we proceed to a study of the complex heat equation. This is
equation (7.1) where now ¢, x,,x, are complex variables. It is obvious that
the symmetry algebra 65 of this equation is (complex) nine dimensional
with basis (7.2). The basis operators can be exponentiated to yield the local
Lie group Gy of symmetry operators acting on the space “F of functions
¥(1,x) analytic in some domain 9 in complex (#,x,x,) space. The group
action is given by (7.4)—(7.6) where now the parameters w,z,p are allowed

L 1 ﬂ-
to take arbitrary complex values and the matrices A =( "SB
T

the group SL(2,¢). Of course these operators map solutions of the
complex heat equation into solutions.

The problem of R-separation of variables for this equation can be
formulated in a manner analogous to that of the complex heat equation
(9,~ 9,,)®=0 in Section 2.2. We expect that all such R-separable systems
will correspond to a pair of commuting symmetry operators in the envelop-

) range over
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ing algebra of G5. It is clear that all the real R-separable systems listed in
Tables 12 and 13 can be analytically continued to yield R-separable
systems for the complex heat equation. However, each system Aa in Table
12 is complex equivalent to the system Aa in Table 13. Furthermore, the
systems Oc, Or,Oe are complex equivalent to the systems Rec, Rr, Re, re-
spectively.

There exist other R-separable systems complex inequivalent to these.
For example, if we diagonalize the operator d,, we can reduce (7.1) to the
complex Helmholtz equation and, from Table 3, find separable solutions
that are products of Bessel functions, clearly inequivalent to any of the
entries in Tables 12 and 13.

The separation of variables problem for (7.1) has been completely solved
by E. G. Kalnins (private communication), who finds 38 nontrivial separ-
able systems, each system characterized by a pair of commuting symmetry
operators. Rather than discuss these results here, we will simply make use
of the separable systems at hand and use them to apply Weisner’s method.

As suggested by (7.12), for Laguerre polynomial solutions of (7.1) it is.
appropriate to introduce new coordinates '

= —(xi+x3)/4¢, s=i(x;+ix,)/2, =t (7.21);

In terms of these coordinates the basis functions (7.12) become (suitably
normalized)

@, (t,5,2)=7"s"L{"(z), H°®, ,=(m+2n+1)®
Mo,  =im®, . n=0,12.....

Fr, m?

(7.22)

m.n

These expressions make sense for any m € ¢ such that m is not a negative
integer. Since the Laguerre polynomial L!”)(z) can be expressed as a
confluent hypergeometric function (see (B.91)), we can choose another set
of eigenfunctions

v (7.8,2)=1"s"F, (m_+”1 |z) ®,..=("T), ., (123)

and a linearly independent set of eigenfunctions

(A B e T ( LI

.s;). (7.24)

That 1s, ¥, , and ¥, , form a basis for the space of solutions of the

eigenvalue equations (7.22) for fixed n, m.
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In terms of the 1.5,z coordinates, the operators (7.2) become

H2=T1'd,+'rsa£+1-zaz +7(1—=2), H_3=T_'(’ra,—za;).

H_=8+257'3,, HY =519, Hy =18, +1257'9,— 1257  (7.25)
HY=gs9 —s, H%=53, H=53 +270.+1, H,=1,
where
H oy ==iPp= Py B =—iPiK Py H~=-iB —B,
H'=-iB,+B, H%=iM. )
Note that
|HOHE =y, [ A% Hf | =aHy. (7.27)

It is clear from the explicit expressions (7.25) that each of the Lie algebra
operators maps a polynomial in z to another such polynomial. It follows
from this and the commutation relations (7.27) that H*¥,_ . must be a
constant times ¥, , ., . +[j—(ayj/2- Differentiating the power series (7.23)
term by term, we can verify

H¥, =(m—n+ DY i, H_,¥, =n¥

m.n— |1

H:,‘I’mﬁﬂ‘—"m?m_,.n, HfI‘I'm_nr- —n(m+ I)_I‘Ifm+,m_],
Hi—‘Pm,n=m’I'm— Ln+ 12 H|+‘I’m.n= —(n+m+ D)(m + 1}_Iq’m+].ﬂ?
HY, =m¥, H,, ,=(m+2n+1)¥,

(7.28)

Note that the first six of these relations agree exactly with the six differen-
tial recurrence formulas (B.8) for the functions ;. Thus we have an
interpretation of the recurrence formulas in terms of the action of the
Symmetry algebra of the complex heat equation.

Note also that the operators H +2,H", which form a basis for an sl (2,¢}
subalgebra of G5, yield the same recurrence formulas for Laguerre func-
tions as did the operators J *, .7 in Section 2.4 (see (4.9)). This is due to the
& fact that equation (4.1) can be obtained from (7.1) by introducing polar
& coordinates and separating out the angular variable. Thus all the results of
Section 2.4 can be obtained as special cases of results concerning solutions
of (7.1).

Moreover, most of Chapter 4 in the author’s book [82] is concerned with
identities for Laguerre functions that can be obtained from a study of the
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subalgebra of &5 with basis { -, H * H° H,) and commutation relations
(Hf,=H*,H°=H"),

[HOH=]=*H*, [H*,H |=H, [H,H]=0. (729

(See also [78].) Thus it is clear that the special function theory associated
with the heat equation is rich in useful results. Here, we will present only a
few examples illustrating the interplay between the symmetry of this
equation and identities obeyed by the separated solutions.

It is easy to see that the fundamental generating function (4.11) for
Laguerre polynomials arises when the solution exp(aH,)®_,,_,, of the
complex heat equation is evaluated in two different ways. Similarly, if we
apply the operator exp(aH, ) to the basis function @, ((7,s,2)=s™ and
make use of the recurrence formula H, @, ,=(n+1)®,_, ., and the Lie
theory relation

exp(aH,” Y¥(r,5,z)=exp(—rza/s)¥(r,s+ar,z[ 1+ ar/s]),

we obtain the generating function

a0
e~ (14+a)"= Y a"Li"M(z), me(l, |a<l. (7.30)
n=0

(Here we have set 7=s and factored s™ out of both sides of this expres-
sion.)

We can obtain the action of the local symmetry group G5 in terms of the
coordinates t,s,z by combining expressions (7.21) with (7.4)7.7). In
particular, the Appell transform has the simple appearance

T(Aé)@'(*r,s,z)=*r"e’¢'(—1"l,snr“,—z). (7.31)

Applying this operator to the basis function ¥
such that m is not a negative integer, we obtain

(7.23), with m,ne ¢

m,n?

T(42)¥,, ,=(—1)"r~""""Isme*,F, (m‘fl |—z).

This expression is a simultaneous eigenfunction of H° and M again, with &

eigenvalues —m—2n—1 and im, respectively. Furthermore, 1t is analytic
in z at z=0. Hence, there exists a constant c,, , such that

T(A{%).‘Ifmn = Em.n‘ym, —m—n-=1"
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X

Setting z=0 on both sides of this expression, we obtain ¢, , =(—1)" or

=N

z + ]
e IF!(mv-l—I —E)=IFI(”T n+

m+1

z). (7.32)

This is the important transformation formula for the F, listed in Appen-
dix B.

The heat equation can be written in the form (H_,— P2— P2)®=0 or,
what is the same thing, (H_,+ H* H~)®=0. It follows from (7.25) that
in terms of coordinates {r,s,z} this equation reads

(20, +(s9,—z+1)3,+179,)0=0. (7.33)

A straightforward application of Weisner’s method shows that any solution
® of (7.33) that is analytic in 7, s, z in a suitable region, such that ® can be
expanded in a Laurent series in 7, s about =0, s=0 and such that
®(r,s,0) is bounded in this region, must satisfy an identity of the form

O(7,5,2z)= 2 E'mmLf,m]'(E}T"j‘m (7.34)

where the ¢, , are complex constants. Conversely, a uniformly convergent
series of the form (7.34) in some region of 7,5,z space defines a solution of
the complex heat equation. We conclude that all generating functions of
the form (7.34) are obtainable as solutions of the heat equation. One way
to find such functions @ is to characterize them as simultaneous eigenfunc-
tions of a pair of commuting operators in the enveloping algebra of 5. For
example, the equations

(B, P }®=(4a+2)®, H°®P=A+1)®, alE¢, (7.35)
correspond to the coordinates u, v, w where
u=1""%(s+1z/5), v=17"""}—=s5+1z/5), w=r; (7.36)
see 10a in Table 13. In terms of the new coordinates we have
H°=2wd,+1,  (B,P, }=—8(3,—1tud,—1)

2 and solutions ®** of (7.35) can be written in the form ®% =
Y wM2U(u)V(v) where

2U"—ulU'+aU=0, 2V" 4oV +(a—\)V=0. (7.37)
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Comparing these equations with (2.24) and (2.25), we find the independent
solutions H,(u/2) and exp(u’/4)H___,(iu/2) for U and H,__(iv/2),
exp(—v?/4)H,_, _,(v/2) for V. To be definite we choose the solutions

%A (u,v,w)=wr2H_ (u/2)H, _, (iv/2). (7.38)

By changing to u,v,w coordinates in the expressions (7.25) for the &S
symmetry operators and applying these operators to the functions (7.38),
the reader can obtain a family of simple recurrence formulas obeyed by
products of Hermite functions. Let us apply Weisner’s method to the
generating function (7.38) in the case where A and « are positive integers
with a<A. In this case the Hermite functions appearing in (7.38) are
Hermite polynomials. From (7.34) and (7.36) we obtain

T','"HHE[Z_ r= 2%+ fr'ffzz/s)}Hh_ﬂ[fz‘ (=7~ ”25+*r'ﬂz/s)]

A
= 2 Sh—lkackLLl—Ik}(z)_
k=0 (7.39)

(We have used the facts that H (x) is a polynomial of order a« and
H_(—x)=(—1)*H_(x) to obtain this result.) Setting x =s7 '/, we find

H, 27 (x+z/x)|Hy_ [ 27 (= x+2z/x)] (7.40)

A
e Z Ih—lkaL}rh—Ek](z)'
k=0

To obtain a simple generating function for the coefficients ¢,, we set z=0

and use the fact that Lﬁﬁ’"}(l})=(m:”) where (m:—n) is a binomial
coefficient (B.1):

A
H,(x/2)Hy_o (= ix/2)= D (l;k)ekx*—zk. (7.41)
k=0

By explicitly computing the coefficient of x*~%* on the left-hand side of
this equation, we can express ¢, as a terminating hypergeometric series ; F.

The polynomial functions (7.38) can be used as an alternative (but less
useful) basic for solutions of the heat equation. Thus, one can compute

matrix elements of the group operators T(g) in this basis, expand an
arbitrary solution @ in terms of the basis and so on.

For A and a complex numbers, we can derive infinite series identities
that are similar to (7.40) but slightly more complicated.
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2.8 Concluding Remarks

We close this chapter by pointing out several important research results
closely related to our subject but which will not be treated in detail here.

In [140], Winternitz, Smorodinsky, Uhlir, and Fris determined all poten-
tials V' (x,y) such that the time-independent Schrodinger equation

(—A+ V(x,y)) =7 (8.1)

admits a first- or second-order symmetry operator. They showed that the
possible symmetry operators are of the form L+ f(x,y) where LE& (2)
((1.6), (1.7) in Section 1.1) for first-order symmetries, and of the form
S+ f(x,y) where S is a second-order symmetric operator in the enveloping
algebra of &(2) for second-order symmetries. The equations that admit
first-order symmetries separate in corresponding coordinate systems (2.31)
or (2.32), Section 1.2. Equations that admit no first-order symmetries but
do admit second-order symmetries separate in one of the four coordinate
systems listed in Table 1. The latter equations are class II. Note that the
Lie algebra & (2) appears in this study even though it is not the symmetry
algebra of equation (8.1) except in the trivial case in which V(x,y) is
constant. The reason that & (2) appears here is that a first- or second-order
symmetry operator for (8.1) has the property that its derivative terms L or
§ must necessarily commute with the Laplace operator A,; hence L and S
must belong to the enveloping algebra of & (2), as follows from the results
of Section 1.1. Usually however, the complete symmetry operator will not
belong to the enveloping algebra of &(2) because the functional part
f(x.y) of the operator will not be zero or even a constant. Here, J(x,y) will
depend on the potential.

Just as in Section 1.1, separation of variables corresponding to first-
order symmetries turns out to be rather trivial. The interesting cases are the
class Il equations that admit second-order symmetries but no nontrivial
first-order symmetries. Such equations admit separation of variables in one
or more of the four coordinate systems listed in Table 1. Each separable
coordinate system is determined by the pure differential part of the
symmetry operator, that is, the part which belongs to the enveloping
algebra of & (2). Thus, the occurrence of the operator A, in (8.1) limits the
number of separable coordinate systems to four at most. Whether or not a
given equation (8.1) separates in one of these coordinate systems depends
on the explicit form of the potential V. One finds that (8.1) separates in
one of the coordinate systems if and only if this equation admits the
second-order symmetry S+ f(x,y) where the pure differential operator S
corresponds to the coordinate system.

Although the interesting cases of (8.1) as treated in [140] are all class IL,
it frequently happens that such cases arise from class I equations by a
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partial separation of variables. For example, (8.1) arises from the time-de-
pendent Schrodinger equation (5.1) if we split off the time variable by the
assumption ¥(x,y,f)=e ™®(x,y). The class I harmonic oscillator, repul-
sive oscillator, and linear potential equations which we have studied in the
time-dependent case become class II equations in [140] when the ¢ variable
1s separated. This is because separation of the ¢ variable drastically reduces
the symmetry of the Schrodinger equation.

An especially interesting class I equation that appears in [140] corre-
sponds to the potential v(x,y)= —a/x*— f/y* where a,f are real con-
stants such that a«®+ °>0. In [18] and [103], Boyer and Niederer have
both listed this potential in their classifications of all potentials V' (x,y)
such that the time-dependent Schrodinger equation admits nontrivial first-
order symmetry operators. In [19], Boyer studied the time-dependent
Schrodinger equation

(18,49, +08,,—a/x*—B/y})¥=0 (8.2)

from the point of view presented in this book. He showed that this
equation 1s still class II. However, it is highly tractable since it can be
obtained from the free-particle Schrédinger equation (class I), (i9, +A,)¥
=0 by a partial separation of variables. Boyer showed that (8.2) R-sep-
arates in 25 coordinate systems for a=0, 80 and in 15 coordinate
systems for as<0, B+0. Moreover, he found that each separable coordi-
nate system corresponded to a pair of commuting second-order symmetry
operators of (8.2). The special function identities that he obtained from this
study are similar to, but not the same as, those obtained in Section 2.5.

In [5, 6], Armstrong used methods due to the author and the Wigner-
—Echart theorem to study the quantum-mechanical systems of Section 2.3,
all of which admit SL(2,R) as a dynamical symmetry group. He consid-
ered infinite families of self-adjoint operators on L,(R+) that transform
irreducibly under the adjoint action of SL(2,R) and used group theory to
compute the matrix elements of these operators with respect to a basis of
eigenvectors of L;. See also [99]. An extension of the theory which is
similar in viewpoint to the methods of this book is contained in [86] and
[87].

Finally, in [23] group theory and separation of variables are used to
determine all possible first- and second-order raising operators for Hamil-
tonians of the form H= —A, + V (x,y). (A raising operator R for H satisfies
the commutation relation [H,R]=puR, u>0. If the eigenvector ¥ of H
satisfies HW¥=A¥, then formally H(R¥)=A+p)RY¥, so R maps an
eigenvector corresponding to eigenvalue A to an eigenvector corresponding
to eigenvalue A+ p.) In [23] it is shown that a necessary condition for H to
admit a second-order raising operator is that equation (8.1) separate in one
of the four coordinate systems listed in Table 1. A complete list of possible
raising operators is given.
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Exercises

I. Compute the symmetry algebra of the free-particle Schrodinger equa-
tion (1.2).

2. Determine the decomposition of the Schrodinger algebra 6, into
orbits under the adjoint action of G,.

3. Show that under the adjoint action of SL(2,R), the Lie algebra
s/(2,R) decomposes into three orbits.

4. Expression (1.30) shows explicitly the equivalence between the
Schrodinger equations for the free particle and the harmonic oscillator.
Derive the corresponding expression giving the equivalence between the
free-particle and linear potential equations.

J. Derive the bilinear expansions (1.55) for the fundamental solution of
the Schrodinger equation

k(t,x—=y)=(4mit)" 'ﬂexp[ = (x—y)z/f-‘h‘f}

with respect to the bases {FY}, j=2, 4. (See [35, 136] for detailed
discussions of such continuous generating functions.)
6. Use the methods of Section 2.2 to solve the Cauchy problem for

d0=4d, D+ xd.

That is, find a bounded solution ®(1,x) of this equation for 1 >0, continu-
ous for 7 >0, such that ®(0,x)=f(x) where f(x) 1s bounded and continu-
ous on the real line.

7. The Hermite functions H,(z), (2.26), are polynomials for n=0,1,2,...
and for n=—1,—-2 ... they are called Hermite functions of the second
kind. Show that the second-kind functions can be expressed in terms of the
error function and its derivatives [37]. Verify that the functions D (z.5)=
H. (2)s", n=0,+1,+2, ..., satisfy the recurrence relations

H®,=%,,,, H®,=(n+;)®,, H_&,=(n/2)®, ,
HE‘:I)H =(Dn+2=‘ H—Etpn:: %H(”- I){I}H—E'

where the operators H;, (2.23), form a basis for the symmetry algebra of
the complex heat equation. Show that this representation is not irreducible.
Use the simple models constructed in Section 2.2 to compute the matrix
elements of this representation and obtain the corresponding special func-
tion identities. In particular, derive the identity associated with the expres-
sion exp(aH )P _,.

8. Compute the bilinear expansion for the fundamental solution
k(2,x,y), (3.19), of the radial free-particle Schrodinger equation in terms of
the Laguerre polynomial basis. Show that the expansion is a special case of
the Hille-Hardy formula (4.27). Determine the bilinear expansion of
k(f,x,y) in terms of the continuum basis (¥, (3.16).

9. Compute the symmetry algebra of the complex heat equation d,® —
4y ®—0,®=0.



